Advertisement

Ganglionic Actions of Anticholinesterase Agents, Catecholamines, Neuro-Muscular Blocking Agents, and Local Anaesthetics

  • R. L. Volle
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 53)

Abstract

The demonstration by Feldberg and Gaddum (1934) that acetylcholine is the transmitter in sympathetic ganglia was a milestone in the development of the concept of chemical transmission. Clearly, the isolation of acetylcholine from the fluid perfusing the ganglia constitutes an important part of the evidence supporting the concept that chemical substances mediate synaptic transmission. It should be noted, however, that the recovery of acetylcholine from the perfusion stream is not possible unless an anticholinesterase agent is present in the perfusion fluid. In the absence of the enzyme inhibitor, choline appears in the perfusion fluid as a consequence of the hydrolysis of acetylcholine. Thus, the acetylcholinesterase enzymes destroy acetylcholine and, therefore, can serve to limit the biological life of the transmitter. Koelle (1963) and Zaimis (1963) give complete accounts of the earlier studies of the effects of anticholinesterase agents on ganglionic transmission and are useful reference sources for the period between the 1930s and 1960s.

Keywords

Sympathetic Ganglion Superior Cervical Ganglion Autonomic Ganglion Presynaptic Nerve Terminal Anticholinesterase Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, R.B., Zoller, A.: Some effects of long chain polymethylene bisonium salts on junctional transmission in the peripheral nervous system. Br. J. Pharmacol. 23, 131–150 (1964)Google Scholar
  2. Beddoe, F., Nicholls, P.J., Smith, H.J.: Inhibition of muscarinic receptor by dibenamine. Biochem. Pharmacol. 20, 3367–3376 (1971)PubMedGoogle Scholar
  3. Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the storage of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 657–668 (1972 a)Google Scholar
  4. Bennett, M.R., McLachlan, E.M.: An electrophysiological analysis of the synthesis of acetylcholine in preganglionic nerve terminals. J. Physiol. (Lond.) 221, 669–682 (1972 b)Google Scholar
  5. Birks, R.I., Macintosh, F.C.: Acetylcholine metabolism of a sympathetic ganglion. Can. J. Biochem. Physiol. 39, 787–827 (1961)Google Scholar
  6. Bjorklund, A., Cegrell, L., Falck, B., Ritzen, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta Physiol. Scand. 78, 334–338 (1970)PubMedGoogle Scholar
  7. Blaber, L.C.: The mechanism of the facilitatory action of edrophonium in cat skeletal muscle. Br. J. Pharmacol. 46, 498–507 (1972)PubMedGoogle Scholar
  8. Blaber, L.C., Christ, D.D.: The action of facilitatory drugs on the isolated tenuissimus muscle of the cat. Int. J. Neuropharmacol. 6, 473–484 (1967)PubMedGoogle Scholar
  9. Blackman, J.G., Purves, R.D.: Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea-pig. J. Physiol. (Lond.) 203, 173–178 (1969)Google Scholar
  10. Blackman, J.G., Ginsborg, B.L., Ray, C.: Synaptic transmission in the sympathetic ganglion of the frog. J. Physiol. (Lond.) 167, 355–373 (1963)Google Scholar
  11. Bornstein, J.D.: The effects of physostigmine on synaptic transmission in the inferior mesenteric ganglion of guinea-pig. J. Physiol. (Lond.) 241, 309–325 (1974)Google Scholar
  12. Boyd, I.A., Martin, A.R.: Spontaneous sub-threshold activity at mammalian neuromuscular junctions. J. Physiol. (Lond.) 132, 61–73 (1956)Google Scholar
  13. Brown, D.A., Jones, K.B., Halliwell, J.V., Quilliam, J.P.: Evidence against a presynaptic action of acetylcholine during ganglionic transmission. Nature (Lond.) 226, 958–959 (1970)Google Scholar
  14. Bülbring, E.: The action of adrenaline on transmission in the superior cervical ganglion. J. Physiol. (Lond.) 103, 55–67 (1944)Google Scholar
