Locus and Mechanism of Action of Ganglion-Blocking Agents

  • D. A. Brown
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 53)

Abstract

Paton and Perry (1953) classified ganglion-blocking drugs “according to whether they act like acetylcholine or by preventing its action”. They termed the former “depolarizing” and the latter “competitive” blocking drugs. They excluded “drugs such as local anaesthetics, which interfere with ganglionic transmission by preventing the release of acetylcholine”, implying that true ganglion-blocking drugs have no such action (a thesis discussed further below).

Keywords

Morphine Atropine Cholinesterase Hyoscine Succinylcholine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, G.A., Pereira, S.A.: The blocking effect of tetraethylammonium ion on the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 87, 273–280 (1946)PubMedGoogle Scholar
  2. Adamic, S.: Effects of quaternary ammonium compounds on choline entry into the rat diaphragm muscle fibre. Biochem. Pharmacol. 21, 2925–2929 (1972)PubMedGoogle Scholar
  3. Adams, P.R.: The mechanism by which amylobarbitone and thiopentone block the end plate response to nicotinic agonists. J. Physiol. (Lond.) 241, 41–42 P (1974)Google Scholar
  4. Adams, P.R.: A study of desensitisation using voltage clamp. Pflügers Arch. 360, 135–144 (1975 a)PubMedGoogle Scholar
  5. Adams, P.R.: A model for the procaine end plate current. J. Physiol. (Lond.) 246, 61–62 P (1975 b)Google Scholar
  6. Adams, P.R.: A comparison of the time-course of excitation and inhibition by iontophoretic decamethonium in frog end plate. Br. J. Pharmacol. 57, 1, 59–65 (1976)PubMedGoogle Scholar
  7. Adams, P.R.: Voltage jump analysis of procaine action at frog end plate. J. Physiol. (Lond.) 268, 291–318(1977)Google Scholar
  8. Adams, P.R., Brown, D.A.: Actions of γ-aminobutyric acid on sympathetic ganglion cells. J. Physiol. (Lond.) 250, 85–120 (1975)Google Scholar
  9. Alderdice, M.T., Weiss, G.B.: On 14C-nicotine distribution and movements in slices from monkey cerebral cortex. Arch. Int. Pharmacodyn. 209, 162–171 (1974)PubMedGoogle Scholar
  10. Alkadhi, K.A., McIsaac, R.J.: Effect of preganglionic nerve stimulation on sensitivity of the superior cervical ganglion to nicotinic blocking agents. Br. J. Pharmacol. 51, 533–539 (1974)PubMedGoogle Scholar
  11. Ambache, N., Perry, W.L.M., Robertson, P.A.: The effect of muscarine on perfused superior cervical ganglia of cats. Br. J. Pharmacol. 11, 442–448 (1956)Google Scholar
  12. Appelgren, L.-E., Hansson, E., Schmiterlöw, C.G.: Localisation of radioactivity in the superior cervical ganglion of cats following injection of 14C-labelled nicotine. Acta Physiol. Scand. 59, 330–336 (1963)PubMedGoogle Scholar
  13. Ariens, E.J.: Molecular pharmacology. Vol. I. New York: Academic Press 1964Google Scholar
  14. Armstrong, C.M.: Time course of TEA+-induced anomalous rectification in squid giant axons. J. Gen. Physiol. 50, 491–503 (1966)PubMedGoogle Scholar
  15. Armstrong, C.M.: Inactivation of g K in squid axons. Biophys. J. 9, A-248 (1969)Google Scholar
  16. Armstrong, C.M., Binstock, L.: Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. Gen. Physiol. 48, 859–872 (1965)PubMedGoogle Scholar
  17. Ascher, P., Marty, A., Neild, T.O.: The mode of action of antagonists of the excitatory response to acetylcholine in Aplysia neurones. J. Physiol. (Lond.) 278, 207–235 (1978 a)Google Scholar
  18. Ascher, P., Large, W.A., Rang, H.P.: The action of ganglion-blocking drugs studied by voltage-clamp. J. Physiol. (Lond.) 280, 17 (1978b)Google Scholar
  19. Barlow, R.B., Hamilton, J.T.: Effects of pH on the activity of nicotine and nicotine monome-thiodide on the rat diaphragm. Br. J. Pharmacol. 18, 543–549 (1962)Google Scholar
  20. Beani, L., Bianchi, C., Bieber, G., Ledda, F.: The effect of some ganglion stimulants and blocking drugs on acetylcholine release from the mammalian neuromuscular junction. J. Pharm. Pharmacol. 16, 557–560(1964)PubMedGoogle Scholar
  21. Bennett, G., Tyler, C., Zaimis, E.: Mecamylamine and its mode of action. Lancet 1957 II, 218–222Google Scholar
  22. Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 22, 657–668 (1972 a)Google Scholar
  23. Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 669–682 (1972 b)Google Scholar
  24. Bhatnagar, S.P., Macintosh, F.C.: Effect of quaternary bases and inorganic cations on acetylcholine synthesis in nervous tissue. Can. J. Physiol. Pharmacol. 45, 249–268 (1967)PubMedGoogle Scholar
  25. Birks, R., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39, 787–827 (1961)Google Scholar
  26. Blackman, J.G.: Dependence on membrane potential of the blocking action of hexamethonium at a sympathetic ganglionic synapse. Proc. Univ. Otago. Med. Sch. 48, 4–5 (1970)Google Scholar
  27. Blackman, J.G., Purves, R.D.: Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. (Lond.) 203, 173–198 (1969)Google Scholar
  28. Blackman, J.G., Ray, C.: Actions of mecamylamine, dimecamine, pempidine and their two quaternary metho-salts at the neuromuscular junction. Br. J. Pharmacol. 22, 56–65 (1964)Google Scholar
  29. Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963 a)Google Scholar
  30. Blackman, J.G., Ginsborg, B.L., Ray, C.: On the quantal release of the transmitter at a sympathetic synapse. J. Physiol. (Lond.) 167, 402–415 (1963 b)Google Scholar
  31. Blackman, J.G., Crowcroft, P.J., Devine, C.E., Holman, M.E., Yonemura, K.: Transmission from preganglionic fibres in the hypogastric nerve to peripheral ganglia of male guinea-pigs. J. Physiol. (Lond.) 201, 723–743 (1969)Google Scholar
