Advertisement

Metabolism and Kinetics

  • U. Breyer-Pfaff
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

Neuroleptic drugs act principally on the central nervous system. This implies that they are lipophilic compounds which easily penetrate membranes separating single body compartments from one another. As a consequence, their excretion will ordinarily be preceded by biotransformation to more hydrophilic substances, since otherwise binding to tissues and plasma proteins and renal tubular reabsorption would lead to an extremely long persistence in the body. Thus, metabolic transformations become limiting for the elimination of the majority of these drugs.

Keywords

Neuroleptic Drug Piperazine Ring Fluphenazine Decanoate Limited Brain Phenothiazine Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airoldi, L., Marcucci, F., Mussini, E., Garattini, S.: Distribution of penfluridol in rats and mice. Eur. J. Pharmacol. 25, 291–295 (1974)PubMedGoogle Scholar
  2. Akera, T., Brody, T.M.: Inhibition of brain sodium- and potassium-stimulated adenosine triphosphatase activity by chlorpromazine free radical. Mol. Pharmacol. 4, 600–612 (1968)PubMedGoogle Scholar
  3. Alfredsson, G., Wiesel, F.-A., Skett, P.: Levels of chlorpromazine and its active metabolites in rat brain and the relationship to central monoamine metabolism and prolactin secretion. Psychopharmacology 53, 13–18 (1977)PubMedGoogle Scholar
  4. Allgén, L.-G., Jönsson, B., Nauckhoff, B., Andersen, M.-L., Huus, I., Møller Nielsen, I.: On the elimination of chlorprothixene in rat and man. Experientia 16, 325 (1960)PubMedGoogle Scholar
  5. Beckett, A.H., Essien, E.E.: Chlorpromazine “hydroxylamines” in red blood cells as major metabolites of chlorpromazine in man. J. Pharm. Pharmacol. 25, 188–189 (1973)PubMedGoogle Scholar
  6. Beckett, A.H., Hewick, D.S.: The N-oxidation of chlorpromazine in vitro — the major metabolic route using rat liver microsomes. J. Pharm. Pharmacol. 19, 134–136 (1967)Google Scholar
  7. Beckett, A.H., Beaven, M.A., Robinson, A.E.: Metabolism of chlorpromazine in humans. Biochem. Pharmacol. 12, 779–794 (1963)PubMedGoogle Scholar
  8. Beckett, A.H., Gorrod, J.W., Lazarus, C.R.: The in vitro metabolism of [35S]chlorpromazine. Xenobiotica 1, 535–536 (1971)PubMedGoogle Scholar
  9. Berman, H.M., Spirtes, M.A.: Gas chromatographic analysis of chlorpromazine and its metabolites formed by hepatic microsomes -I. Influence of magnesium. Biochem. Pharmacol. 20, 2275–2286 (1971)PubMedGoogle Scholar
  10. Braun, G.A., Poos, G.I., Soudijn, W.: Distribution, excretion and metabolism of neuroleptics of the butyrophenone type. Part II. Distribution, excretion and metabolism of haloperidol in Sprague-Dawley rats. Eur. J. Pharmacol. 1, 58–62 (1967)PubMedGoogle Scholar
  11. Breyer, U.: Urinary metabolites of 10-[3′-(4″-methyl-piperazinyl)-propyl]-phenothiazine (perazine) in psychiatric patients. I. Isolation, identification and determination of metabolites. Biochem. Pharmacol. 18, 777–788 (1969)PubMedGoogle Scholar
  12. Breyer, U.: Metabolism of the phenothiazine drug perazine by liver and lung microsomes from various species. Biochem. Pharmacol. 20, 3341–3351 (1971)PubMedGoogle Scholar
  13. Breyer, U.: Accumulation and elimination of a novel metabolite during chronic administration of the phenothiazine drug perazine to rats. Biochem. Pharmacol. 21, 1419–1429 (1972)PubMedGoogle Scholar
