The Adhesion, Migration and Chemotaxis of Leucocytes in Inflammation

  • Peter C. Wilkinson
  • John M. Lackie
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 68)


The morphological behaviour of leucocytes1 leaving the blood has been studied for more than a hundred years and can be described in some detail, but the mechanisms involved are for the most part still unclear. Following an inflammatory stimulus, dynamic changes occur in small blood vessels near the inflamed site and are followed by margination of leucocytes and by their adherence to the endovascular surface of endothelial cells. The leucocytes migrate out of the vessel in the gaps between endothelial cells and move towards the noxious stimulus, directed presumably by chemotactic gradients. Having reached the gradient source, they may engage in phagocytosis, killing and digestion of micro-organisms or of damaged tissue.


Chemotactic Factor Chemotactic Response Nylon Fiber Chemotactic Gradient Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Ambrose, E.J.: The surface properties of cancer cells: a review. Cancer Res. 22, 525–548 (1962)PubMedGoogle Scholar
  2. Allan, R.B., Wilkinson, P.C.: A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leucocytes. Exp. Cell Res. 111, 191–203 (1978)PubMedCrossRefGoogle Scholar
  3. Allison, F., Lancaster, M.G.: Studies on the pathogenesis of acute inflammation. II. The relationship of fibrinogen and fibrin to the leucocytic sticking reaction in ear chambers of rabbits injured by heat. J. Exp. Med. 111, 45–64 (1960)PubMedCrossRefGoogle Scholar
  4. Allison, F., Lancaster, M.G.: Studies on the pathogenesis of acute inflammation. III. The failure of anticoagulants to prevent the leucocytic sticking reaction and the formation of small thrombi in rabbit ear chambers damaged by heat. J. Exp. Med. 114, 535–553 (1961)PubMedCrossRefGoogle Scholar
  5. Allison, F., Smith, M.R., Wood, W.B.: Studies on the pathogenesis of acute inflammation. I. The inflammatory reaction to thermal injury as observed in the rabbit ear chamber. J. Exp. Med. 102, 655–668 (1955a)PubMedCrossRefGoogle Scholar
  6. Allison, F., Smith, M.R., Wood, W.B.: Studies on the pathogenesis of acute inflammation. II. The action of cortisone on the inflammatory response to thermal injury. J. Exp. Med. 102, 669–676 (1955b)PubMedCrossRefGoogle Scholar
  7. Altman, L.C.: Chemotactic lymphokines: A review. In: Leukocyte chemotaxis. Gallin, J.I., Quie, P.G. (eds.), pp. 267–287. New York: Raven Press 1978Google Scholar
  8. Altman, L.C., Kirchner, H.: Mononuclear leucocyte chemotaxis in the chicken. Definition of phylogenetically specific lymphokine. Immunology 26, 393–405 (1974)PubMedGoogle Scholar
  9. Amsden, A., Ewan, V., Yoshida, T., Cohen, S.: Studies on cellular receptors for lymphokines. I. Interaction of chemotactic factors with monosaccharides. J. Immunol. 120, 542–549 (1978)PubMedGoogle Scholar
  10. Anderson, A.O., Anderson, N.D.: Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology 31, 731–748 (1976)PubMedGoogle Scholar
  11. Anderson, R., Glover, H., Koornhof, H.J., Rabson, A.R.: In vitro stimulation of neutrophil motility by levamisole: Maintenance of cGMP levels in chemotactically stimulated levamisole-treated neutrophils. J. Immunol. 117, 428–432 (1976)PubMedGoogle Scholar
  12. Anderson, R., Glover, A., Rabson, A.R.: The in vitro effects of histamine and metiamide on neutrophil motility and their relationship to intracellular cyclic nucleotide levels. J. Immunol. 118, 1690–1696 (1977)PubMedGoogle Scholar
  13. Armstrong, P.B.: Cellular positional stability and intercellular invasion. Bioscience 27, 803–809 (1977)CrossRefGoogle Scholar
