Advertisement

Mechanism of Damage to the Stem Cell Population

  • R. Schofield
Chapter
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 24)

Abstract

Bone marrow aplasia will be recognised clinically at any time there is a failure to produce mature cells or their recognisable precursors. This situation could conceivably arise in a number of ways: (a) failure to induce differentiation of committed precursor cells (eg. erythropoietin-responsive cells) or destruction of that population; (b) failure of the earliest committed precursor cells (e.g. erythroid burst-forming cells) to proliferate or loss of these cells; (c) failure of differentiation from the pluripotent stem cell; (d) total lack of haemopoietic stem cells.

Keywords

Stem Cell Stem Cell Population Stem Cell Niche Irradiate Mouse Serial Transplantation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, T. D. and Dexter, T. M.: Surface morphology and ultrastructure in murine granulocytes and monocytes in long-term liquid culture. Blood Cells 2, 591–606 (1976)Google Scholar
  2. 2.
    Dexter, T. M. and Lajtha, L. G.: Proliferation of haemopoietic stem cells in vitro. Brit. J. Haematol. 28, 525–530 (1974)CrossRefGoogle Scholar
  3. 3.
    Friedenstein, A. J., Chailakayan, R. K., Latsinik, N. V., Panasuk, A. F. and Keiliss-Borok, I. V.: Stromal cells are responsible for transferring the microenvironment of the hemopoietic tissue. Transplantation 17, 331–340 (1974)PubMedCrossRefGoogle Scholar
  4. 4.
    Harrison, D. E.: Normal production of erythrocytes by mouse bone marrow continues for 73 months. Proc. Nat. Acad. Sci. 70, 3184–3190 (1973)PubMedCrossRefGoogle Scholar
  5. 5.
    Harrison, D. E., Astle, C. E. and Delaitre, J. A.: Loss of proliferative capacity in immunohemopoietic stem cells by serial transplantation rather than by aging. J. Exp. Med. 147, 1526–1531 (1978)PubMedCrossRefGoogle Scholar
  6. 6.
    Hellman, S. and Botnick, L. E.: Stem cell depletion: an explanation of the late effects of cytotoxins. Int. J. Radiat. Oncology, Biol., Phys. 2, 181–184 (1977)CrossRefGoogle Scholar
  7. 7.
    Hellman, S., Botnick, L. E., Hannon, E. C. and Vigneulle, R. M.: Proliferative capacity of murine hematopoietic stem cells. Proc. Natl. Acad. Sci. 75, 490–494 (1978)PubMedCrossRefGoogle Scholar
  8. 8.
    Kretchmar, A. I. and Conover, W. R.: A difference between spleen-derived and bone marrow-derived colony-forming units in ability to protect lethally-irradiated mice. Blood 36, 772–776 (1970)PubMedGoogle Scholar
  9. 9.
    Lajtha, L. G. and Schofield, R.: Regulation of Stem Cell Renewal and Differentiation: Possible Significance in Aging. In: Advances in Gerontological Research. B. L. Strehler (ed.) New York: Academic Press, 1971, p. 131–146Google Scholar
  10. 10.
    Lord, B. I., Testa, N. G. and Hendry, J. H.: The relative spatial distributions of CFU-S and CFU-C in the normal mouse femur. Blood 46, 65–72 (1975)PubMedGoogle Scholar
  11. 11.
    Lord, B. I.: Cellular and Architectural Factors Influencing the Proliferation of Haemopoietic Stem Cells. In: Differentiation of Normal and Neoplastic Hematopoietic Cells. 5th Cold Spring Harbor Conference on Cell Proliferation (in press)Google Scholar
  12. 12.
    Metcalf, D. and Moore, M. A. S.: In: Frontiers in Biology-Haematopoietic Cells. Neuberger, A. and Tatum, E. L. (eds.) Amsterdam: North Holland 1971Google Scholar
  13. 13.
    Micklem, H. S., Anderson, N. and Ross, E.: Limited potential of circulating haemopoietic stem cells. Nature 256, 41–43 (1975)PubMedCrossRefGoogle Scholar
  14. 14.
    Morley, A., Trainor, K. and Blake, J.: A primary stem cell lesion in experimental chronic hypoplastic marrow failure. Blood 45, 681–687 (1975)PubMedGoogle Scholar
  15. 15.
    Patt, H. M. and Maloney, M. A.: Evolution of marrow regeneration as revealed by transplantation studies. Exp. Cell Res. 71, 307–312 (1972)PubMedCrossRefGoogle Scholar
  16. 16.
    Pozzi, L. V., Andreozzi, U. and Silini, G.: Serial transplantation of bone marrow cells in irradiated isogenic mice. Current Topics in Radiation Research Quarterly 8, 259–302 (1973)Google Scholar
  17. 17.
    Rosendaal, M., Hodgson, G. S. and Bradley, T. R.: Haemopoietic Stem Cells are organised for use on the basis of their generation age. Nature 264, 68–69 (1976)PubMedCrossRefGoogle Scholar
  18. 18.
    Schofield, R.: A comparative study of the repopulating potential of grafts from various haemopoietic sources. Cell Tissue Kinet. 3, 119–130 (1970)PubMedGoogle Scholar
  19. 19.
    Schofield, R. and Lajtha, L. G.: Effect of isopropyl methane sulphate (IMS) on haemopoietic colony-forming cells. Brit. J. Haematol. 25, 195–202 (1973)CrossRefGoogle Scholar
  20. 20.
    Schofield, R.: Haemopoietic Cell Kinetics. In: Int. Cong. Series No. 349, Vol. 1. Cell Biol, and Tumour Immunol. Amsterdam, Excerpta Medica 1974, 18–23Google Scholar
  21. 21.
    Siminovitch, L., Till, J. E. and McCulloch, E. A.: Decline in colony-forming ability of marrow cells subjected to serial transplantation into irradiated mice. J. Cell. Comp. Physiol. 64, 23–31 (1964)CrossRefGoogle Scholar
  22. 22.
    Tavassoli, M. and Crosby, W. H.: Transplantation of marrow to extramedullary sites. Science 16, 54–56 (1968)CrossRefGoogle Scholar
  23. 23.
    Worton, R. G., McCulloch, E. A. and Till, J. E.: Physical separation of hemopoietic stem cells differing in their capacity for self renewal. J. Exp. Med. 130, 91–104 (1969)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • R. Schofield

There are no affiliations available

Personalised recommendations