  15. Biilbring, E., Depierre, F.: The action of synthetic curarizing compounds on skeletal muscle and sympathetic ganglia both normal and denervated. Br. J. Pharmacol. 4, 22–28 (1949)Google Scholar
  16. Chang, C.C., Lee, C.Y.: Isolation of neurotoxins from the venom of Bungarus mullicinclus and their modes of neuromuscular blocking action. Arch. Int. Pharmacodyn. Ther. 144, 241–257 (1963)PubMedGoogle Scholar
  17. Christ, D.D., Nishi, S.: Site of adrenaline blockade in the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 213, 107–117 (1971 a)Google Scholar
  18. Christ, D.D., Nishi, S.: Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit. Br. J. Pharmacol. 41, 331–338 (1971b)PubMedGoogle Scholar
  19. Christensen, B.N., Martin, A.R.: Estimates of probability of transmitter release at the mammalian neuromuscular junction. J. Physiol. (Lond.) 210, 933–945 (1970) *Google Scholar
  20. Collier, B., Katz, H.S.: The synthesis, turnover, and release of surplus acetylcholine in a sympathetic ganglion. J. Physiol. (Lond.) 214, 537–552 (1971)Google Scholar
  21. Collier, B., Katz, H.S.: Acetylcholine synthesis from recaptured choline by a sympathetic ganglion. J. Physiol. (Lond.) 238, 639–655 (1974)Google Scholar
  22. Collier, B., Macintosh, F.C.: The source of choline for acetylcholine synthesis in a sympathetic ganglion. Can. J. Physiol. Pharmacol. 47, 127–135 (1969)Google Scholar
  23. Cramer, H., Johnson, D.G., Hanbauer, I., Silberstein, S.D., Kopin, I.J.: Accumulation of adenosine 3′,5′-monophosphate induced by catecholamines in the rat superior cervical ganglion in vitro. Brain Res. 53, 97–104 (1973)PubMedGoogle Scholar
  24. Crowcroft, P.J., Jarrott, B., Ostberg, A.: Are there inhibitory mechanisms in mammalian autonomic ganglia? Proc. Aust. Physiol. Pharmacol. Soc. 2, 31–32 (1971)Google Scholar
  25. de Groat, W.C.: Nervous control of the urinary bladder of the cat. Brain Res. 87, 201–211 (1975)PubMedGoogle Scholar
  26. de Groat, W.C., Saum, W.R.: Sympathetic inhibition of the urinary bladder and of pelvic ganglionic transmission in the cat. J. Physiol. (Lond.) 220, 297–314 (1972)Google Scholar
  27. de Groat, W.C., Volle, R.L.: The actions of the catecholamines on the transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 154, 1–13 (1966 a)PubMedGoogle Scholar
  28. de Groat, W.C., Volle, R.L.: Interactions between the catecholamines and ganglionic stimulating agents in sympathetic ganglia. J. Pharmacol. Exp. Ther. 154, 200–215 (1966b)PubMedGoogle Scholar
  29. del Castillo, J., Katz, B.: Quantal components of the end plate potential. J. Physiol. (Lond.) 124, 560–573(1954)Google Scholar
  30. Dijl, W. van: Neuromuscular blocking agents. In: Side effects of drugs. Meyer, L., Herxheimer, A. (eds.), Vol. VII, pp. 209–223. Amsterdam: Excerpta Medica 1972Google Scholar
  31. Dun, N., Nishi, S.: Effects of dopamine on the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 239, 155–164 (1974)Google Scholar
  32. Eccles, J.C: The nature of synaptic transmission in a sympathetic ganglion. J. Physiol. (Lond.) 103, 27–54(1944)Google Scholar
  33. Eccles, R.M., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484–503 (1961)Google Scholar
  34. Elfvin, L.-G.: Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. J. Ultrastruct. Res. 37, 411–425 (1971 a)PubMedGoogle Scholar
  35. Elfvin, L.-G.: Specialized serial neuronal contacts between preganglionic end fibres. J. Ultrastruct. Res. 37, 426–431 (1971 b)PubMedGoogle Scholar
  36. Elfvin, L.-G.: The structure and distribution of the axodendritic and dendrodendritic contacts. J. Ultrastruct. Res. 37, 432–448 (1971 c)PubMedGoogle Scholar
  37. Elmqvist, D., Quastel, D.M.S.: A quantitative study of end plate potentials in isolated human muscle. J. Physiol. (Lond.) 178, 505–529 (1965)Google Scholar
