Advertisement

Biochemical Effects (in Men)

  • M. Ackenheil
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

The specific effects of neuroleptics in animals are well established. They interfere with the neuronal activity of the biogenic amines, dopamine (DA), noradrenaline (NA), and sometimes serotonin (5-HT). They may also influence the activity of other transmitters or mediators such as γ-aminobutyric acid (GABA), acetylcholine, and hormones, particularly prolactin. From these effects, the mechanism of antipsychotic action is concluded to be due mainly to DA-, rather than NA-receptor blockade in brain. (Carlsson and Lindqvist, 1963; van Rossum, 1966; Nybäck and Sedvall, 1968). Final evidence for this hypothesis has yet to be produced from clinical-biochemical investigations in man. Clinical-biochemical studies with neuroleptics are mainly carried out in order to answer the following questions:
  1. 1)

    To what extent are the biochemical effects known from animal experiments applicable for human beings?

     
  2. 2)

    Is there a relationship between antipsychotic and extrapyramidal motor system (EPMS) effects, on one hand, and biochemical effects on the other?

     
  3. 3)

    Are there differences between drugs inducing strong EPMS disturbances and others with less or no EPMS side effects?

     

Keywords

Biogenic Amine Receptor Blockade Biochemical Effect Homovanillic Acid Prolactin Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackenheil, M.: Biochemical investigations into the mode of action of sulpiride. 11th CINP Congress, Vienna (1978)Google Scholar
  2. Ackenheil, M., Beckmann, H., Greil, W., Hoffmann, G., Markianos, E., Raese, J.: Antipsychotic efficacy of clozapine in correlation to changes in catecholamine metabolism in man. In: Phenothiazines and Structurally Related Drugs. Forrest, L, Carr, C.J., Usdin, E. (eds.). New York: Raven 1974 aGoogle Scholar
  3. Ackenheil, M., Beckmann, H., Hoffmann, G., Markianos, E., Nyström, I., Raese, J.: Einfluß von Clozapin auf die MHPG-, HVS- und 5-HIES-Ausscheidung im Urin und Liquor cerebrospinalis. Arzneim. Forsch. 24, 984–987 (1974 b)Google Scholar
  4. Anden, N.-E., Ross, B.-E., Werdenius, B.: On the occurrence of HVA in brain and CSF and its determination by a fluorometric method. Life Sci. 2, 448–460 (1963)CrossRefGoogle Scholar
  5. Bowers, M.B., Heninger, G.R., Gerbode, F.: Cerebrospinal fluid 5-hydroxyindoleacetic acid and homovanillic acid in psychiatric patients. Int. J. Neuropharmacol. 8, 255–262 (1969)PubMedCrossRefGoogle Scholar
  6. Bowers, M.B.: 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacologia 28, 309–318 (1973)PubMedCrossRefGoogle Scholar
  7. Bowers, M.B.: Central dopamine turnover in schizophrenic syndromes. Arch. Gen. Psychiatry 31, 50–54 (1974)PubMedGoogle Scholar
  8. Bowers, M.B.: Thioridazine: Central dopamine turnover and clinical effects of antipsychotic drugs. Clin. Pharmacol. Ther. 17, 73–77 (1975)PubMedGoogle Scholar
  9. Brambilla, F., Guerrine, A., Guastalla, A., Rovere, C, Riggi, F.: Neuroendocrine effects of haloperidol therapy in chronic schizophrenia. Psychopharmacologia 44, 17–22 (1975)PubMedCrossRefGoogle Scholar
  10. Bruno, A., Allegranza, A.: The effect of haloperidol on the urinary excretion of dopamine, homovanillic acid, and vanilmandelic acid in schizophrenics. Psychopharmacologia 8, 60–66 (1965)PubMedCrossRefGoogle Scholar
  11. Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)CrossRefGoogle Scholar
  12. Chase, T.N., Schnur, J.A., Gordon, E.K.: CSF monoamine catabolites in drug-induced extrapyramidal disorders. Neuropharmacology 9, 265–268 (1970)PubMedCrossRefGoogle Scholar
  13. Chase, T.N.: Central monoamine metabolism in man. Arch. Neurol. 29, 349–351 (1973)PubMedGoogle Scholar