  32. Blackman, J.G., Gauldie, R.W., Milne, R.J.: Interaction of competitive antagonists: the anti-curare action of hexamethonium and other antagonists at the skeletal neuromuscular junction. Br. J. Pharmacol. 54, 91–100 (1975)PubMedGoogle Scholar
  33. Bowery, N.G., Neal, M.J.: Failure of denervation to influence the high affinity uptake of choline by sympathetic ganglia. Br. J. Pharmacol. 55, 278 P (1975)Google Scholar
  34. Brown, A.M.: Cardiac sympathetic adrenergic pathways in which synaptic transmission is blocked by atropine sulphate. J. Physiol. (Lond.) 191, 271–288 (1967)Google Scholar
  35. Brown, D.A.: Depolarisation of normal and pre-ganglionically denervated superior cervical ganglia by stimulant drugs. Br. J. Pharmacol. 26, 511–520 (1966 a)Google Scholar
  36. Brown, D.A.: Electrical responses of cat superior cervical ganglia in vivo to some stimulant drugs and their modification by hexamethonium and hyoscine. Br. J. Pharmacol. 26, 538–551 (1966 b)Google Scholar
  37. Brown, D.A.: Responses of normal and denervated cat superior cervical ganglia to some stimulant compounds. J. Physiol. (Lond.) 201, 225–236 (1969)Google Scholar
  38. Brown, D.A., Fumagalli, L.: Dissociation of α-bungarotoxin binding and receptor block in the rat superior cervical ganglion. Brain Res. 129, 165–168 (1977)PubMedGoogle Scholar
  39. Brown, D.A., Halliwell, J.V.: Intracellular pH in rat isolated superior cervical ganglia in relation to nicotine depolarisation and nicotine-uptake. Br. J. Pharmacol. 45, 349–359 (1972)PubMedGoogle Scholar
  40. Brown, D.A., Kwiatkowski, D.: A note on the effect of dithiothreitol (DTT) on the depolarisation of isolated sympathetic ganglia by carbachol and bromo-acetylcholine. Br. J. Pharmacol. 56, 1, 128–130(1976)Google Scholar
  41. Brown, D.A., Quilliam, J.P.: Observations on the mode of action of some central depressant drugs on transmission through the cat superior cervical ganglion. Br. J. Pharmacol. 23, 257–272(1964)Google Scholar
  42. Brown, D.A., Scholfield, C.N.: Potentials in isolated rat superior cervical ganglia produced by nicotine. Br. J. Pharmacol. 40, 559–560 (1970)Google Scholar
  43. Brown, D.A., Scholfield, C.N.: Nicotine washout rates from isolated rat ganglia in relation to recovery from nicotine depolarisation. Br. J. Pharmacol. 45, 29–36 (1972)PubMedGoogle Scholar
  44. Brown, D.A., Scholfield, C.N.: Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarising agents. J. Physiol. (Lond.) 242, 307–319 (1974)Google Scholar
  45. Brown, D.A., Hoffmann, P.C., Roth, L.J.: 3H-nicotine in cat superior cervical and nodose ganglia after close-arterial injection in vivo. Br. J. Pharmacol. 35, 406–417 (1969)PubMedGoogle Scholar
  46. Brown, D.A., Jones, K.B., Halliwell, J.V., Quilliam, J.P.: Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature 226, 958–959 (1970)PubMedGoogle Scholar
  47. Brown, D.A., Halliwell, J.V., Scholfield, C.N.: Uptake of nicotine and extracellular space markers by isolated rat ganglia in relation to receptor activation. Br. J. Pharmacol. 42, 100–113 (1971)PubMedGoogle Scholar
  48. Brown, D.A., Brownstein, M.J., Scholfield, C.N.: Origin of the after hyperpolarisation that follows removal of depolarising agents from the isolated superior cervical ganglion of the rat. Br. J. Pharmacol. 44, 651–671 (1972)PubMedGoogle Scholar
  49. Brown, D.A., Garthwaite, J., Hayashi, E., Yamada, S.: Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat. Br. J. Pharmacol. 58, 157–159 (1977)Google Scholar
  50. Brown, G.L.: The effect of temperature on the release of acetylcholine from sympathetic ganglia. J. Physiol. (Lond.) 124, 26 P (1954)Google Scholar
  51. Brown, G.L., Feldberg, W.: The action of potassium on the superior cervical ganglion of the cat. J. Physiol. (Lond.) 86, 290–305 (1936 a)Google Scholar
  52. Brown, G.L., Feldberg, W.: Differential paralysis of the superior cervical ganglion. J. Physiol. (Lond.) 86, 10 P (1936 b)Google Scholar
  53. Brown, G.L., Macintosh, G.C.: Discharges in nerve fibres produced by potassium ions. J. Physiol. (Lond.) 96, 10–11 (1939)Google Scholar
  54. Burke, W., Katz, B., Machne, X.: The effect of quaternary ammonium ions on crustacean nerve fibres. J. Physiol. (Lond.) 722, 588–598 (1953)Google Scholar
  55. Burns, B.D., Paton, W.D.M.: Depolarisation of the motor end plate by decamethonium and acetylcholine. J. Physiol. (Lond.) 115, 41–73 (1951)Google Scholar
  56. Catterall, W.M.: Sodium transport by the acetylcholine receptor of cultured muscle cells. Proc. Natl. Acad. Sci. 250, 1776–1781 (1975)Google Scholar
  57. Chen, S.S.: Transmission in superior cervical ganglion of the dog after cholinergic suppression. Am. J. Physiol. 221, 209–213 (1971)PubMedGoogle Scholar
  58. Collier, B., Exley, D.A.: Mechanism of the antagonism by tetraethylammonium of neuromuscular block due to d-tubocurarine or calcium deficiency. Nature 199, 702–703 (1963)PubMedGoogle Scholar
  59. Collier, B., Katz, H.S.: The release of acetylcholine by acetylcholine in the cat’s superior cervical ganglion. Br. J. Pharmacol. 39, 428–438 (1970)PubMedGoogle Scholar
  60. Collier, B., Macintosh, F.C.: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Can. J. Physiol. Pharmacol. 47, 127–135 (1969)Google Scholar
  61. Corne, S.J., Edge, N.D.: Pharmacological properties of (1:2:2:6:6-pentamethylpiperidine), a new ganglion-blocking compound. Br. J. Pharmacol. 13, 339–349 (1958)Google Scholar
  62. Cowan, S.L., Walter, W.G.: The effects of tetra-ethylammonium iodide on the electrical response and the accommodation of nerve. J. Physiol. (Lond.) 91, 101–126 (1937)Google Scholar