  14. Breyer, U., Gaertner, H.J.: Accumulation and elimination of metabolites in animals and man treated chronically with phenothiazines. Excerpta Med., Int. Congr. Ser. 288, 59–66 (1973)Google Scholar
  15. Breyer, U., Schmalzing, G.: Metabolism and disposition of trifluoperazine in the rat. I. A thinlayer chromatographic method for the measurement of trifluoperazine and its metabolites in rat tissues. Drug Metab. Dispos. 5, 97–103 (1977)PubMedGoogle Scholar
  16. Breyer, U., Villumsen, K.: Measurement of plasma levels of tricyclic psychoactive drugs and their metabolites by UV reflectance photometry of thin layer chromatograms. Eur. J. Clin. Pharmacol. 9, 457–465 (1976)Google Scholar
  17. Breyer, U., Winne, D.: Absorption and metabolism of the phenothiazine drug perazine in the rat intestinal loop. Biochem. Pharmacol. 26, 1275–1280 (1977)Google Scholar
  18. Breyer, U., Gaertner, H.J., Prox, A.: Formation of identical metabolites from piperazine- and dimethylamino-substituted phenothiazine drugs in man, rat and dog. Biochem. Pharmacol. 23, 313–322 (1974a)PubMedGoogle Scholar
  19. Breyer, U., Prox, A., Bertele, R., Gaertner, H.J.: Tissue metabolites of trifluoperazine, fluphenazine, prochlorperazine and perphenazine in the rat: Identification and synthesis. J. Pharm. Sci. 63, 1842–1848 (1974b)PubMedGoogle Scholar
  20. Breyer, U., Jahns, J., Irmscher, G., Rassner, H., Rehmer, S.: Kinetics of 35S-perazine in the bile fistula rat. Naunyn Schmiedebergs Arch. Pharmacol. 300, 47–56 (1977)PubMedGoogle Scholar
  21. Breyer-Pfaff, U., Kreft, H., Rassner, H., Prox, A.: Formation of sulfone metabolites from chlorpromazine and perazine in man. Drug Metab. Dispos., 6, 114–119 (1978)PubMedGoogle Scholar
  22. Brookes, L.G., Forrest, I.S.: In vitro metabolism of 3H-chlorpromazine in various mammals: a preliminary report on 13 species. Exp. Med. Surg. 29, 61–71 (1971)PubMedGoogle Scholar
  23. Bruce, R.B., Turnbull, L.B., Newman, J.H., Kinzie, J.M., Morris, P.H., Pinchbeck, F.M.: Butaperazine dimaleate metabolism. Xenobiotica 4, 197–207 (1974)PubMedGoogle Scholar
  24. Cassano, G.B., Placidi, G.F.: Penetration and distribution of neuropharmacological agents in the brain. Pharmakopsychiatr. Neuropsychopharmakol. 2, 160–175 (1969)Google Scholar
  25. Christensen, J., Wase, A.W.: Metabolism of S35-chlorpromazine. Fed. Proc. 15, 410 (1956)Google Scholar
  26. Coccia, P.F., Westerfeld, W.W.: The metabolism of chlorpromazine by liver microsomal enzyme systems. J. Pharmacol. Exp. Ther. 157, 446–458 (1967)PubMedGoogle Scholar
  27. Creese, I., Burt, D.R., Snyder, S.H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1976)PubMedGoogle Scholar
  28. Cressman, W.A., Plostnieks, J., Johnson, P.C.: Absorption, metabolism and excretion of droperidol by human subjects following intramuscular and intravenous administration. Anesthesiology 38, 363–369 (1973)PubMedGoogle Scholar
  29. Curry, S.H., Evans, S.: Assay of 7-hydroxychlorpromazine, and failure to detect more than small quantities, in plasma of responding schizophrenics. Psychopharmacol. Commun. 1, 481–490(1975)PubMedGoogle Scholar
  30. Curry, S.H., Marshall, J.H.L.: Plasma levels of chlorpromazine and some of its relatively nonpolar metabolites in psychiatric patients. Life Sci. 7, 9–17 (1968)PubMedGoogle Scholar
  31. Curry, S.H., Derr, J.E., Maling, H.M.: The physiological disposition of chlorpromazine in the rat and dog. Proc. Soc. Exp. Biol. Med. 134, 314–318 (1970)PubMedGoogle Scholar
  32. Curry, S.H., D’Mello, A., Mould, G.P.: Destruction of chlorpromazine during absorption in the rat in vivo and in vitro. Br. J. Pharmacol. 42, 403–411 (1971)PubMedGoogle Scholar