  38. Feldberg, W., Gaddum, J.H.: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. (Lond.) 81, 305–319 (1934)Google Scholar
  39. Greengard, P., McAfee, D.A., Kebabian, J.W.: On the mechanism of action of cyclic AMP and its role in synaptic transmission. In: Advances in cyclic nucleotide research. Greengard, P., Robinson, G.A. (eds.), pp. 337–355. New York: Raven Press 1972Google Scholar
  40. Grob, D.: Neuromuscular blocking drugs. In: Physiological pharmacology. Root, W.S., Hofman, F.G. (eds.), Vol. III/C, pp. 389–460. New York: Academic Press 1967Google Scholar
  41. Guyton, A.C., Reeder, R.C.: Quantitative studies on the autonomic actions of curare. J. Pharmacol. Exp. Ther. 98, 188–194 (1950)PubMedGoogle Scholar
  42. Haefely, W.E.: Effects of catecholamines in the cat superior cervical ganglion and their postulated role as physiological modulators of ganglionic transmission. In: Progress in brain research, mechanisms of synaptic transmission. Akert, K., Waser, P.G. (eds.), pp. 61–72. Amsterdam: Elsevier 1969Google Scholar
  43. Halasz, P., Mechler, F., Feher, O., Damjanovich, S.: The effect of SH-inhibitors on ganglionic transmission in the superior cervical ganglion of the cat. Acta Physiol. Hung. 18, 47–55 (1960)Google Scholar
  44. Hamberger, B., Norberg, K.-A.: Adrenergic synaptic terminals and nerve cells in bladder ganglia of the cat. Int. J. Neuropharmacol. 4, 41–45 (1965)PubMedGoogle Scholar
  45. Hancock, J.C., Volle, R.L.: Cholinoceptive sites in the rat superior cervical ganglion. Arch. Int. Pharmacodyn. 184, 111–120 (1970)PubMedGoogle Scholar
  46. Harvey, A.M.: The action of procaine on neuromuscular transmission. Bull. Johns Hopkins Hosp. 65, 223–238 (1939)Google Scholar
  47. Hilton, J.G.: The pressor response to neostigmine after ganglionic blockade. J. Pharmacol. Exp. Ther. 132, 23–28 (1961)PubMedGoogle Scholar
  48. Hirst, G.D.S., McKirdy, H.C.: Presynaptic inhibition at mammalian peripheral synapse? Nature (Lond.) 250, 430–431 (1974)Google Scholar
  49. Holaday, D.A., Kamijo, K., Koelle, G.B.: Facilitation of ganglionic transmission following inhibition of Cholinesterase by DFP. J. Pharmacol. Exp. Ther. 111, 241–254 (1954)PubMedGoogle Scholar
  50. Jacobowitz, D.: Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed. Proc. 29, 1929–1944 (1970)PubMedGoogle Scholar
  51. Kalix, P., McAfee, D.A., Schorderet, M., Greengard, P.: Pharmacological analysis of synaptically mediated increase in cyclic adenosine monophosphate in a rabbit superior cervical ganglion. J. Pharmacol. Exp. Ther. 188, 676–687 (1974)PubMedGoogle Scholar
  52. Kayaalp, S.O., Mclsaac, R.J.: Effects of the adrenergic receptor blocking agents on the ganglionic transmission. Eur. J. Pharmacol. 7, 264–269 (1969)PubMedGoogle Scholar
  53. Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 74, 1346–1349 (1971)Google Scholar
  54. Kebabian, J.W., Bloom, F.E., Steiner, A.L., Greengard, P.: Neurotransmitters increase cyclic nucleotides in postganglionic neurons: immunocytochemical demonstration. Science 190, 157–159 (1975a)PubMedGoogle Scholar
  55. Kebabian, J.W., Steiner, A.L., Greengard, P.: Muscarinic cholinergic regulation of cyclic guano-sine 3′,5′-monophosphate in autonomic ganglia: possible role in synaptic transmission. J. Pharmacol. Exp. Ther. 193, 474–488 (1975b)PubMedGoogle Scholar
  56. Kharkevich, D. A.: Effects of the ganglion-blocking agents, Barbamyl and novocain on the development of post-activation facilitation in sympathetic ganglia. Farmakol. Toksikol. 8, 493–499 (1959) (Russ.)Google Scholar
  57. Kharkevich, D.A.: Effects of ganglion-blocking substances on the rate of conduction of nerve excitation in sympathetic ganglia. Byull. Eksp. Biol. Med. 3, 61–64 (1960a) (Russ.)Google Scholar