  14. Armstrong, P.B., Lackie, J.M.: Studies on intercellular invasion in vitro using rabbit peritoneal neutrophil granulocytes (PMNs). I. Role of contact inhibition of locomotion. J. Cell Biol. 65, 439–462 (1975)PubMedCrossRefGoogle Scholar
  15. Asherson, G.L., Allwood, G.G., Mayhew, B.: Contact sensitivity in the mouse. XI. Movement of T-blasts in the draining lymph nodes to sites of inflammation. Immunology 25, 485–494 (1973)PubMedGoogle Scholar
  16. Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A.R., Freer, R.J., Showell, H.J., Becker, E.L., Pert, C.B.: Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem. Biophys. Res. Commun. 74, 810–817 (1977)PubMedCrossRefGoogle Scholar
  17. Athens, J.W., Raab, S.O., Haab, O.P., Mauer, A.M., Ashenbrucker, H., Cartwright, G.E., Wintrobe, M.M.: Leukokinetic studies. III. The distribution of granulocytes in the blood of normal subjects. J. Clin. Invest. 40, 159–164 (1961a)PubMedCrossRefGoogle Scholar
  18. Athens, J.W., Haab, O.P., Raab, S.O., Mauer, A.M., Ashenbrucker, H., Cartwright, G.E., Wintrobe, M.M.: Leukokinetic studies. IV. The total blood, circulating and marginal granulocyte pools and the granulocyte turnover rate in normal subjects. J. Clin. Invest. 40, 989–995 (1961b)PubMedCrossRefGoogle Scholar
  19. Athens, J.W., Raab, S.O., Haab, O.P., Boggs, D.R., Ashenbrucker, H., Cartwright, G.E., Wintrobe, M.M.: X. Blood granulocyte kinetics in chronic myelocytic leukemia. J. Clin. Invest. 44, 765–777 (1965a)PubMedCrossRefGoogle Scholar
  20. Athens, J.W., Haab, O.P., Raab, S.O., Boggs, D.R., Ashenbrucker, H., Cartwright, G.E., Wintrobe, M.M.: Leukokinetic studies. XI. Blood granulocyte kinetics in polycythemia vera, infection and myelofibrosis. J. Clin. Invest. 44, 778–788 (1965b)PubMedCrossRefGoogle Scholar
  21. Atherton, A., Born, G.V.R.: Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J. Physiol. 222, 441–414 (1972)Google Scholar
  22. Bainton, D.F.: Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of micro-organisms. J. Cell Biol. 58, 249–264 (1973)PubMedCrossRefGoogle Scholar
  23. Banks, D.C., Mitchell, J.R.A.: Leucocytes and thrombosis. I. A simple test of leucocyte behaviour. Thromb. Diathes. Haemorrh. (Stuttgart) 30, 36–46 (1973a)Google Scholar
  24. Banks, D.C., Mitchell, J.R.A.: Leucocytes and thrombosis. II. Relationship between leucocyte behaviour and divalent cations, sulphydryl groups, red cells and adenosine diphosphate. Thromb. Diathes. Haemorrh. (Stuttgart) 30, 47–61 (1973b)Google Scholar
  25. Banks, D.C., Mitchell, J.R.A.: Leucocytes and thrombosis. III. Effect on white cell behaviour of substances which induce or inhibit platelet aggregation. Thromb. Diathes. Haemorrh. (Stuttgart) 30, 62–71 (1973c)Google Scholar
  26. Bass, D.A.: Behaviour of eosinophil leukocytes in acute inflammation. I. Lack of dependence on adrenal function. J. Clin. Invest. 55, 1229–1236 (1975)PubMedCrossRefGoogle Scholar
  27. Beesley, J.E., Pearson, J.D., Carleton, J.S., Hutchings, A., Gordon, J.L.: Interactions of leucocytes with vascular cells in culture. J. Cell Science 33, 85–101 (1978)PubMedGoogle Scholar
  28. Berman, L.: Lymphocytes and macrophages in vitro. Their activities in relation to functions of small lymphocytes. Lab. Invest. 15, 1084–1099 (1966)PubMedGoogle Scholar
  29. Bessis, M.: Necrotaxis: chemotaxis towards an injured cell Antibiot. Chemother. 19, 369–381 (1974)Google Scholar
  30. Bhisey, A.N., Freed, J.J.: Amoeboid movement induced in cultured macrophages by colchicine or vinblastine. Exp. Cell Res. 64, 419–429 (1971)PubMedCrossRefGoogle Scholar