  14. Dziedzic, S.W., Gitlow, S.E.: Cerebrospinal fluid homovanillic acid and isohomovanillic acid: a gas-liquid chromatographic method. J. Neurochem. 22, 333–335 (1974)PubMedCrossRefGoogle Scholar
  15. Eben, E., Ackenheil, M., Raese, J., Rüther, E.: Biochemische Mechanismen der extrapyramidalmotorischen Wirkung von Haloperidol am Menschen. Arzneim. Forsch. 24, 1133–1135 (1974)Google Scholar
  16. Fri, C.G., Wiesel, F.-A., Sedvall, G.: Mass fragmentographic analysis of homovanillic acid and its homoiso analogue in cerebrospinal fluid using the α-dideutero acid as internal standard. Psychopharmacologia 35, 295–304 (1974 a)PubMedCrossRefGoogle Scholar
  17. Fri, C.G., Wiesel, F.-A., Sedvall, G.: Simultaneous quantification of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid by mass fragmentography. Life Sci. 14, 2469–2480 (1974b)PubMedCrossRefGoogle Scholar
  18. Fyrö, B., Helgodt-Wode, B., Borg, S., Sedvall, G.: The effect of chlorpromazine on HVA levels in CSF of schizophrenic patients. Psychopharmacologia 35, 287–294 (1974)PubMedCrossRefGoogle Scholar
  19. Gerlach, J.: Neuroleptics and cerebrospinal fluid investigations. Drugs Exptl. Clin. Res. 1, 213–220 (1977)Google Scholar
  20. Gerlach, J., Thorsen, K., Fog, R.: Extrapyramidal reactions and amine metabolites in cerebrospinal fluid during haloperidol and clozapine treatment of schizophrenic patients. Psychopharmacologia 40, 341–350 (1975)PubMedCrossRefGoogle Scholar
  21. Guldberg, H.C.: Changes in amine metabolite concentrations in cerebrospinal fluid as an index of turnover. In: Metabolism of Amines in the Brain. Proceedings of the Symposium of the British and Scandinavian Pharmacological Societies, Edinburgh, July 1968. Hooper, G. (ed.). London: MacMillan, pp. 55–64 (1969)Google Scholar
  22. Hassler, R., Bak, I.J., Kim, J.S.: Unterschiedliche Entleerung der Speicherorte für Noradrenalin, Dopamin und Serotonin als Wirkungsprinzip des Oxypertins. Nervenarzt 41, 105–118 (1970)PubMedGoogle Scholar
  23. Henry, D.P., Starman, B.J., Johnson, D.G., Williams, R.H.: A sensitive radioenzymatic assayfor norepinephrine in tissues and plasma. Life Sci. 16, 375–384 (1975)PubMedCrossRefGoogle Scholar
  24. Keller, H.H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmacol. 23, 183–186 (1973)PubMedCrossRefGoogle Scholar
  25. Kim, S., Sherman, L., Kolodny, H., Benjamin, E., Singh, A.: Attenuation by haloperidol of human serum growth hormone (HGH) response to insulin. Clin. Res. 19, 718 (1971)Google Scholar
  26. Knott, P.J., Curzon, G.: Free tryptophan in plasma and brain tryptophan metabolism. Nature 239, 452–453 (1972)PubMedCrossRefGoogle Scholar
  27. Korf, J., van Praag, H.M.: Amine metabolism in the human brain: Further evaluation of the probenecid test. Brain Res. 35, 221–230 (1971)PubMedCrossRefGoogle Scholar
  28. Langer, G., Heinze, G., Reim, B., Matussek, N.: Reduced growth hormone responses in “Endogenous” depressive patients. Arch. Gen. Psychiat. 33, 1471–1475 (1976)PubMedGoogle Scholar
  29. Langer, G., Sachar, E.J., Gruen, P.H., Halpern, F.S.: Human prolactin responses to neuroleptic drugs correlate with antischizophrenic potency. Nature 266, 639 (1977)PubMedCrossRefGoogle Scholar
  30. Maas, J.W., Landis, D.H.: In vivo studies of the metabolism of norepinephrine in the central nervous system. J. Pharmacol. Exp. Ther. 163, 147–162 (1968)PubMedGoogle Scholar
  31. McLeod, R.M.: Regulation of prolactin secretion. In: Frontiers in Neuroendocrinology. Martini, L., Ganong, W.F. (eds.). New York: Raven 1976Google Scholar
  32. Markianos, E.S., Nyström, I., Reichel, H., Matussek, N.: Serum dopamine-ß-hydroxylase in psychiatric patients and normals. Effect of d-amphetamine and haloperidol. Psychopharmacology 50, 259–267 (1976)PubMedCrossRefGoogle Scholar
  33. Matussek, N., Ackenheil, A., Hippius, H., Schröder, H.-Th., Schultes, H., Wasilewski, B.: Effect of Clonidine on HGH release in psychiatric patients and controls. VI. World Congress of Psychiatry. Hawaii 1977Google Scholar