  33. Daly, J.W., Manian, A.A.: The metabolism of hydroxychlorpromazines by rat liver microsomes. Biochem. Pharmacol. 16, 2131–2136 (1967)PubMedGoogle Scholar
  34. Daly, J.W., Manian, A.A.: The action of catechol-O-methyltransferase on 7,8-dihydroxychlorpromazine — Formation of 7-hydroxy-8-methoxychlorpromazine and 8-hydroxy-7-methoxychlorpromazine. Biochem. Pharmacol. 18, 1235–1238 (1969)PubMedGoogle Scholar
  35. De Leenheer, A.P.: Identification and quantitative determination of phenothiazine drugs in urine samples of psychiatric patients. J. Pharm. Sci. 63, 389–394 (1974)PubMedGoogle Scholar
  36. Dingeil, J.V., Sossi, N.: Studies on the glucuronidation of 7-hydroxychlorpromazine in vitro. Drug Metab. Dispos. 5, 397–404 (1977)Google Scholar
  37. Dreyfuss, J., Cohen, A.I.: Identification of 7-hydroxyfluphenazine as major metabolite of fluphenazine-14C in the dog. J. Pharm. Sci. 60, 826–828 (1971)PubMedGoogle Scholar
  38. Dreyfuss, J., Ross Jr., J.J., Schreiber, E.C.: Biological disposition and metabolic fate of fluphenazine-14C in the dog and rhesus monkey. J. Pharm. Sci. 60, 821–825 (1971)PubMedGoogle Scholar
  39. Dreyfuss, J., Beer, B., Devine, D.D., Roberts, B.F., Schreiber, E.C.: Fluphenazine-induced Parkinsonism in the baboon: Pharmacological and metabolic studies. Neuropharmacology 11, 223–230 (1972)PubMedGoogle Scholar
  40. Dreyfuss, J., Ross Jr., J.J., Shaw, J.M., Miller, L, Schreiber, E.C.: Release and elimination of 14C-fluphenazine enanthate and decanoate esters administered in sesame oil to dogs. J. Pharm. Sci. 65, 502–507 (1976 a)PubMedGoogle Scholar
  41. Dreyfuss, J., Shaw, J.M., Ross Jr., J.J.: Fluphenazine enanthate and fluphenazine decanoate: Intramuscular injection and esterification as requirements for slow-release characteristics in dogs. J. Pharm. Sci. 65, 1310–1315 (1976b)PubMedGoogle Scholar
  42. Ebert, A.G., Hess, S.M.: The distribution and metabolism of fluphenazine enanthate. J. Pharmacol. Exp. Ther. 148, 412–421 (1965)PubMedGoogle Scholar
  43. Eckert, H., Hopf, A.: Autoradiographic studies in the distribution of psychoactive drugs in the rat brain. IV. 14C-Thioridazine. Int. Pharmacopsychiatry 4, 98–116 (1970)Google Scholar
  44. Emmerson, J.L., Miya, T.S.: Metabolism of phenothiazine drugs. J. Pharm. Sci. 52, 411–419 (1963)Google Scholar
  45. Fishman, V., Goldenberg, H.: Metabolism of chlorpromazine. IV. Identification of 7-hydroxychlorpromazine and its sulfoxide and desmethyl derivatives. Proc. Soc. Exp. Biol. Med. 112, 501–506 (1963)PubMedGoogle Scholar
  46. Fishman, V., Goldenberg, H.: Side-chain degradation and ring hydroxylation of phenothiazine tranquilizers. J. Pharmacol. Exp. Ther. 150, 122–128 (1965)PubMedGoogle Scholar
  47. Fishman, V., Heaton, A., Goldenberg, H.: Metabolism of chlorpromazine. III. Isolation and identification of chlorpromazine-N-oxide. Proc. Soc. Exp. Biol. Med. 109, 548–552 (1962)PubMedGoogle Scholar
  48. Forrest, I.S., Forrest, F.M.: On the metabolism and action mechanism of the phenothiazine drugs. Exp. Med. Surg. 21, 231–240 (1963)PubMedGoogle Scholar
  49. Forrest, I.S., Bolt, A.G., Serra, M.T.: Distribution of chlorpromazine metabolites in selected organs of psychiatric patients chronically dosed up to the time of death. Biochem. Pharmacol. 17, 2061–2070 (1968)PubMedGoogle Scholar