  31. Bishop, C.R., Rothstein, G., Ashenbrucker, H.E., Athens, J.W.: Leukokinetic studies. XIV. Blood neutrophil kinetics in chronic, steady-state neutropenia. J. Clin. Invest. 50, 1678–1689 (1971)PubMedCrossRefGoogle Scholar
  32. Boggs, D.R.: The cellular composition of inflammatory exudates in human leukemias. Blood 15, 466–475 (1960)PubMedGoogle Scholar
  33. Boswell, R.M., Austen, K.F., Goetzl, E.J.: A chemotactic receptor for Val (Ala)-Gly-Ser-Glu on human eosinophil polymorphonuclear leukocytes. Immunol. Commun. 5, 469–479 (1976)PubMedGoogle Scholar
  34. Boxer, L.A., Stossel, T.P.: Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes. J. Clin. Invest. 57, 964–976 (1976)PubMedCrossRefGoogle Scholar
  35. Boxer, L.A., Hedley-Whyte, E.T., Stossel, T.P.: Neutrophil actin dysfunction and abnormal neutrophil behaviour. N. Engl. J. Med. 291, 1093–1099 (1974)PubMedCrossRefGoogle Scholar
  36. Boyden, S.V.: The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962)PubMedCrossRefGoogle Scholar
  37. Bryant, R.E., Sutcliffe, M.C.: A method for quantitation of human leucocyte adhesion to glass. Proc. Soc. Exp. Biol. Med. 141, 196–202 (1972)PubMedGoogle Scholar
  38. Buckley, I.K.: Delayed secondary damage and leucocyte chemotaxis following focal aseptic heat injury in vivo. Exp. Mol. Pathol. 2, 402–417 (1963)CrossRefGoogle Scholar
  39. Carlsson, L., Nystrom, L.-E., Sundkvist, I., Markey, F., Lindberg, U.: Actin polymerizability is influenced by Profilin, a low molecular weight protein in non-muscle cells. J. Mol. Biol. 115, 465–483 (1977)PubMedCrossRefGoogle Scholar
  40. Carter, S.B.: Haptotaxis and the mechanism of cell motility. Nature (London) 213, 256–260 (1967)CrossRefGoogle Scholar
  41. Cochrane, C.G., Aikin, B.S.: Polymorphonuclear leukocytes in immunologic reactions. The destruction of vascular basement membrane in vivo and in vitro. J. Exp. Med. 124, 733–745 (1966)PubMedCrossRefGoogle Scholar
  42. Curtis, A.S.G.: Cell adhesion. Prog. Biophys. Mol. Biol. 27, 315–386 (1973)CrossRefGoogle Scholar
  43. Curtis, A.S.G., de Sousa, M.: Factors influencing adhesion of lymphoid cells. Nature New Biol. 244, 45–47 (1973)PubMedGoogle Scholar
  44. Curtis, A.S.G., de Sousa, M.A.B.: Lymphocyte interactions and positioning. I. Adhesive interactions. Cell. Immunol. 19, 282–297 (1975)PubMedCrossRefGoogle Scholar
  45. Curtis, A.S.G., van de Vyver, G.: The control of cell adhesion in a morphogenetic system. J. Embryol. Exp. Morphol. 26, 295–312 (1971)PubMedGoogle Scholar
  46. Dale, D.C., Hubert, R.T., Fauci, A.: Eosinophil kinetics in the hypereosinophilic syndrome. J. Lab. Clin. Med. 87, 487–495 (1976)PubMedGoogle Scholar
  47. De Bono, D.: Endothelial-lymphocyte interactions in vitro. I. Adherence of nonallergised lymphocytes. Cell. Immunol. 26, 78–88 (1976)PubMedCrossRefGoogle Scholar
  48. Delaunay, A., Lebrun, J., Barber, M.: Factors involved in chemotactism of leucocytes in vitro. Nature (London) 167, 774–775 (1951)CrossRefGoogle Scholar
  49. Dierich, M.P., Wilhelmi, D., Till, G.: Essential role of surface bound chemoattractant in leucocyte migration. Nature (London) 270, 351–352 (1977)CrossRefGoogle Scholar
  50. Dunn, G.A., Heath, J.P.: A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101, 1–4 (1976)PubMedCrossRefGoogle Scholar
  51. Dysart, J., Edwards, J.G.: A membrane-bound haemagglutinin from cultured hamster fibroblasts (BHK 21 cells). FEBS Lett. 75, 96–100 (1977)PubMedCrossRefGoogle Scholar
  52. Edwards, J.G.: Cell adhesion. In: Mammalian cell membranes. Jamieson, G.A., Robinson, D.M. (eds.), Vol. IV, pp. 32–56. London, Boston: Butterworths 1977Google Scholar