  63. Creese, R., England, J.M.: Decamethonium in depolarised muscle and the effects of tubocurarine. J. Physiol. (Lond.) 210, 345–361 (1970)Google Scholar
  64. Creese, R., MacLagan, J.: Entry of decamethonium in rat muscle studied by autoradiography. J. Physiol. (Lond.) 210, 363–386 (1970)Google Scholar
  65. Creese, R., Taylor, D.B.: Entry of labelled carbachol in brain slices of the rat and the action of d-tubocurarine and strychnine. J. Pharmacol. Exp. Ther. 157, 406–419 (1967)PubMedGoogle Scholar
  66. Creese, R., Taylor, D.B., Tilton, B.: The influence of curare on the uptake and release of a neuromuscular blocking agent labelled with radioactive iodine. J. Pharmacol. Exp. Ther. 139, 8–17(1963)PubMedGoogle Scholar
  67. Dennis, M.J., Harris, A.J., Kuffler, S.W.: Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. R. Soc. Lond. [Biol.] 177, 509–539 (1971)Google Scholar
  68. Diamond, I., Kennedy, E.P.: Carrier-mediated transport of choline into synaptic nerve ending. J. Biol. Chem. 244, 3258–3263 (1969)PubMedGoogle Scholar
  69. Douglas, W.W., Lywood, D.W.: The stimulant effect of TEA on acetylcholine output from the superior cervical ganglion: comparision with barium. Fed. Proc. 20, 324 (1961)Google Scholar
  70. Douglas, W.W., Lywood, D.W., Straub, R.W.: The stimulant effect of barium on the release of acetylcholine from the superior cervical ganglion. J. Physiol. (Lond.) 156, 515–522 (1961)Google Scholar
  71. Dun, N., Nishi, S., Karczmar, A.G.: Electrical properties of the membrane of denervated mammalian sympathetic ganglion cells. Neuropharmacology 15, 219–223 (1976)PubMedGoogle Scholar
  72. Dunant, Y.: Some properties of the presynaptic nerve terminals in a mammalian sympathetic ganglion. J. Physiol. (Lond.) 221, 577–587 (1972)Google Scholar
  73. Eccles, R.M.: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.) 130, 572–584 (1955)Google Scholar
  74. Eccles, R.M.: The effects of nicotine on synaptic transmission in the sympathetic ganglion. J. Pharmacol. Exp. Ther. 118, 26–38 (1956)PubMedGoogle Scholar
  75. Eccles, R.M.: Orthodromic activation of single ganglion cells. J. Physiol. (Lond.) 165, 387–391 (1963)Google Scholar
  76. Elfvin L.-G.: The ultrastructure of the superior cervical sympathetic ganglion of the cat. II. The structure of the preganglionic end fibres and the synapses as studied by serial sections. J. Ultrastruct. Res. 8, 441–476 (1963)Google Scholar
  77. Erulkar, S.D., Woodward, J.K.: Intracellular recording from mammalian superior cervical ganglia in situ. J. Physiol. (Lond.) 199, 189–204 (1968)Google Scholar
  78. Exley, K.A.: Depression of autonomic ganglia by barbiturates. Br. J. Pharmacol. 9, 170–181 (1954)Google Scholar
  79. Fatt, P., Katz, B.: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.) 120, 171–204(1953)Google Scholar
  80. Feldberg, W., Vartiainen, A.: Further observations on the physiology and pharmacology of a sympathetic ganglion. J. Physiol. (Lond.) 83, 103–128 (1935)Google Scholar
  81. Ferry, C.B., Marshall, A.R.: An anti-curare effect of hexamethonium at the mammalion neuromuscular junction. Br. J. Pharmacol. 47, 353–362 (1973)PubMedGoogle Scholar
  82. Flacke, W., Fleisch, J.H.: The effect of ganglionic agonists and antagonists on the cardiac sympathetic ganglia of the dog. J. Pharmacol. Exp. Ther. 174, 45–55 (1970)PubMedGoogle Scholar
  83. Flacke, W., Gillis, R.A.: Impulse transmission via nicotinic and muscarinic pathways in the stellate ganglion of the dog. J. Pharmacol. Exp. Ther. 163, 266–276 (1968)PubMedGoogle Scholar
  84. Flacke, W., Yeoh, T.S.: Differentiation of acetylcholine and succinylcholine receptors in leech muscle. Br. J. Pharmacol. 33, 154–161 (1968)Google Scholar
  85. Forssmann, W.G.: Studien über den Feinbau des Ganglion cervicale superius der Ratte. Acta Anat. (Basel) 59, 106–140 (1964)Google Scholar
  86. Frankenhaeuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957)Google Scholar
  87. Franko, B.V., Ward, J.W., Alphin, R.S.: Pharmacologic studies of N-benzyl-3-pyrrolidylacetate methobromide (AHR-602), a ganglion stimulating agent. J. Pharmacol. Exp. Ther. 139, 25–30 (1963)Google Scholar
  88. Garthwaite, J.: The uptake of weak acids and bases into isolated rat superior cervical ganglia in relation to intracellular pH. Br. J. Pharmacol. 56, 3– 353 (1976)Google Scholar
  89. Gebber, G.L.: Dissociation of depolarisation and ganglionic blockade induced by nicotine. J. Pharmacol. Exp. Ther. 160, 124–134 (1968)PubMedGoogle Scholar
  90. Gebber, G.L., Volle, R.L.: Mechanisms involved in ganglionic blockade induced by tetramethy-lammonium. J. Pharmacol. Exp. Ther. 152, 18–28 (1966)PubMedGoogle Scholar
  91. Gillis, R.A., Flacke, W., Garfield, J.M., Alper, M.H.: Actions of anticholinesterase agents upon ganglionic transmission in the dog. J. Pharmacol. Exp. Ther. 163, 277–286 (1968)PubMedGoogle Scholar
  92. Ginsborg, B.L.: Ion movements in junctional transmission. Pharmacol. Rev. 19, 289–316 (1967)PubMedGoogle Scholar
  93. Ginsborg, B.L.: On the presynaptic acetylcholine receptors in sympathetic ganglia of the frog. J. Physiol. (Lond.) 216, 237–246 (1971)Google Scholar
  94. Ginsborg, B., Guerrero, S.: On the action of depolarising drugs on sympathetic ganglion cell of the frog. J. Physiol. (Lond.) 172, 189–206 (1964)Google Scholar
  95. Ginsborg, B.L., Stephenson, R.P.: On the simultaneous action of two competitive antagonists. Br. J. Pharmacol. 51, 287–300 (1974)Google Scholar
  96. Haefely, W.: Electrophysiology of the adrenergic neurone. In: Handbook of experimental pharmacology. Blaschko, H, Muscholl, E. (eds.), Vol. XXXIII, pp. 662–725. Berlin: Springer 1972Google Scholar