  50. Forrest, I.S., Fox, J., Green, D.E., Melikian, A.P., Serra, M.T.: Total excretion of 3H-chlorpromazine and 3H-prochlorperazine in chronically dosed animals: Balance sheet. Adv. Biochem. Psychopharmacol. 9, 347–356 (1974)PubMedGoogle Scholar
  51. Forrest, I.S., Green, D.E., Serra, M.T., Soave, O.A.: Chlorpromazine excretion in chronically dosed primates. I. Occurrence of a previously unreported class of chlorpromazine conjugates. Psychopharmacol. Commun. 1, 51–59 (1975)PubMedGoogle Scholar
  52. Forsman, A., Fölsch, G., Larsson, M., Öhman, R.: On the metabolism of haloperidol in man. Curr. Ther. Res. 21, 606–617 (1977)Google Scholar
  53. Gaertner, H.J., Breyer, U., Liomin, G.: Metabolism of trifluoperazine, fluphenazine, prochlorperazine and perphenazine in rats: In vitro and urinary metabolites. Biochem. Pharmacol. 23, 303–311 (1974)PubMedGoogle Scholar
  54. Gaertner, H.J., Liomin, G., Villumsen, D., Bertele, R., Breyer, U.: Tissue metabolites of trifluoperazine, fluphenazine, prochlorperazine, and perphenazine. Kinetics in chronic treatment. Drug Metab. Dispos. 3, 437–444 (1975)PubMedGoogle Scholar
  55. Gauch, R., Michaelis, W.: The metabolism of 8-chloro-11-(4-methyl-l-piperazinyl)-5H-dibenzo[b,e][l,4]diazepine (clozapine) in mice, dogs and human subjects. Farmaco [Prat.] 26, 667–681 (1971)Google Scholar
  56. Goldenberg, H., Fishman, V.: Metabolism of chlorpromazine. V. Confirmation of position 7 as major site of hydroxylation. Biochem. Biophys. Res. Commun. 14, 404–407 (1964)PubMedGoogle Scholar
  57. Goldenberg, H., Fishman, V., Heaton, A., Burnett, R.: A detailed evaluation of promazine metabolism. Proc. Soc. Exp. Biol. Med. 115, 1044–1051 (1964)PubMedGoogle Scholar
  58. Gorrod, J.W., Lazarus, C.R., Beckett, A.H.: Some aspects of the in vitro oxidation of 35S-chlorpromazine. Adv. Biochem. Psychopharmacol. 9, 191–200 (1974)PubMedGoogle Scholar
  59. Goucher, C, Windle, J.J., Levy, L.: Stable enzyme inhibitors and stable free radical species in ultraviolet-irradiated solutions of chlorpromazine. Mol. Pharmacol. 11, 603–612 (1975)PubMedGoogle Scholar
  60. Gruenke, L.D., Craig, J.C., Dinovo, E.C., Gottschalk, L.A., Noble, E.P., Biener, R.: Identification of a metabolite of thioridazine and mesoridazine from human plasma. Res. Commun. Chem. Pathol. Pharmacol. 10, 221–225 (1975)PubMedGoogle Scholar
  61. Hammar, C.-G., Holmstedt, B., Ryhage, R.: Mass fragmentography. Identification of chlorpromazine and its metabolites in human blood by a new method. Anal. Biochem. 25, 532–548 (1968)PubMedGoogle Scholar
  62. Harinath, B.C., Odell, G.V.: Chlorpromazine-N-oxide formation by subcellular liver fractions. Biochem. Pharmacol. 17, 167–171 (1968)PubMedGoogle Scholar
  63. Höllt, V., Czlonkowski, A., Herz, A.: The demonstration in vivo of specific binding sites for neuroleptic drugs in mouse brain. Brain Res. 130, 176–183 (1977)PubMedGoogle Scholar
  64. Idänpään-Heikkilä, J.E., Vapaatalo, H.I., Neuvonen, P.J.: Effect of N-hydroxyethylpromethazine (Aprobit®) on the distribution of 35S-chlorpromazine studied by autoradiography in cats and mice. Psychopharmacologia 13, 1–13 (1968)PubMedGoogle Scholar
  65. Israili, Z.H., Dayton, P.G., Kiechel, J.R.: Novel routes of drug metabolism. A survey. Drug Metab. Dispos. 5, 411–415 (1977)PubMedGoogle Scholar
  66. Janssen, P.A.J., Allewijn, F.T.N.: Pimozide, a chemically novel, highly potent and orally longacting neuroleptic drug. Part II: Kinetic study of the distribution of pimozide and metabolites in brain, liver and blood of the Wistar rat. Arzneim. Forsch. 18, 279–282 (1968)Google Scholar