  53. Essex, H.E., Grana, A.: Behaviour of the leukocytes of the rabbit during periods of transient leukopenia variously induced. Am. J. Physiol. 158, 396–400 (1949)PubMedGoogle Scholar
  54. Estensen, R.D., Hill, H.R., Quie, P.G., Hogan, N.D.: Cyclic GMP and cell movement. Nature (London) 245, 458–460 (1973)CrossRefGoogle Scholar
  55. Evans, C.W., Davies, M.D.J.: The influence of cell adhesiveness on the migratory behaviour of murine thymocytes. Cell. Immunol. 33, 211–218 (1977)PubMedCrossRefGoogle Scholar
  56. Fåhraeus, R.: The suspension stability of the blood. Physiol. Rev. 9, 241–274 (1929)Google Scholar
  57. Fehr, J., Jacob, H.S.: In vitro granulocyte adherence and in vivo margination: two associated complement-dependent functions. Studies based on the acute neutropenia of filtration leukophoresis. J. Exp. Med. 146, 641–652 (1977)PubMedCrossRefGoogle Scholar
  58. Fernandez, H.N., Henson, P.M., Otani, A., Hugh, T.E.: Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions. J. Immunol. 120, 102–108 (1978)Google Scholar
  59. Ford, W.L., Sedgley, M., Sparshott, S.M., Smith, M.E.: The migration of lymphocytes across specialised vascular endothelium. II. The contrasting consequences of treating lymphocytes with trypsin or neuraminidase. Cell Tissue Kinet. 9, 351–361 (1976)PubMedGoogle Scholar
  60. Freitas, A.A., de Sousa, M.: Control mechanisms of lymphocyte traffic. Modification of the traffic of 5 1Cr-labelled mouse lymph node cells by treatment with plant lectins in intact and splenectomized hosts. Eur. J. Immunol. 5, 831–838 (1975)CrossRefGoogle Scholar
  61. Gallin, E.K., Gallin, J.I.: Interaction of chemotactic factors with human macrophages. Induction of transmembrane potential changes. J. Cell Biol. 75, 277–289 (1977)PubMedCrossRefGoogle Scholar
  62. Gallin, J.I., Quie, P.G.: Leukocyte chemotaxis. New York: Raven Press 1978Google Scholar
  63. Gallin, J.I., Rosenthal, A.S.: The regulatory role of divalent cations in human granulocyte chemotaxis: Evidence for an association between calcium exchanges and micro-tubule assembly. J. Cell Biol. 62, 594–609 (1974)PubMedCrossRefGoogle Scholar
  64. Garvin, J.E.: Effects of divalent cations on adhesiveness of rat polymorphonuclear neutrophils in vitro. J. Cell Physiol. 72, 197–212 (1968)PubMedCrossRefGoogle Scholar
  65. Gesner, B.M., Ginsburg, V.: Effect of glycosidases on the fate of transfused lymphocytes. Proc. Natl. Acad. Sci. USA 52, 750–755 (1964)PubMedCrossRefGoogle Scholar
  66. Giddon, D.B., Lindhe, J.: In vivo quantitation of local anesthetic suppression of leukocyte adherence. Amer. J. Pathol. 68, 327–338 (1972)Google Scholar
  67. Goetzl, E.J., Austen, K.F.: Purification and synthesis of eosinophilotactic tetrapeptides of human lung tissue: Identification as eosinophil chemotactic factor of anaphylaxis. Proc. Natl. Acad. Sci. USA 72, 4123–4127 (1975)PubMedCrossRefGoogle Scholar
  68. Goetzl, E.J., Gorman, R.R.: Chemotactic and chemokinetic stimulation of human eosinophil and neutrophil polymorphonuclear leukocytes by 12-L hydroxy-5,8,10, heptadecatrienoic acid (HHT). J. Immunol. 120, 526–531 (1978)PubMedGoogle Scholar
  69. Goldschneider, I., McGregor, D.D.: Migration of lymphocytes in the rat. I. The route of migration from blood to spleen and lymph nodes. J. Exp. Med. 127, 155–168 (1968)PubMedCrossRefGoogle Scholar
  70. Gowans, J.L., Knight, E.J.: The route of recirculation of lymphocytes in the rat. Proc. R. Soc. Lond. B 159, 257–282 (1964)PubMedCrossRefGoogle Scholar