  58. Kharkevich, D.A.: Effects of ganglion-blocking substances on the after discharges. Byull. Eksp. Biol. Med. 6, 62–66 (1960 b) (Russ.)Google Scholar
  59. Kharkevich, D.A.: Ganglion-blocking mechanism of novocain. Fiziol. Zh. S.S.S.R. 8, 960–966 (1962a) (Russ.)Google Scholar
  60. Kharkevich, D.A.: Gánglionic agents. Moskva: Medgiz 1962b (Russ.)Google Scholar
  61. Kharkevich, D.A.: Ganglion-blocking and ganglion-stimulating agents. Oxford: Pergamon Press 1967 (translated from Russian edition, 1962)Google Scholar
  62. Kharkevich, D.A, Tishchenko, M.I.: Effect of novocain on pessimal inhibition in different links of the reflex arc. Byull. Eksp. Biol. Med. 10, 72–77 (1957) (Russ.)Google Scholar
  63. Kobayashi, H., Libet, B.: Actions of noradrenaline and acetylcholine on sympathetic ganglion cells. J. Physiol. (Lond.) 208, 353–372 (1970)Google Scholar
  64. Koelle, G.B.: Cytological distributions and physiological functions of cholinesterases. In: Choli-nesterases and anticholinesterase agents. Koelle, G.B. (ed.), pp. 187–298. Berlin, Heidelberg, New York: Springer 1963Google Scholar
  65. Koelle, G.B., Davis, R., Koelle, W.A., Smyrl, E.G., Fine, A.V.: The electron microscopic localisation of acetylcholinesterase and pseudoCholinesterase in autonomic ganglia. In: Cholinergic mechanisms. Waser, P.G. (ed.), pp. 251–255. New York: Raven Press 1975Google Scholar
  66. Koelle, W.A., Koelle, G.B.: The localisation of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J. Pharmacol. Exp. Ther. 126, 1–8 (1959)PubMedGoogle Scholar
  67. Koketsu, K., Minota, S.: The direct action of adrenaline on the action potentials of bullfrog’s (Rana catesbeiana) sympathetic ganglion cells. Experientia 31, 822–823 (1975)PubMedGoogle Scholar
  68. Komalahiranya, A., Volle, R.L.: Actions of inorganic ions and veratrine on asynchronous postganglionic discharge in sympathetic ganglia treated with diisopropyl-phosphorofluoridate (DFP). J. Pharmacol. Exp. Ther. 138, 57–65 (1962)PubMedGoogle Scholar
  69. Komalahiranya, A., Volle, R.L.: Alterations of transmission in sympathetic ganglia treated with a sulfhydryl group inhibitor, N-ethyl-maleimide (NEM). J. Pharmacol. Exp. Ther. 139, 304–311(1963)PubMedGoogle Scholar
  70. Kosterlitz, H.W., Lees, G.M., Wallis, D.I.: Resting and action potentials recorded by the sucrose-gap method in the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 195, 39–53 (1968)Google Scholar
  71. Krstic, M.K.: The action of isoprenaline on the superior cervical ganglion of the cat. Neuropharmacology 10, 643–647 (1971)PubMedGoogle Scholar
  72. Kuno, M.: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol.Rev. 51, 647–678 (1971)PubMedGoogle Scholar
  73. Laverty, R., Sharman, D.F.: The estimation of small quantities of 3,4-dihydroxyphen-ylethylamine in tissues. Br. J. Pharmacol. 24, 538–548 (1965)Google Scholar
  74. Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc. 29, 1945–1956 (1970)PubMedGoogle Scholar
  75. Libet, B., Kobayashi, H.: Adrenergic mediation of slow inhibitory postsynaptic potential in sympathetic ganglia of the frog. J. Neurophysiol. 37, 805–814 (1974)PubMedGoogle Scholar
  76. Libet, B., Tosaka, T.: Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: a different mode of synaptic action. Proc. Natl. Acad. Sci. USA 67, 667–673 (1970)PubMedGoogle Scholar
  77. Long, J.P., Eckstein, J.W.: Ganglionic actions of neostigmine methylsulfate. J. Pharmacol. Exp. Ther. 133, 216–222 (1961)PubMedGoogle Scholar
  78. Lundberg, A.: Adrenaline and transmission in the sympathetic ganglion of the cat. Acta Physiol. Scand. 26, 252–263 (1952)PubMedGoogle Scholar
  79. Marrazzi, A.S.: Electrical studies on the pharmacology of autonomic synapses. II. The action of a sympathomimetic drug (epinephrine) on sympathetic ganglia. J. Pharmacol. 65, 395–404 (1939)Google Scholar