  67. Janssen, P.A.J., Allewijn, F.T.N.: The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofuperol in rats, and its relationship with their neuroleptic activity. Arzneim. Forsch. 19, 199–208 (1969)Google Scholar
  68. Johnson, D.E., Rodriguez, CF., Burchfield, H.P.: Determination by microcoulometric gas chromatography of chlorpromazine metabolites in human urine. Biochem. Pharmacol. 14, 1453–1469 (1965)PubMedGoogle Scholar
  69. Jørgensen, A., Fredericson Overø, K., Hansen, V.: Metabolism, distribution and excretion of flupenthixol decanoate in dogs and rats. Acta Pharmacol. Toxicol. 29, 339–358 (1971)Google Scholar
  70. Kamm, J.J., Gillette, J.R., Brodie, B.B.: Metabolism of chlorpromazine to chlorpromazine sulfoxide by liver microsomes. Fed. Proc. 17, 382 (1958)Google Scholar
  71. Kanig, K., Breyer, U.: Urinary metabolites of 10-[3′-(4″-methyl-piperazinyl)-propyl]-phenothi-azine (perazine) in psychiatric patients. II. Individual metabolite patterns and their changes in the course of treatment. Psychopharmacologia 14, 211–220 (1969)PubMedGoogle Scholar
  72. Kaul, P.N., Conway, M.W., Ticku, M.K., Clark, M.L.: Chlorpromazine metabolism II: Determination of nonconjugated metabolites in blood of schizophrenic patients. J. Pharm. Sci. 61, 581–585 (1972)PubMedGoogle Scholar
  73. Kawashima, K., Dixon, R., Spector, S.: Development of radioimmunoassay for chlorpromazine. Eur. J. Pharmacol. 32, 195–202 (1975 a)PubMedGoogle Scholar
  74. Kawashima, K., Wurzburger, R.I., Spector, S.: Correlation of chlorpromazine levels in rat brain and serum with its hypothermic effect. Psychopharmacol. Commun. 1, 431–436 (1975 b)PubMedGoogle Scholar
  75. Khan, A.R.: Some aspects of clopenthixol metabolism in rats and humans. Acta Pharmacol. Toxicol. 27, 202–212 (1969)Google Scholar
  76. Knoll, R., Christ, W., Müller-Oerlinghausen, B., Coper, H.: Formation of chlorpromazine sulphoxide and monodesmethylchlorpromazine by microsomes of small intestine. Naunyn Schmiedebergs Arch. Pharmacol. 297, 195–200 (1977)PubMedGoogle Scholar
  77. Krauss, D., Otting, W., Breyer, U.: Identification of a urinary metabolite of perazine as a piperazine-2,5-dione derivative. J. Pharm. Pharmacol. 21, 808–813 (1969)PubMedGoogle Scholar
  78. Laduron, P., Leysen, J.: Specific in vivo binding of neuroleptic drugs in rat brain. Biochem. Pharmacol. 26, 1003–1007 (1977)PubMedGoogle Scholar
  79. Laduron, P.M., Janssen, P.F.M., Leysen, J.E.: Spiperone: A ligand of choice for neuroleptic receptors. II. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem. Pharmacol. 27, 317–321 (1978 a)PubMedGoogle Scholar
  80. Laduron, P.M., Janssen, P.F.M., Leysen, J.E.: Spiperone: A lingand of choice for neuroleptic receptors. III. Subcellular distribution of neuroleptic drugs and their receptors in various rat brain areas. Biochem. Pharmacol. 27, 323–328 (1978 b)PubMedGoogle Scholar
  81. Lewi, P.J., Heykants, J.J.P., Allewijn, F.T.N., Dony, J.G.H., Janssen, P.A.J.: Distribution and metabolism of neuroleptic drugs. Part I: Pharmacokinetics of haloperidol. Arzneim. Forsch. 20, 943–948 (1970 a)Google Scholar
  82. Lewi, P.J., Heykants, J.J.P., Janssen, P.A.J.: On the distribution and metabolism of neuroleptic drugs. Part III: Pharmacokinetics of trifluperidol. Arzneim. Forsch. 20, 1701–1705 (1970 b)Google Scholar
  83. Leysen, J.E., Gommeren, W., Laduron, P.M.: Spiperone: A ligand of choice for neuroleptic receptors. I. Kinetics and characteristics of in vitro binding. Biochem. Pharmacol. 27, 307–316 (1978)PubMedGoogle Scholar