  97. Haefely, W.: The effects of 1, 1-dimethyl-4-phenyl-piperazinium (DMPP) in the cat superior cervical ganglion. Naunyn Schmiedebergs Arch. Pharmacol. 281, 57–91 (1974 a)PubMedGoogle Scholar
  98. Haefely, W.: The effects of various “nicotine-like” agents in the cat superior cervical ganglion in situ. Naunyn Schmiedebergs Arch. Pharmacol. 281, 93–117 (1974 b)PubMedGoogle Scholar
  99. Hagiwara, S., Watanabe, A.: The effect of tetraethylammonium chloride on the muscle membrane examined with an intracellular electrode. J. Physiol. (Lond.) 129, 513–527 (1955)Google Scholar
  100. Hamilton, J.T.: The influence of pH on the activity of nicotine at the neuromuscular junction. Can. J. Biochem. 41, 283–289 (1963)PubMedGoogle Scholar
  101. Hancock, J.C., Volle, R.L.: Stimulation by carbachol and tetramethylammonium ions of intact and denervated sympathetic ganglia. Life Sci. 9, 301–308 (1970)PubMedGoogle Scholar
  102. Harington, M., Kincaid-Smith, P., Milne, M.D.: Pharmacology and clinical use of pempidine in the treatment of hypertension. Lancet 1958 II, 6–11Google Scholar
  103. Harris, A.J., Kuffler, S.W., Dennis, M.J.: Differential chemosensitivity of synaptic and extrasy-naptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc. R, Soc. Lond. [Biol] 177, 541–553 (1971)Google Scholar
  104. Hartzell, H.C., Kuffler, S.W., Yoshikami, D.: Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular junction. J. Physiol. (Lond.) 251, 427–464 (1975)Google Scholar
  105. Harvey, A.M., Macintosh, F.C.: Calcium and synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 97, 408–416 (1940)Google Scholar
  106. Harvey, S.C.: Combined effects of hexamethonium and tetraethylammonium. Arch. Int. Pharma-codyn. 114, 232–242 (1958)Google Scholar
  107. Hemsworth, B.A., Darmer, K.L, Jr, Bosman, H.B.: The incorporation of choline into isolated synaptosomal and synaptic vesicle fractions in the presence of quaternary ammonium compounds. Neuropharmacology 10, 109–120 (1971)PubMedGoogle Scholar
  108. Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. Gen. Physiol. 50, 1287–1302 (1967)PubMedGoogle Scholar
  109. Hille, B.: Charges and potentials at the nerve surface: divalent cations and pH. J. Gen. Physiol. 51, 221–236(1968)PubMedGoogle Scholar
  110. Hille, B.: Ionic channels in nerve membranes. Prog. Biophys. Mol. Biol. 21, 3–32 (1970)Google Scholar
  111. Hilton, J.G.: The pressor response to neostigmine after ganglionic blockade. J. Pharmacol. Exp. Ther. 132, 23–28 (1961)PubMedGoogle Scholar
  112. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)Google Scholar
  113. Hodgkin, A.L., Martin, K.: Choline uptake by giant axons of Loligo. J. Physiol. (Lond.) 179, 26 P (1965)Google Scholar
  114. Holm, J.: Effect of cholinergic and cholinergic blocking drugs on decamethonium uptake by slices of mouse kidney. Acta Pharmacol. Toxicol. (Kbh.) 30, 81–88 (1971 a)Google Scholar
  115. Holm, J.: Effect of tetraethylammonium and N1-methylnicotinamide on the uptake of decamethonium and carbamoylcholine by slices of mouse kidney. Acta Pharmacol. Toxicol. (Kbh.) 30, 89–96 (1971b)Google Scholar
  116. Holman, M.E., Muir, T.C., Szurszewski, J.H., Yonemura, K.: Effect of iontophoretic application of cholinergic agonists and their antagonists to guinea-pig pelvic ganglia. Br. J. Pharmacol. 41, 26–40(1971)PubMedGoogle Scholar
  117. Hutter, O.F., Kostial, K.: Effect of magnesium and calcium ions on the release of acetylcholine. J. Physiol. (Lond.) 124, 234–241 (1954)Google Scholar
  118. Huxley, A.F.: Ion movements during nerve activity. Ann. N. Y. Acad. Sci. 81, 221–245 (1959)PubMedGoogle Scholar
  119. Jaramillo, J., Volle, R.L.: Non-muscarinic stimulation and block of a sympathetic ganglion by 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethammonium chloride (McN-A 343). J. Pharmacol. Exp. Ther. 157, 337–345 (1967)PubMedGoogle Scholar
  120. Jaramillo, J., Volle, R.L.: A comparison of the ganglionic stimulating and blocking properties of some nicotinic drugs. Arch. Int. Pharmacodyn. 174, 88–97 (1968)PubMedGoogle Scholar
  121. Job, C., Lundberg, A.: On the significance of post- and presynaptic events for the facilitation and inhibition in the sympathetic ganglion of the cat. Acta Physiol. Scand. 28, 14–28 (1952)Google Scholar
  122. Jones, A.: Ganglionic actions of muscarinic compounds. J. Pharmacol. Exp. Ther. 141, 195–205 (1963)PubMedGoogle Scholar
  123. Kaller, H.: Die Erregbarkeit des Halsganglion der Ratte durch Pharmaka. Arch. Exp. Pathol. Pharmakol. 228, 361–366 (1956 a)Google Scholar
  124. Kaller, H.: Pharmakologische Untersuchungen am oberen Halsganglion der Ratte bei intraarterieller Infusion. Arch. Int. Pharmacodyn. 105, 337–348 (1956b)PubMedGoogle Scholar
  125. Karlin, A., Winnik, M.: Reduction and specific alkylation of the receptor for acetylcholine. Proc. Natl. Acad. Sci. USA 60, 668–674 (1968)PubMedGoogle Scholar
  126. Katz, B.: The release of neural transmitter substances. Liverpool: Liverpool University Press 1969Google Scholar
  127. Katz, B., Miledi, R.: Tetrodotoxin-resistant electrical activity in presynaptic terminals. J. Physiol. (Lond.) 203, 459–487 (1969)Google Scholar
  128. Katz, B., Thesleff, S.: A study of the “desensitisation” produced by acetylcholine at the motor end plate. J. Physiol. (Lond.) 138, 63–80 (1957)Google Scholar
  129. Kensler, C.J.: The anticurare activity of tetraethylammonium ion in the cat. Br. J. Pharmacol. 5, 204–209 (1950)Google Scholar
  130. Kharkevich, D.A.: Effects of the ganglion-blocking agents, Barbamyl, and novocain on the development of post-activation facilitation in sympathetic ganglia. Farmakol. Toksikol. 22, 6, 493–499 (1959) (Russ.) (cf. Kharkevich, D.A., 1967)PubMedGoogle Scholar