  80. Mason, D.F.J.: A ganglion stimulating action of neostigmine. Br. J. Pharmacol. 18, 76–86 (1962a)Google Scholar
  81. Mason, D.F.J.: Depolarising action of neostigmine at an autonomic ganglion. Br. J. Pharmacol. 18, 572–587 (1962 b)Google Scholar
  82. Matthews, E.K.: The effects of choline and other factors on the release of acetylcholine from the stimulated perfused superior cervical ganglion of the cat. Br. J. Pharmacol. 21, 244–249 (1963)Google Scholar
  83. Matthews, M., Raisman, G.: The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat. 105, 255–282 (1969)PubMedGoogle Scholar
  84. Matthews, R.J.: The effect of epinephrine, levarterenol, and diisoproterenol on transmission in the superior cervical ganglion of the cat. J. Pharmacol. Exp. Ther. 116, 433–443 (1956)PubMedGoogle Scholar
  85. McAfee, D.A., Greengard, P.: Adenosine 3′,5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972)PubMedGoogle Scholar
  86. McAfee, D.A., Schorderet, M., Greengard, P.: Adenosine 3′,5′-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171, 1156–1158 (1971)PubMedGoogle Scholar
  87. Mclsaac, R.J.: Ganglionic blocking properties of epinephrine and related amines. Int. J. Neuro-pharmacol. 5, 15–26 (1966)Google Scholar
  88. Mclsaac, R.J., Koelle, G.B.: Comparison of the effects of inhibition of external, internal, and total acetylcholinesterase upon ganglionic transmission. J. Pharmacol. Exp. Ther. 126, 8–20 (1959)Google Scholar
  89. McKinstry, D.N., Koelle, G.B.: Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. Exp. Ther. 157, 319–327 (1967)PubMedGoogle Scholar
  90. McKinstry, D.N., Koenig, E., Koelle, W.A., Koelle, G.B.: The release of acetylcholine from a sympathetic ganglion by carbachol. Relationship to the functional significance of the localisation of acetylcholinesterase. Can. J. Biochem. Physiol. 41, 2599–2609 (1963)PubMedGoogle Scholar
  91. Nakamura, M., Koketsu, K.: The effect of adrenaline on sympathetic ganglion cells of bullfrog. Life Sci. 11, 1165–1173 (1972)Google Scholar
  92. Nilson, R., Volle, R.L.: Blockade by cadmium (Cd++) of transmitter release at the frog neuromuscular junction. Fed. Proc. 35, 696 (1976)Google Scholar
  93. Nishi, S., Koketsu, K.: Origin of ganglionic inhibitory postsynaptic potential. Life Sci. 6, 2049–2056 (1967)PubMedGoogle Scholar
  94. Nishi, S., Koketsu, K.: Analysis of slow inhibitory postsynaptic potential of bullfrog sympathetic ganglion. J. Neurophysiol. 31, 717–728 (1968)PubMedGoogle Scholar
  95. Nishi, S., North, F.A.: Intracellular recording from myenteric plexus of the guinea-pig ileum. J. Physiol. (Lond.) 231, 471–491 (1973)Google Scholar
  96. Ostberg, A.: Granule-containing cells of the inferior mesenteric ganglion. Proc. Aust. Phys. Pharmacol. Soc. 1, 1 (1970)Google Scholar
  97. Ogston, A.G.: Removal of acetylcholine from a limited volume by diffusion. J. Physiol. (Lond.) 128, 222–223(1955)Google Scholar
  98. Otten, U., Mueller, R.A., Oesch, F., Thoenen, H.: Location of an isoproterenol responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction. Proc. Natl. Acad. Sci. USA 71, 2217–2221 (1974)PubMedGoogle Scholar
  99. Pardo, E.G., Cato, J., Gigon, E., Alonso-de-Florida, F.: Influence of several adrenergic drugs on synaptic transmission through the superior cervical and the ciliary ganglia of the cat. J. Pharmacol. Exp. Ther. 139, 296–303 (1963)PubMedGoogle Scholar
  100. Paton, W.D.M.: Pharmacology of curare and curarising substances. J. Pharm. Pharmacol. 1, 273–286 (1949)PubMedGoogle Scholar
  101. Paton, W.D.M., Thompson, J. W.: The mechanism of action of adrenaline on the superior cervical ganglion of the cat. Abstr. XIX Int. Physiol. Congress 664–665 (1953)Google Scholar