  84. Lin, T.H., Reynolds, L.W., Rondish, I.M., Van Loon, E.J.: Isolation and characterization of glucuronic acid conjugates of chlorpromazine in human urine. Proc. Soc. Exp. Biol. Med. 102, 602–605 (1959)PubMedGoogle Scholar
  85. Lindquist, N.G., Uliberg, S.: The melanin affinity of chloroquine and chlorpromazine studied by whole body autoradiography. Acta Pharmacol. Toxicol. 31, Suppl. 2, 1–32 (1972)Google Scholar
  86. Mackay, A.V.P., Healey, A.F., Baker, J.: The relationship of plasma chlorpromazine to its 7-hydroxy and suphoxide metabolites in a large population of chronic schizophrenics. Br. J. Clin. Pharmacol. 1, 425–430 (1974)Google Scholar
  87. Mahju, M.A., Maickel, R.P.: Accumulation of phenothiazine tranquilizers in rat brain and plasma after repeated dosage. Biochem. Pharmacol. 18, 2701–2710 (1969)PubMedGoogle Scholar
  88. Maickel, R.P., Fedynskyj, N.M., Potter, W.Z., Manian, A.A.: Tissue localization of 7- and 8-hydroxychloropromazines. Toxicol. Appl. Pharmacol. 28, 8–17 (1974)PubMedGoogle Scholar
  89. March, J.E., Donato, D., Turano, P., Turner, W.J.: Interpatient variation and significance of plasma levels of chlorpromazine in psychiatric patients. J. Med. (Basel) 3, 146–162 (1972)Google Scholar
  90. Mårtensson, E., Nyberg, G., Axelsson, R., Serck-Hansen, K.: Quantitative determination of thioridazine and nonconjugated thioridazine metabolites in serum and urine of psychiatric patients. Curr. Ther. Res. 18, 687–700 (1975)PubMedGoogle Scholar
  91. Meier, J.: Bioanalytical assay of clozapine and its N-oxide metabolite and the determination of their blood levels in the dog. Br. J. Pharmacol. 53, 440P (1975)PubMedGoogle Scholar
  92. Minder, R., Schnetzer, F., Bickel, M.H.: Hepatic and extrahepatic metabolism of the psychotropic drugs, chlorpromazine, imipramine, and imipramine N-oxide. Naunyn Schmiedebergs Arch. Pharmacol. 268, 334–347 (1971)PubMedGoogle Scholar
  93. Mjörndal, T., Wiesel, F.-A., Oreland, L.: Biochemical and behavioral effects of thiothixene: Relation to tissue levels of the drug. Acta Pharmacol. Toxicol. 38, 490–496 (1976)Google Scholar
  94. Nybäck, H., Sedvall, G.: Effect of chlorpromazine and some of its metabolites on synthesis and turnover of catecholamines formed from 14C-tyrosine in mouse brain. Psychopharma-cologia 26, 155–160 (1972)Google Scholar
  95. Öhman, R., Larsson, M., Nilsson, I.M., Engel, J., Carlsson, A.: Neurometabolic and behavioral effects of haloperidol. Relation to drug levels in serum and in brain. Naunyn Schmiedebergs Arch. Pharmacol. 299, 105–114 (1977)PubMedGoogle Scholar
  96. Palmer, G.C., Manian, A.A.: Actions of phenothiazine analogues on dopamine-sensitive adenylate cyclase in neuronal and glial-enriched fractions from rat brain. Biochem. Pharmacol. 25, 63–71 (1976)PubMedGoogle Scholar
  97. Phillips, B.M., Miya, T.S.: Disposition of S35-prochlorperazine in the rat. J. Pharm. Sci. 53, 1098–1101(1964)PubMedGoogle Scholar
  98. Piette, L.H., Forrest, LS.: EPR studies of free radicals in the oxidation of drugs derived from phenothiazine in vitro. Biochim. Biophys. Acta 57, 419–420 (1962)PubMedGoogle Scholar
  99. Prema, K., Gopinathan, K.P.: Distribution, induction and purification of a monooxygenase catalyzing sulphoxidation of drugs. Biochem. Pharmacol. 25, 1299–1303 (1976)PubMedGoogle Scholar
  100. Raaflaub, J.: Zum Metabolismus des Chlorprothixen. Arzneim. Forsch. 17, 1393–1395 (1967)Google Scholar