  131. Kharkevich, D.A.: Ganglionic agents. Moskva: Medgiz 1962 (Russ.)Google Scholar
  132. Kharkevich, D.A.: “Ganglion-blocking and ganglion-stimulating agents”. Oxford: Pergamon Press 1967 (translated from Russian edition, 1962)Google Scholar
  133. Khatter, J.C., Friesen, A.J.D.: The effect of hemicholinium-3 on choline and acetylcholine levels in a sympathetic ganglion. Can. J. Physiol. 53, 451–457 (1975)Google Scholar
  134. Khromov-Borisov, N., Michelson, M.J.: The mutual dispositon of locomotor muscles, and the changes in their disposition in the course of development. Pharmacol. Rev. 18, 1051–1090 (1966)PubMedGoogle Scholar
  135. Kobayashi, H., Libet, B.: Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J. Physiol. (Lond.) 208, 353–372 (1970)Google Scholar
  136. Kobayashi, H., Libet, B.: Is inactivation of potassium conductance involved in slow postsynaptic excitation of sympathetic ganglion cells? Effect of nicotine. Life Sci. 14, 1871–1883 (1974)PubMedGoogle Scholar
  137. Koelle, G.B.: A proposed dual neurohumoral role of acetylcholine: its functions at the pre- and postsynaptic sites. Nature 190, 208–211 (1961 a)PubMedGoogle Scholar
  138. Koelle, G.B.: A new general concept of the neurohumoral functions of acetylcholine and acetylcholinesterase. J. Pharm. Pharmacol. 14, 65–90 (1961 b)Google Scholar
  139. Koketsu, K.: Action of tetraethylammonium chloride on neuromuscular transmission in frogs. Am J. Physiol. 193, 213–218 (1958)PubMedGoogle Scholar
  140. Koketsu, K., Cerf, J.A., Nishi, S.: Effect of quaternary ammonium ions on electrical activity of spinal ganglion cells in frogs. J. Neurophysiol. 22, 177–194 (1959)PubMedGoogle Scholar
  141. Koketsu, K., Nishi, S.: Cholinergic receptors at sympathetic preganglionic nerve terminals. J. Physiol. (Lond.) 196, 293–310 (1968)Google Scholar
  142. Kordas, M.: The effect of procaine on neuromuscular transmission. J. Physiol. (Lond.) 209, 689–699 (1970)Google Scholar
  143. Kosterlitz, H.W., Lees, G.M., Wallis, D.I.: Resting and action potentials recorded by the sucrose-gap method in the rabbit superior cervical ganglion. J. Physiol. (Lond.) 195, 39–53 (1968)Google Scholar
  144. Kosterlitz, H.W., Lees, G.M., Wallis, D.I.: Synaptic potentials recorded by the sucrose-gap method from the rabbit superior cervical ganglion. Br. J. Pharmacol. 40, 275–293 (1970)PubMedGoogle Scholar
  145. Krnjevic, K., Pumain, R., Renaud, L.: The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.) 215, 247–268 (1971)Google Scholar
  146. Kuba, K., Koketsu, K.: Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Brain Res. 81, 338–342 (1974)PubMedGoogle Scholar
  147. Larrabee, M.G., Bronk, D.W.: Prolonged facilitation of synaptic excitation in sympathetic ganglia. J. Neurophysiol. 10, 139–154 (1947)PubMedGoogle Scholar
  148. Lee, F.-L., Trendelenburg, U.: Muscarinic transmission of preganglionic impulses to the adrenal medulla of the cat. J. Pharmacol. Exp. Ther. 158, 73–79 (1967)PubMedGoogle Scholar
  149. Lees, G.M., Nishi, S.: Analysis of the mechanism of action of some ganglion-blocking drugs in the rabbit superior cervical ganglion. Br. J. Pharmacol. 46, 78–88 (1972)PubMedGoogle Scholar
  150. Lees, G.M., Wallis, D.I.: Hyperpolarisation of rabbit superior cervical ganglion cells due to activity of an electrogenic sodium pump. Br. J. Pharmacol. 50, 79–93 (1974)PubMedGoogle Scholar
  151. Levy, B., Ahlquist, R.P.: A study of sympathetic ganglion stimulants. J. Pharmacol. Exp. Ther. 137, 219–228 (1962)PubMedGoogle Scholar
  152. Liang, C.C., Quastel, J.H.: Uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1169–1185 (1969 a)PubMedGoogle Scholar
  153. Liang, C.C., Quastel, J.H.: Effect of drugs on the uptake of acetylcholine in rat brain cortex slices. Biochem. Pharmacol. 18, 1187–1194 (1969 b)Google Scholar
  154. Long, J.P., Eckstein, J.W.: Ganglionic actions of neostigmine methyl sulphate. J. Pharmacol. Exp. Ther. 133, 216–222 (1961)PubMedGoogle Scholar
  155. Lundberg, A., Thesleff, S.: Dual action of nicotine on the sympathetic ganglion of the cat. Acta Physiol. Scand. 28, 218–223 (1953)PubMedGoogle Scholar
  156. Machová, J., Boška, D.: The effect of 5-hydroxytryptamine, dimethylphenyl-piperazinium, and acetylcholine on transmission and surface potential in the cat sympathetic ganglion. Eur. J. Pharmacol. 7, 152–158 (1969)PubMedGoogle Scholar
  157. Magazanik, L.G., Vyskočil, F.: Dependence of acetylcholine desensitisation on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J. Physiol. (Lond.) 210, 507–518(1970)Google Scholar
  158. Magazanik, L.G., Vyskočil, F.: Desensitisation at the motor end plate. In: Drug receptors. Rang, H.P. (ed.). London: MaeMillan 1973Google Scholar
  159. Magazanik, L.G., Ivanov, A.Ya., Lukomskaya, N.Ya.: The effect of snake venom polypeptides on cholinoreceptors in isolated rabbit ganglia. Neurofiziol. 6, 652–656 (1974) (Russ.)Google Scholar
  160. Magleby, K.L., Stevens, C.F.: The effect of voltage on the time course of end plate currents. J. Physiol. (Lond.) 223, 151–171 (1972a)Google Scholar
  161. Magleby, K.L., Stevens, C.F.: A quantitative description of end plate currents. J. Physiol. (Lond.) 223, 173–197 (1972 b)Google Scholar
  162. Martin, A.R., Pilar, G.: Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. (Lond.) 168, 443–463 (1963 a)Google Scholar
  163. Martin, A.R., Pilar, G.: Transmission through the ciliary ganglion of the chick. J. Physiol. (Lond.) 168, 464–475 (1963 b)Google Scholar
  164. Martin, A.R., Pilar, G.: Quantal components of the synaptic potential in the ciliary ganglion of the chick. J. Physiol. (Lond.) 175, 1–16 (1964 a)Google Scholar