  34. Messiha, F.S., Turek, I.: Decreased dopamine and HVA excretion in a case with chlorpromazine-induced parkinsonism. Res. Commun. Chem. Pathol. Pharmacol. 6, 329–330 (1973)PubMedGoogle Scholar
  35. Moir, A.T.B., Ashcroft, G.W., Crawford, I.B.B., Eccleston, D., Guldberg, H.C.: Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain 93, 357–368 (1970)PubMedCrossRefGoogle Scholar
  36. Müller, Th.: Radioenzymatische Simultanbestimmung von Adrenalin und Noradrenalin im Plasma. Arzneim. Forsch. 28(II) 1304 (1978)Google Scholar
  37. Naber, D., Ackenheil, M., Fischer, G., Zander, K.: Effect of long term neuroleptic treatment on prolactin and norepinephrine levels in serum of chronic schizophrenics. 11 th CINP Congress, Vienna (1978)Google Scholar
  38. Nybäck, H., Sedvall, G.: Effects of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-14C in brain. J. Pharmacol. Exp. Ther. 162, 294–301 (1968)PubMedGoogle Scholar
  39. Persson, T., Roos, B.-E.: Clinical and pharmacological effects of monoamine precursors or haloperidol in chronic schizophrenia. Nature 217, 854–856 (1968)PubMedCrossRefGoogle Scholar
  40. Persson, T., Roos, B.-E.: Acid metabolites from monoamines in cerebrospinal fluid of chronic schizophrenics. Br. J. Psychiatry 115, 95–98 (1969)PubMedCrossRefGoogle Scholar
  41. Post, R.M., Goodwin, F.K.: Simulated behavior states: an approach to specificity in psycho-biological research. Biol. Psychiatry 7, 237–254 (1973)PubMedGoogle Scholar
  42. Post, R.M., Goodwin, F.K.: Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients. Science 190, 488–489 (1975)PubMedCrossRefGoogle Scholar
  43. Post, R.M., Kotin, J.K., Goodwin, F.K.: Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. Am. J. Psychiatry 130, 67–70 (1973)PubMedGoogle Scholar
  44. van Praag, H.M., Korf, J.: Neuroleptics, catecholamines and psychoses: A study of their interrelations. Am. J. Psychiatry 132, 593–597 (1975)PubMedGoogle Scholar
  45. van Praag, H.M., Flentge, F., Korf, J., Dols, L.C.W., Schut, T.: The influence of probenecid on the metabolism of serotonin, dopamine and their precursors in man. Psychopharmacologia 33, 141–151 (1973)PubMedCrossRefGoogle Scholar
  46. Raese, J., Schmiedek, P., Ehrlich, E.: Über den Ursprung der Homovanillinsäure im Urin. Arzneim. Forsch. 24, 1088–1093 (1974)Google Scholar
  47. Roos, B.-E., Sjöström, R.: 5-hydroxyindoleacetic acid (and homo vanillic acid) level in the cerebrospinal fluid after probenecid application in patients with manic-depressive psychosis. Pharmacol. Clin. 1, 153–155 (1969)CrossRefGoogle Scholar
  48. van Rossum, J.M.: The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Arch. Int. Pharmacodyn. Ther. 160, 492 (1966)PubMedGoogle Scholar
  49. Rotrosen, J., Angrist, B.M., Gershon, S., Sachar, E.J., Halpern, F.S.: Neuroendocrine assessment of dopaminergic activity in schizophrenia. Nonstriatal dopaminergic neurons. In: Advances in Biochemical Psychopharmacology. Costa, E., Gessa, G.L. (eds.), pp. 649–653. New York: Raven 1974Google Scholar
  50. Rüther, E.: Interaction of neuroleptics: haloperidol and clozapine. Proceedings of the 10 th CINP Congress (1977)Google Scholar
  51. Rüther, E., Schilkrut, R., Ackenheil, M. Hippius, H.: Clinical and biochemical parameters during neuroleptic treatment. I. Investigations with haloperidol. Pharmakopsychiatr. Neuro-psychopharmacol. 9, 33–36 (1976)Google Scholar
  52. Sachar, E.J., Gruen, P.H., Altman, N., Langer, G., Halpern, F.S., Liefer, M.: Prolactin responses to neuroleptic drugs: an approach to the study of brain dopamine blockade in humans. In: Neuroregulations and Psychiatric Disorders. Udin, E., Hamburg, D.A., Barchas, J.D. (eds.). New York: Oxford University Press, 1977Google Scholar