  71. Graham, R.C., Shannon, S.L.: Peroxidase arthritis. II. Lymphoid cell — endothelial interactions during a developing immunologic inflammatory response. Am. J. Pathol. 69, 7–24 (1972)PubMedGoogle Scholar
  72. Harris, A.: Cell surface movements related to cell locomotion. CIBA Found. Symp. 14, 3–26 (1973)PubMedGoogle Scholar
  73. Harris, H.: Role of chemotaxis in inflammation. Physiol. Rev. 34, 529–562 (1954)PubMedGoogle Scholar
  74. Hammerschmidt, D.E., Craddock, P.R., McCullough, J., Kronenberg, R.S., Dalmasso, A.P., Jacob, H.S.: Complement activation and pulmonary leukostasis during nylon fiber filtration leukapheresis. Blood 51, 721–730 (1978)PubMedGoogle Scholar
  75. Heath, J.P., Dunn, G.A.: Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscopy study. J. Cell Sci. 29, 197–212 (1978)PubMedGoogle Scholar
  76. Heaysman, J.E.M., Pegrum, S.M.: Early contacts between fibroblasts. An ultrastructural study. Exp. dell Res. 78, 71–78 (1973a)CrossRefGoogle Scholar
  77. Heaysman, J.E.M., Pegrum, S.M.: Early contacts between normal fibroblasts and mouse sarcoma cells. Exp. Cell Res. 78, 479–481 (1973b)PubMedCrossRefGoogle Scholar
  78. Heaysman, J.E.M., Turin, L.: Interactions between living and zinc-fixed cells in culture. Exp. Cell Res. 101, 419–422 (1976)PubMedCrossRefGoogle Scholar
  79. Henson, P.M.: Interaction of cells with immune complexes; adherence, release of constituents, and tissue injury. J. Exp. Med. 134, 114s–135s (1971)PubMedGoogle Scholar
  80. Henson, P.M.: Membrane receptors on neutrophils. Immunol. Commun. 5, 157–114 (1976)Google Scholar
  81. Herzig, G.P., Root, R.K., Graw, R.G.: Granulocyte collection by continuous-flow filtration leukapheresis. Blood 39, 554–567 (1972)PubMedGoogle Scholar
  82. Higuchi, Y., Honda, M., Hayashi, H.: Production of chemotactic factor for lymphocytes by neutral SH-dependent protease of PMN rabbit leukocytes from immunoglobins, especially IgM. Cell Immunol. 15, 100–108 (1975)PubMedCrossRefGoogle Scholar
  83. Hoover, R.L.: Modulation of the cell surface and the effects on cellular interactions. Symp. Soc. Exp. Biol. 32, 221–240 (1978)PubMedGoogle Scholar
  84. Hsu, L.S., Becker, E.L.: Volume decrease of glycerinated polymorphonuclear leukocytes induced by ATP and Ca2+. 1. Resemblances to actomyosin contraction. Exp. Cell Res. 91, 469–473 (1975)PubMedCrossRefGoogle Scholar
  85. Hynes, R.O.: Cell surface proteins and malignant transformation. Biochim. Biophys. Acta. 458, 73–107 (1976)PubMedGoogle Scholar
  86. Hynes, R.O., Bye, J.M.: Density and cell cycle dependence of cell surface proteins in hamster fibroblasts. Cell 3, 113–120 (1974)PubMedCrossRefGoogle Scholar
  87. Janoff, A., Zweifach, B.W.: Production of inflammatory changes in the microcirculation by cationic proteins extracted from lysosomes. J. Exp. Med. 120, 747–764 (1964)PubMedCrossRefGoogle Scholar
  88. Jensen, D.P., Brubaker, L.H., Nolph, K.D., Johnson, C.A., Nothum, R.J.: Hemodialysis coil-induced transient neutropenia and overshoot neutrophilia in normal man. Blood 41, 399–408 (1973)PubMedGoogle Scholar
  89. Jensen, J.A., Esquenazi, V.: Chemotactic stimulation by cell surface immune reactions. Nature (London) 256, 213–215 (1975)CrossRefGoogle Scholar
  90. Jensen, J.A., Esquenazi, V., Cianciolo, G.: Antigen dependent chemotaxis. In: Leukocyte chemotaxis. Gallin, J.I., Quie, P.G. (eds.), pp. 255–265. New York: Raven Press 1978Google Scholar
  91. Joyce, R.A., Boggs, D.R., Hsiba, U., Srodes, C.H.: Marginal neutrophil pool size in normal subjects and neutropenic patients as measured by epinephrine infusion. J. Lab. Clin. Med. 88, 614–620 (1976)PubMedGoogle Scholar