  102. Perry, W.L.M.: Acetylcholine release in the cat’s superior cervical ganglion. J. Physiol. (Lond.) 119, 439–454(1953)Google Scholar
  103. Randall, L.O., Jampolsky, L.M.: Pharmacology of drugs affecting skeletal muscle. Am. J. Phys. Med. 32, 102–105 (1953)PubMedGoogle Scholar
  104. Rybolovlev, S.R.: Curare-like action of Ditylin (di-acetylcholine). Farmakol. Toksikol. 6, 30–38 (1952) (Russ.)Google Scholar
  105. Sacchi, O., Perri, W.: Quantal release of acetylcholine from the nerve endings of the guinea pig superior cervical ganglion. Pflügers Arch. 329, 207–219 (1971)PubMedGoogle Scholar
  106. Takeshige, C., Volle, R.L.: Cholinoceptive sites in denervated sympathetic ganglia. J. Pharmacol. Exp. Ther. 141, 206–213 (1963a)PubMedGoogle Scholar
  107. Takeshige, C., Volle, R.L.: Asychronous postganglionic firing from the cat superior cervical sympathetic ganglion treated with neostigmine. Br. J. Pharmacol. 20, 214–220 (1963 b)Google Scholar
  108. Takeshige, C., Volle, R.L.: Bimodal response of sympathetic ganglia to acetylcholine following eserine or repetitive preganglionic stimulation. J. Pharmacol. Exp. Ther. 138, 66–73 (1963 c)Google Scholar
  109. Takeshige, C., Pappano, A.J., de Groat, W.C., Volle, R.L.: Ganglionic blockade produced in sympathetic ganglia by cholinomimetic drugs. J. Pharmacol. Exp. Ther. 141, 333–342 (1963)PubMedGoogle Scholar
  110. Volle, R.L.: The responses to ganglionic stimulating and blocking drugs of cell groups within a sympathetic ganglion. J. Pharmacol. Exp. Ther. 135, 54–71 (1962 a)PubMedGoogle Scholar
  111. Volle, R.L.: The actions of several ganglion blocking agents on the postganglionic discharge induced by diisopropyl phosphorofluoridate (DFP) in sympathetic ganglia. J. Pharmacol. Exp. Ther. 135, 45–53 (1962 b)PubMedGoogle Scholar
  112. Volle, R.L.: Modification by drugs of synaptic mechanisms in autonomic ganglia. Pharmacol. Rev. 18, 839–869 (1966)Google Scholar
  113. Volle, R.L.: Cellular pharmacology of autonomic ganglia. In: Cellular pharmacology of excitable tissues. Narahashi, T. (ed.), pp. 89–140. Springfield: Charles C Thomas 1975Google Scholar
  114. Volle, R.L., Koelle, G.B.: The physiological role of AChE in sympathetic ganglia. J. Pharmacol. Exp. Ther. 133, 223–240 (1961)PubMedGoogle Scholar
  115. Volle, R.L., Koelle, G.B.: Ganglionic stimulating and blocking agents. In: The pharmacological basis of therapeutics, 5 th Ed. Goodman, L.S., Gilman, A. (eds.), pp. 565–574. New York: The Macmillan Company 1975Google Scholar
  116. Weight, F.F., Padjen, A.: Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells. Brain Res. 55, 219–224 (1973 a)PubMedGoogle Scholar
  117. Weight, F.F., Padjen, A.: Acetylcholine and slow synpatic inhibition in frog sympathetic ganglion cells. Brain Res. 55, 225–228 (1973 b)PubMedGoogle Scholar
  118. Weir, M.C.L., McLennan, H.: The action of catecholamines in sympathetic ganglia. Can. J. Biochem. 41, 2627–2636 (1963)PubMedGoogle Scholar
  119. Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34(1969)PubMedGoogle Scholar
  120. Williams, T.H., Black, Jr, A.C., Chiba, T., Bhalla, R.C.: Morphology and biochemistry of small, intensely fluorescent cells of sympathetic ganglia. Nature (Lond.) 256, 315–317 (1975)Google Scholar
  121. Zaimis, E.: Actions at autonomic ganglia. In: Cholinesterases and anticholinesterase agents. Koelle, G.B. (ed.), pp. 530–569. Berlin, Heidelberg, New York: Springer 1963Google Scholar
  122. Zipf, H.F., Dittmann, E.Ch.: General pharmacological effects of local anaesthetics. In: Local anaesthetics. Lechat, P. (ed.), pp 191–238. Oxford: Pergamon Press 1972Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • R. L. Volle

There are no affiliations available

Personalised recommendations