  53. Sarafoff, M., Davis, L., Rüther, E.: Clozapine induced increase of human plasma norepinephrine and its decrease by REM deprivation. Psychopharmacology (in press) (1978)Google Scholar
  54. Schilkrut, R., Rüther, E., Ackenheil, M., Eben, E., Hippius, H.: Clinical and biochemical parameters during neuroleptic treatment. III. Primitive reflexes during neuroleptic treatment. Pharmakopsychiatry Neuropsychopharmacol. 9, 43–47 (1976)Google Scholar
  55. Sedvall, G., Alfredsson, G., Bjerkenstedt, L., Eneroth, B., Fyrö, B., Härnryd, C., Swahn, C.-G., Wiesel, F.-A., Wode-Helgodt, B.: Selective effects of psychoactive drugs on levels of monoamine metabolites and prolactin in cerebrospinal fluid of psychiatric patients. In: CNS and Behavioural Pharmacology. Proceedings of the 6 th International Congress of Pharmacology, Helsinki, 1975. Tuomisto, J., Passonen, M.K. (eds.), pp. 255–267. Forssa: Forssan Kirjapaino Oy 1975Google Scholar
  56. Shaar, C.J., Clemens, J.A.: The role of catecholamines in the release of anterior pituitary prolaction in vitro. Endocrinology 95, 1202–1217 (1974)PubMedCrossRefGoogle Scholar
  57. Sjöqvist, B., Änggard, E.: Gas chromatographic determination of homovanillic acid in human cerebrospinal fluid by electron capture detection and by mass fragmentography with a deuterated internal standard. Anal. Chem. 44, 2297–2301 (1972)CrossRefGoogle Scholar
  58. Swahn, C.-G., Sandgärde, B., Wiesel, F.-A., Sedvall, G.: Simultaneous determination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmento-graphic method. Psychopharmacology 48, 147–152 (1976)CrossRefGoogle Scholar
  59. Tagliamonte, A., Biggio, G., Vargiu, L., Gessa, G.L.: Free tryptophan in serum, controls brain tryptophan level, and serotonin synthesis. Life Sci. 12, 277–287 (1973)CrossRefGoogle Scholar
  60. Tamarkin, N.R., Goodwin, F.K., Axelrod, J.: Rapid elevation of biogenic amine metabolites in human CSF following probenecid. Life Sci. 9, 1397–1408 (1970)CrossRefGoogle Scholar
  61. Watson, E., Wilk, S., Roboz, J.: Derivatization and gas chromatographic determination of some biologically important acids in cerebrospinal fluid. Anal. Biochem. 59, 441–451 (1974)PubMedCrossRefGoogle Scholar
  62. Weinshilboum, R.M., Axelrod, J.: Serum dopamine-ß-hydroxylase after chemical sympathectomy. Science 173, 931–934 (1971)PubMedCrossRefGoogle Scholar
  63. Wilk, S.: Studies on the detection of 3-methoxy-4-hydroxy-phenylethanol in human cerebrospinal fluid. Biochem. Pharmacol. 20, 2095–2096 (1971)Google Scholar
  64. Wilk, S.: Metabolism of biogenic amines in the central nervous system of man. Proceedings of the VI. International Congress of Pharmacology, Helsinki (1975)Google Scholar
  65. Wilk, S., Davis, K.L., Thacher, S.B.: Determination of 3-methoxy-4-hydroxyphenylethylene glycol (MHPG) in cerebro-spinal fluid. Anal. Biochem. 39, 498–504 (1971)PubMedCrossRefGoogle Scholar
  66. Wilk, S., Gitlow, S.E., Bertani, L.M.: Gas liquid chromatographic methods for assay of catecholamine metabolites. In: Methods in Investigative and Diagnostic Endocrinology. Berson, S.A. (ed.). Amsterdam: North-Holland 1972, Vol. 1, pp. 452–473Google Scholar
  67. Wode-Helgodt, B., Sedvall, G.: Correlations between height of subject and levels of monoamine metabolites in cerebro-spinal fluid of psychotic patients. Life Sci. (Submitted) (1978)Google Scholar
  68. Zander, K.-J., Ackenheil, M., Zimmer, R.: Biochemical psychopathological features in chronic schizophrenic patients treated with sulpiride. 7 th International Congress of Pharmacology, Paris (1978)Google Scholar
  69. Zimmer, R., Teelken, A.W., Zander, K.-J., Ackenheil, M.: Influence of neuroleptics on the concentration of GABA in CSF of schizophrenic patients. 11 th CINP Congress, Vienna (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • M. Ackenheil

There are no affiliations available

Personalised recommendations