  101. Rand, M.J., Jurevics, H.: The pharmacology of Rauwolfia alkaloids. In: Handbuch der experimentellen Pharmakologie, Vol. XXXIX. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  102. Rivera-Calimlim, L.: Impaired absorption of chlorpromazine in rats given trihexyphenidyl. Br. J. Pharmacol. 56, 301–305 (1976)PubMedGoogle Scholar
  103. Rodriguez, C.F., Johnson, D.E.: A new metabolite of chlorpromazine in human urine. Life Sci. 5, 1283–1291 (1966)Google Scholar
  104. Rose, R.M., Dimascio, A., Klerman, G.L.: Non-polar urinary metabolites of chlorpromazine in male schizophrenics. J. Psychiatr. Res. 2, 299–305 (1964)Google Scholar
  105. Sakalis, G., Chan, T.L., Gershon, S., Park, S.: The possible role of metabolites in therapeutic response to chlorpromazine treatment. Psychopharmacologia 32, 279–284 (1973)PubMedGoogle Scholar
  106. Sakurai, Y., Nakahara, T., Takahashi, R.: Prediction of response to chlorpromazine treatment in schizophrenics. Psychopharmacologia 44, 195–203 (1975)PubMedGoogle Scholar
  107. Salzman, N.P., Brodie, B.B.: Physiological disposition and fate of chlorpromazine and a method for its estimation in biological material. J. Pharmacol. Exp. Ther. 118, 46–54 (1956)PubMedGoogle Scholar
  108. Salzman, N.P., Moran, N.C., Brodie, B.B.: Identification and pharmacological properties of a major metabolite of chlorpromazine. Nature 176, 1122–1123 (1955)PubMedGoogle Scholar
  109. Sanders, G.T.B.: Distribution of some structurally related pharmacological agents in rat brain. Biochem. Pharmacol. 22, 601–607 (1973)PubMedGoogle Scholar
  110. Schmalzing, G.: Metabolism and disposition of trifluoperazine in the rat. II. Kinetics after oral and intravenous administration in acutely and chronically treated animals. Drug Metab. Dispos. 5, 104–115(1977)PubMedGoogle Scholar
  111. Schmalzing, G., Breyer, U.: Kinetics of [3H]trifluoperazine in bile fistula rats. Xenobiotica 8, 45–54 (1978)PubMedGoogle Scholar
  112. Seeman, P., Lee, T., Chau-Wong, M., Wong, K.: Antipsychotic drug doses and neuroleptic/ dopamine receptors. Nature 261, 717–719 (1976)PubMedGoogle Scholar
  113. Sjöstrand, S.E., Cassano, G.B., Hansson, E.: The distribution of 35S-chlorpromazine in mice studied by whole body autoradiography. Arch. Int. Pharmacodyn. Ther. 156, 34–47 (1965)PubMedGoogle Scholar
  114. Soudijn, W., Van Wijngaarden, I.: The metabolism and excretion of the neuroleptic drug pimozide (R 6238) by the Wistar rat. Life Sci. 8, Part I, 291–295 (1969)PubMedGoogle Scholar
  115. Soudijn, W., Van Wijngaarden, I., Allewijn, F.: Distribution, excretion and metabolism of neuroleptics of the butyrophenone type. Part I. Excretion and metabolism of haloperidol and nine related butyrophenone-derivatives in the Wistar rat. Eur. J. Pharmacol. 1, 47–57 (1967)PubMedGoogle Scholar
  116. Spano, P.F., Neff, N.H., Macko, E., Costa, E.: Efflux of chlorpromazine and trifluoperazine from the rat brain. J. Pharmacol. Exp. Ther. 174, 20–26 (1970)PubMedGoogle Scholar
  117. Spirtes, M.A.: Two types of metabolically produced trifluoperazine N-oxides. Adv. Biochem. Psychopharmacol. 9, 399–404 (1974)PubMedGoogle Scholar
  118. Stitzel, R.E.: The biological fate of reserpine. Pharmacol. Rev. 28, 179–205 (1976)PubMedGoogle Scholar
  119. Stock, B., Spiteller, G., Heipertz, R.: Austausch aromatisch gebundenen Halogens gegen OH-und SCH3- bei der Metabolisierung des Clozapins im menschlichen Körper. Arzneim. Forsch. 27, 982–990 (1977)Google Scholar