  165. Martin, A.R., Pilar, G.: Presynaptic and post-synaptic events during post-tetanic potentiation and facilitation in the avian ciliary ganglion. J. Physiol. (Lond.) 175, 17–30 (1964 b)Google Scholar
  166. Martin, K.: Concentrative accumulation of choline by human erythrocytes. J. Gen. Physiol. 51, 497–516(1968)PubMedGoogle Scholar
  167. Martin, K.: Effects of quaternary ammonium compounds on choline transport in red cells. Br. J. Pharmacol. 36, 458–469 (1969)PubMedGoogle Scholar
  168. Marty, A., Neild, T.O., Ascher, P.: Voltage-sensitivity of acetylcholine-currents in Aplysia neurones in the presence of curare. Nature (Lond.) 261, 501–503 (1976)Google Scholar
  169. Mason, D.F.J.: A ganglion stimulating action of neostigmine. Br. J. Pharmacol. 18, 76–86 (1962 a)Google Scholar
  170. Mason, D.F.J.: Depolarising action of neostigmine at an autonomic ganglion. Br. J. Pharmacol. 18, 572–587 (1962 b)Google Scholar
  171. Matthews, E.K.: The effects of choline and other factors on the release of acetylcholine from the stimulated perfused superior cervical ganglion of the cat. Br. J. Pharmacol. 21, 244–249 (1963)Google Scholar
  172. Matthews, E.K.: The presynaptic effects of quaternary ammonium compounds on the acetylcholine metabolism of a sympathetic ganglion. Br. J. Pharmacol. 26, 552–566 (1966)Google Scholar
  173. Matthews, E.K., Quilliam, J.P.: Effects of central depressant drugs upon acetylcholine release. Br. J. Pharmacol. 22, 415–440 (1964)Google Scholar
  174. Matthews, M.R.: Ultrastructure of ganglionic junctions. In: The peripheral nervous system. Hubbard, J.I. (ed.), pp. 111–150. New York: Plenum Press 1974Google Scholar
  175. McIsaac, R.J.: The relationship between distribution and pharmacological activity of hexamethonium-N-methyl C14. J. Pharmacol. Exp. Ther. 135, 335–343 (1962)Google Scholar
  176. McIsaac, R.J.: The uptake of hexamethonium-C14 by kidney slices. J. Pharmacol. Exp. Ther. 150, 92–98 (1965)PubMedGoogle Scholar
  177. McIsaac, R.J., Millerschoen, N.R.: A comparison of the effects of mecamylamine and hexame-thonium on transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 139, 18–24 (1963)Google Scholar
  178. McKinstry, D.N., Koelle, G.B.: Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. Exp. Ther. 157, 319–327 (1967a)PubMedGoogle Scholar
  179. McKinstry, D.N., Koelle, G.B.: Effects of drugs on acetylcholine release from the cat superior cervical ganglion by carbachol and by preganglionic stimulation. J. Pharmacol. Exp. Ther. 157, 328–336 (1967b)PubMedGoogle Scholar
  180. McKinstry, D.N., Koenig, E., Koelle, W.A., Koelle, G.B.: The release of acetylcholine from a sympathetic ganglion by carbachol. Relationship to the functional significance of the localisation of acetylcholinesterase. Can. J. Biochem. Physiol. 41, 2599–2609 (1963)PubMedGoogle Scholar
  181. McLachlan, E.: The formation of synapses in mammalian sympathetic ganglia reinnervated with preganglionic or somatic nerves. J. Physiol. (Lond.) 237, 217–242 (1974)Google Scholar
  182. McLachlan, E.: An analysis of the release of acetylcholine from preganglionic nerve terminals. J. Physiol. (Lond.) 245, 447–466 (1975)Google Scholar
  183. McMahan, U.T., Kuffler, S.W.: Visual identification of synaptic boutons or living ganglion cells and of varicosities in postganglionic axons in the heart of the frog. Proc. R. Soc. Lond. [Biol] 177, 485–508(1971)Google Scholar
  184. Miledi, R., Potter, L.T.: Acetylcholine receptors in muscle fibres. Nature 233, 599–603 (1971)PubMedGoogle Scholar
  185. Milne, M.D., Rowe, G.G., Somers, K., Muehrcke, R.C., Crawford, M.A.: Observations on the pharmacology of mecamylamine. Clin. Sci. 16, 599–614 (1957)PubMedGoogle Scholar
  186. Miyamoto, M.D., Volle, R.L.: Enhancement by carbachol of transmitter release from motor nerve terminals. Proc. Natl. Acad. Sci. USA 71, 1489–1492 (1974)PubMedGoogle Scholar
  187. Muggleton, D.F., Reading, H.W.: Absorption, metabolism and elimination of pempidine in the rat. Br. J. Pharmacol. 14, 202–208 (1959)Google Scholar
  188. Murayama, S., Unna, K.R.: Stimulant action of 4(-m-chlorophenyl carbomoyloxy)-2-butynyltri-methylammonium chloride (McN-A 343) on sympathetic ganglia. J. Pharmacol. Exp. Ther. 140, 183–192(1963)Google Scholar
  189. Nishi, S.: Ganglionic transmission. In: The peripheral nervous system. Hubbard, J.I. (ed.), pp. 225–256. New York: Plenum Press 1974Google Scholar
  190. Nishi, S., North, R.A.: Intracellular recording from the myenteric plexus of guinea-pig ileum. J. Physiol. (Lond.) 231, 471–491 (1973)Google Scholar
  191. Nishi, S., Soeda, H., Koketsu, K.: Release of acetylcholine from sympathetic preganglionic nerve terminals. J. Neurophysiol. 30, 114–134 (1967)Google Scholar
  192. Nishi, S., Soeda, H., Koketsu, K.: Unusual nature of ganglionic slow EPSP studied by a voltage-clamp method. Life Sci. 8, 33–42 (1969)PubMedGoogle Scholar
  193. Parkinson, J.: Effect of pempidine on the in vitro synthesis of acetylcholine. Nature 184, 554–555 (1959)PubMedGoogle Scholar
  194. Pascoe, J.E.: The effects of acetylcholine and other drugs on the isolated superior cervical ganglion. J. Physiol. (Lond.) 132, 242–255 (1956)Google Scholar
  195. Paton, W.D.M.: The pharmacology of decamethonium. Ann. N.Y. Acad. Sci. 54, 347–361 (1951)Google Scholar
  196. Paton, W.D.M.: Types of pharmacological action at autonomic ganglia. Arch. Int. Pharmaco-dyn. 97, 267–281 (1954)Google Scholar
  197. Paton, W.D.M.: A theory of drug action based on the rate of drug-receptor combination. Proc. R. Soc. Lond. [Biol] 154, 21–69 (1961)Google Scholar
  198. Paton, W.D.M., Perry, W.L.M.: The relationship between depolarisation and block in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 43–57 (1953)Google Scholar
  199. Paton, W.D.M., Zaimis, E.J.: The pharmacological actions of polymethylene bistrimethyl-am-monium salts. Br. J. Pharmacol. 4, 381–400 (1949)Google Scholar
  200. Paton, W.D.M., Zaimis, E.J.: Paralysis of autonomic ganglia by methonium salts. Br. J. Pharmacol. 6, 155–168 (1951)Google Scholar
  201. Payne, J.P., Rowe, G.G.: The effects of mecamylamine in the cat as modified by the administration of carbon dioxide. Br. J. Pharmacol. 12, 457–460 (1957)Google Scholar
  202. Perri, V., Sacchi, O., Casella, C.: Electrical properties and synaptic connections of the sympathetic neurons in the rat and guinea-pig superior cervical ganglion. Pflügers Arch. 314, 40–54 (1970a)PubMedGoogle Scholar
  203. Perri, V., Sacchi, O., Casella, C.: Synaptically mediated potentials elecited by the stimulation of post-ganglionic trunks in the guinea-pig superior cervical ganglion. Pflügers Arch. 314, 55–67 (1970b)PubMedGoogle Scholar
  204. Perry, W.L.M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454(1953)Google Scholar
  205. Perry, W.L.M., Reinert, H.: The effects of preganglionic denervation on the reactions of ganglion cells. J. Physiol. (Lond.) 126, 101–115 (1954)Google Scholar
  206. Perry, W.L.M., Reinert, H.: On the metabolism of normal and denervated sympathetic ganglion cells. J. Physiol. (Lond.) 130, 156–166 (1955)Google Scholar
  207. Pert, C.B., Snyder, S.H.: High affinity transport of choline into the myenteric plexus of guinea-pig intestine. J. Pharmacol. Exp. Ther. 191, 102–108 (1974)PubMedGoogle Scholar
  208. Peters, L.: Renal tubular excretion of organic bases. Pharmacol. Rev. 12, 1–35 (1960)PubMedGoogle Scholar
  209. Pilar, G.: Effect of ACh on pre- and postsynaptic elements of avian ciliary ganglion synapses. Fed. Proc. 28, 670 (1969)Google Scholar
  210. Polak, R.L.: The influence of drugs on the uptake of acetylcholine by slices of rat cerebral cortex. Br. J. Pharmacol. 36, 144–152 (1969)PubMedGoogle Scholar
  211. Putney, J.W., Jr, Borzelleca, J.F.: On the mechanisms of 14C-nicotine distribution in rat submaxillary gland in vitro. J. Pharmacol. Exp. Ther. 178, 180–191 (1971)PubMedGoogle Scholar
  212. Quilliam, J.P., Shand, D.G.: The selectivity of drugs blocking ganglionic transmission in the rat. Br. J. Pharmacol. 23, 273–284 (1964)Google Scholar
  213. Rang, H.P.: Acetylcholine receptors. Q. Rev. Biophys. 7, 283–400 (1974)PubMedGoogle Scholar
  214. Rang, H.P., Ritter, J.M.: A new kind of drug antagonism: evidence that agonists cause a mulecular change in acetylcholine receptors. Mol. Pharmacol. 5, 394–411 (1969)PubMedGoogle Scholar
  215. Rang, H.P., Ritter, J.M.: On the mechanism of desensitisation at cholinergic receptors. Mol. Pharmacol. 6, 357–382 (1970)PubMedGoogle Scholar
  216. Rang, H.P., Ritter, J.M.: The effect of disulfide bond reduction on the properties of cholinergic receptors in chick muscle. Mol. Pharmacol. 7, 620–631 (1971)PubMedGoogle Scholar
  217. Riker, W.K.: Effects of tetraethylammonium chloride on electrical activities of frog sympathetic ganglion cells. J. Pharmacol. Exp. Ther. 145, 317–325 (1964)PubMedGoogle Scholar
  218. Riker, W.K.: Effects of tetraethylammonium on synaptic transmission in the frog sympathetic ganglion. J. Pharmacol. Exp. Ther. 147, 161–171 (1965)PubMedGoogle Scholar
  219. Riker, W.K.: The basis of the low-amplitude discharge produced by acetylcholine injection in sympathetic ganglia. J. Pharmacol. Exp. Ther. 155, 203–210 (1967)PubMedGoogle Scholar
  220. Riker, W.K.: Ganglion cell depolarisation and transmission block by ACh: independent events. J. Pharmacol. Exp. Ther. 159, 345–352 (1968)PubMedGoogle Scholar
  221. Riker, W.K., Komalahiranya, A.: Observations on the frequency dependence of sympathetic ganglion blockade. J. Pharmacol. Exp. Ther. 137, 267–274 (1962)PubMedGoogle Scholar
  222. Roszkowski, A.P.: An unusual type of sympathetic ganglion stimulant. J. Pharmacol. Exp. Ther. 132, 156–170(1961)PubMedGoogle Scholar
  223. Sacchi, O., Perri, V.: Quantal mechanism of transmitter release during progressive depletion of the presynaptic stores at a ganglionic synapse. J. Gen. Physiol. 61, 342–360 (1973)PubMedGoogle Scholar
  224. Schild, H.O.: Non-competitive drug antagonism. J. Physiol. (Lond.) 124, 33–34 P (1954)Google Scholar
  225. Schuberth, J., Sundwall, A.: Effects of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14, 807–812 (1967)Google Scholar
  226. Shand, D.G.: The mode of action of drugs blocking ganglionic transmission in the rat. Br. J. Pharmacol. 24, 89–97 (1965)Google Scholar
  227. Skok, V.I.: Physiology of autonomic ganglia. Tokyo: Igaku Shoin 1973Google Scholar
  228. Steinbach, A.B.: Alteraction by Xylocaine (lidocaine) and its derivatives of the time-course of the end plate potential. J. Gen. Physiol. 52, 144–161 (1968)PubMedGoogle Scholar
  229. Steinberg, M.I., Volle, R.L.: A comparison of lobeline and nicotine at the frog neuromuscular junction. Naunyn Schmiedebergs Arch. Pharmacol. 272, 16–31 (1972)Google Scholar
  230. Stephenson, R.P.: A modification of receptor theory. Br. J. Pharmacol. 11, 379–393 (1956)Google Scholar
  231. Stoney, S.D., Machne, X.: Mechanisms of accommodation in different types of frog neurones. J. Gen. Physiol. 53, 248–262 (1969)PubMedGoogle Scholar
  232. Stovner, J.: Anti-curare affect of TEA. Acta Pharmacol. Toxicol. (Kbh.) 14, 317–332 (1958)Google Scholar
  233. Suszkiw, J.B., Beach, R.L., Pilar, G.R.: Choline uptake by cholinergic neuron cell somas. J. Neurochem. 26, 1123–1131 (1976)PubMedGoogle Scholar