  120. Tinani, H.: Relationships between some physicochemical properties, pharmacokinetic parameters and pharmacological activities of tricyclic neurotropic agents. Thesis, Eidgenössische Technische Hochschule Zürich 1975Google Scholar
  121. Turano, P., March, J.E., Turner, W.J., Merlis, S.: Qualitative and quantitative report on chlorpromazine and metabolites in plasma, erythrocytes and erythrocyte washings from chronically medicated schizophrenic patients. J. Med. (Basel) 3, 109–120 (1972)Google Scholar
  122. Turano, P., Turner, W.J., Manian, A.A.: Thin-layer chromatography of chlorpromazine metabolites. Attempt to identify each of the metabolites appearing in blood, urine and feces of chronically medicated schizophrenics. J. Chromatogr. 75, 277–293 (1973)PubMedGoogle Scholar
  123. Usdin, E.: The assay of chlorpromazine and metabolites in blood, urine, and other tissues. CRC Crit. Rev. Clin. Lab. Sci. 2, 347–391 (1971)PubMedGoogle Scholar
  124. Van Loon, E.J., Flanagan, T.L., Novick, W.J., Maas, A.R.: Hepatic secretion and urinary excretion of three S35-labeled phenothiazines in the dog. J. Pharm. Sci. 53, 1211–1213 (1964)Google Scholar
  125. Walkenstein, S.S., Seifter, J.: Fate, distribution and excretion of 35S-promazine. J. Pharmacol. Exp. Ther. 125, 283–286 (1959)PubMedGoogle Scholar
  126. West, N.R, Rosenblum, M.P., Sprince, H., Gold, S., Boehme, D.H., Vogel, W.H.: Assay procedures for thioridazine, trifluoperazine, and their sulfoxides and determination of urinary excretion of these compounds in mental patients. J. Pharm. Sci. 63, 417–419 (1974)PubMedGoogle Scholar
  127. West, N.R., Vogel, W.H.: Absorption, distribution and excretion of trifluoperazine in rats. Arch. Int. Pharmacodyn. Ther. 215, 318–335 (1975)PubMedGoogle Scholar
  128. Whelpton, R., Curry, S.H.: Methods for study of fluphenazine kinetics in man. J. Pharm. Pharmacol. 28, 869–873 (1976)PubMedGoogle Scholar
  129. Wiest, E., Prox, A., Wachsmuth, H., Breyer-Pfaff, U.: Aromatic hydroxydation of chlorprothixene in man and dog. Proceedings of the Fourth International Symposium on Phenothiazines and Related Drugs. Amsterdam: Elsevier, in press 1980Google Scholar
  130. Wiles, D.H., Kolakowska, T., McNeilly, A.S., Mandelbrote, B.M., Gelder, M.G.: Clinical significance of plasma chlorpromazine levels. I. Plasma levels of the drug, some of its metabolites and prolactin during acute treatment. Psychol. Med. 6, 407–415 (1976)PubMedGoogle Scholar
  131. Wilkinson, G.R., Shand, D.G.: Physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18, 377–390 (1975)Google Scholar
  132. Williams, R.T., Parke, D.V.: The metabolic fate of drugs. Annu. Rev. Pharmacol. 4, 85–114 (1964)Google Scholar
  133. Zehnder, K., Kalberer, F., Kreis, W., Rutschmann, J.: The metabolism of thioridazine (Mellaril®) and one of its pyrrolidine analogues in the rat. Biochem. Pharmacol. 11, 535–550 (1962 a)PubMedGoogle Scholar
  134. Zehnder, K., Kalberer, F., Rutschmann, J.: The metabolism of thiethylperazine (Torecan®). Biochem. Pharmacol. 11, 551–556 (1962b)PubMedGoogle Scholar
  135. Ziegler, D.M., Mitchell, C.H., Jollow, D.: The properties of a purified hepatic microsomal mixed function amine oxidase. In: Microsomes and Drug Oxidations. London: Academic Press 1969Google Scholar
  136. Zingales, I.A.: Detection of chlorpromazine and thioridazine metabolites in human erythrocytes. J. Chromatogr. 44, 547–562 (1969)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • U. Breyer-Pfaff

There are no affiliations available

Personalised recommendations