  234. Takeshige, C., Volle, R.L.: Cholinoceptive sites in sympathetic ganglia. J. Pharmacol. Exp. Ther. 141, 206–213 (1963a)PubMedGoogle Scholar
  235. Takeshige, C., Volle, R.L.: Asynchronous postganglionic firing from the cat superior cervical sympathetic ganglion treated with neostigmine. Br. J. Pharmacol. 20, 214–220 (1963 b)Google Scholar
  236. Takeshige, C., Pappano, A.J., DeGroat, W.C., Volle, R.L.: Ganglionic blockade produced in sympathetic ganglia by cholinomimetic drugs. J. Pharmacol. Exp. Ther. 141, 333–342 (1963)PubMedGoogle Scholar
  237. Tamarind, D.L., Quilliam, J.P.: Synaptic organisation and other ultrastructural features of the superior cervical ganglion of the rat, kitten and rabbit. Micron 2, 204–234 (1971)Google Scholar
  238. Tasaki, I., Hagiwara, S.: Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. Gen. Physiol. 40, 859–885 (1957)PubMedGoogle Scholar
  239. Taylor, D.B., Creese, R., Scholes, N.W.: Effect of curare concentration, temperature and potassium ion concentration on the rate of uptake of a neuromuscular blocking agent labelled with radioactive iodine. J. Pharmacol. Exp. Ther. 144, 293–300 (1964)Google Scholar
  240. Taylor, D.B., Creese, R., Nedergaard, O.A., Case, R.: Labelled depolarising drugs in normal and denervated muscle. Nature 208, 901–902 (1965)PubMedGoogle Scholar
  241. Taylor, D.B., Dixon, W.J., Creese, R., Case, R.: Diffusion of decamethonium in the rat. Nature 215, 989(1967)Google Scholar
  242. Taylor, D.B., Lu, T.C., Creese, R., Steinborn, J.: The uptake of methonium compounds by isolated slices of rat cerebral cortex. J. Neurochem. 16, 1173–1184 (1969)PubMedGoogle Scholar
  243. Taxi, J.: Contribution à l’étude des connexions des neurones moteurs du systeme nerveux autonome. Ann. Sci. Nat. Zool. (12e series,) 7, 413–674 (1965)Google Scholar
  244. Thesleff, S.: The mode of neuromuscular block caused by acetylcholine, nicotine, decamethonium and succinylcholine. Acta Physiol. Scand. 34, 218–231 (1955)Google Scholar
  245. Traber, D.L., Carter, V.L., Jr, Gardier, R.W.: Regarding a necessary condition for ganglionic blockade with competitive agents. Arch. Int. Pharmacodyn. 168, 339–343 (1967)PubMedGoogle Scholar
  246. Trendelenburg, U.: Reaktion sympathischer Ganglien während der Ganglienblockade durch Nicotin. Arch. Exp. Pathol. Pharmakol. 230, 448–456 (1957)Google Scholar
  247. Trendelenburg, U.: Nonnicotinic ganglion-stimulating substances. Fed. Proc. 18, 1001–1005 (1959)PubMedGoogle Scholar
  248. Trendelenburg, U.: Observations on the mode of action of some non-depolarising ganglion-blocking substances. Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmacol. 241, 452–466 (1961)Google Scholar
  249. Trendelenburg, U.: Transmission of preganglionic impulses through the muscarinic receptors of the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 154, 426–440 (1966)PubMedGoogle Scholar
  250. Trendelenburg, U.: Some aspects of the pharmacology of autonomic ganglion cells. Ergebn. Physiol. 59, 1–83 (1967)Google Scholar
  251. Van Rossum, J.M.: Classification and molecular pharmacology of ganglionic blocking agents. Part I. Mechanisms of ganglionic synaptic transmission and mode of action of ganglionic stimulants. Int. J. Neuropharmacol. 1, 97–110 (1962a)Google Scholar
  252. Van Rossum, J.M.: Classification and molecular pharmacology of ganglionic blocking agents. Part II. Mode of action of competitive and non-competitive ganglion blocking agents. Int. J. Neuropharmacol. 1, 403–421 (1962 b)Google Scholar
  253. Volle, R.L.: Modification by drugs of synaptic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966 a)Google Scholar
  254. Volle, R.L.: Ganglion blocking and stimulating agents. I. Muscarinic and nicotinic actions at autonomic ganglia. Oxford: Pergamon 1966bGoogle Scholar
  255. Volle, R.L.: Ganglionic transmission. Annu. Rev. Pharmacol. 9, 135–146 (1969)PubMedGoogle Scholar
  256. Volle, R.L., Koelle, G.B.: The physiological role of acetylcholinesterase in sympathetic ganglia. J. Pharmacol. Exp. Ther. 133, 223–240 (1961)PubMedGoogle Scholar
  257. Volle, R.L., Reynolds, L.: Receptor desensitisation by lobeline and nicotine. Naunyn Schmiedebergs. Arch. Pharmacol. 216, 49–54 (1973)Google Scholar
  258. Wang, C.M., Narahashi, T.: Mechanisms of dual action of nicotine on end plate membranes. J. Pharmacol. Exp. Ther. 182, 427–441 (1972)PubMedGoogle Scholar
  259. Weight, F., Votava, J.: Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic inactivation of potassium conductance. Science 170, 755–758 (1970)PubMedGoogle Scholar
  260. Weiss, G.B.: Dependence of nicotine-C14 distribution and movements upon pH in frog sartorius muscle. J. Pharmacol. Exp. Ther. 160, 135–147 (1968)PubMedGoogle Scholar
  261. Weiss, G.B., Alderdice, M.T.: Characterisation of [14C]-nicotine accumulation and movements in slices from different rat brain areas. Neuropharmacology 14, 265–273 (1975)PubMedGoogle Scholar
  262. Winters, A.D., Volle, R.L.: Relationship between frequency of stimulation and ganglionic blockade by drugs. Eur. J. Pharmacol. 2, 347–354 (1968)PubMedGoogle Scholar
  263. Woodward, J.K., Bianchi, C.P., Erulkar, S.D.: Electrolyte distribution in rabbit superior cervical ganglion. J. Neurochem. 16, 289–299 (1969)PubMedGoogle Scholar
  264. Yamamura, H.I., Snyder, S.H.: High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21, 1355–1374 (1973)PubMedGoogle Scholar
  265. Zaimis, E.J.: Actions at autonomic ganglia. In: Cholinesterase and anticholinesterase agents. Koelle, G.B. (ed.), pp. 530–569. Berlin: Springer 1963Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • D. A. Brown

There are no affiliations available

Personalised recommendations