  92. Kay, A.B., Austen, K.F.: The IgE-mediated release of an eosinophil leukocyte chemotactic factor from human lung. J. Immunol. 107, 899–902 (1971)PubMedGoogle Scholar
  93. Kay, A.B., Stechschulte, D.J., Austen, K.F.: An eosinophil leukocyte chemotactic factor of anaphylaxis. J. Exp. Med. 133, 602–619 (1971)PubMedCrossRefGoogle Scholar
  94. Kay, A.B., Shin, H.S., Austen, K.F.: Selective attraction of eosinophils and synergism between eosinophil chemotactic factor of anaphylaxis (ECF-A) and fragment cleaved from the fifth component of complement (C5a). Immunology 24, 969–976 (1973)PubMedGoogle Scholar
  95. Keller, H.U., Wilkinson, P.C., Abercrombie, M., Becker, E.L., Hirsch, J.G., Miller, M.E., Ramsey, W.S., Zigmond, S.H.: A proposal for the definition of terms related to locomotion of leucocytes and other cells. Clin. Exp. Immunol. 27, 377–380 (1977a)PubMedGoogle Scholar
  96. Keller, H.U., Wissler, J.H., Hess, M.W., Cottier, H.: Relation between stimulus intensity and neutrophil chemotactic response. Experientia 33, 534–536 (1977b)PubMedCrossRefGoogle Scholar
  97. Keller, H.U., Wissler, J.H., Hess, M.W., Cottier, H.: Distinct chemokinetic and chemotactic responses in neutrophil granulocytes. Eur. J. Immunol. 8, 1–7 (1978)PubMedCrossRefGoogle Scholar
  98. Kvarstein, B.: Effect of some metabolic inhibitors on the adhesiveness of human leucocytes to glass beads. Scand. J. Clin. Lab. Invest. 24, 35–40 (1969a)PubMedCrossRefGoogle Scholar
  99. Kvarstein, B.: Effects of proteins and inorganic ions on the adhesiveness of human leucocytes to glass beads. Scand. J. Clin. Lab. Invest. 24, 41–48 (1969b)PubMedCrossRefGoogle Scholar
  100. Lackie, J.M.: The aggregation of rabbit polymorphonuclear leucocytes (PMNs). Effects of agents which affect the acute inflammatory response and correlation with secretory activity. Inflammation 2, 1–15 (1977)PubMedCrossRefGoogle Scholar
  101. Lackie, J.M., Armstrong, P.B.: Studies on intercellular invasion in vitro using rabbit peritoneal neutrophil granulocytes. II. Adhesive interaction between cells. J. Cell Sci. 19, 645–652 (1975)PubMedGoogle Scholar
  102. Lackie, J.M., de Bono, D.: Interactions of neutrophil granulocytes (PMNs) and endothelium in vitro. Microvasc. Res. 13, 107–112 (1977)PubMedCrossRefGoogle Scholar
  103. Lazarides, E., Weber, K.: Actin antibody: the specific visualisation of actin filaments in non-muscle cells. Proc. Natl. Acad. Sci. USA 71, 2268–2272 (1974)PubMedCrossRefGoogle Scholar
  104. Leffel, M.S., Spitznagel, J.K.: Intracellular and extracellular degranulation of human polymorphonuclear azurophil and specific granules induced by immune complexes. Infect. Immun. 10, 1241–1249 (1974)Google Scholar
  105. Leusen, I.R., Essex, H.E.: Leukopenia and changes in differential leucocyte counts produced in rabbits by dextran and acacia. Am. J. Physiol. 172, 231–236 (1953)PubMedGoogle Scholar
  106. Lichtman, M.A., Weed, R.I.: Alteration of the cell periphery during granulocyte maturation: relationship to cell function. Blood 39, 301–316 (1972)PubMedGoogle Scholar
  107. Lochner, L., Izzard, C.S.: Dynamic aspects of cell-substrate contact in fibroblast motility. J. Cell Biol. 59, 199a (1973)Google Scholar
  108. Lorente, F., Fonta, G., Garcia Rodrignez, M.C., Ojeda, J.A.: A simple and reproducible method to evaluate granulocyte adherence. J. Immunol. Methods 19, 47–51 (1978)PubMedCrossRefGoogle Scholar
  109. MacGregor, R.R., Spagnulo, P.J., Lentnek, A.L.: Inhibition of granulocyte adherence by ethanol, prednisone, and aspirin, measured with an assay system. N. Engl. J. Med. 291, 642–646 (1974)PubMedCrossRefGoogle Scholar
  110. MacGregor, R.R., Macarak, E.J., Kefalides, N.A.: Comparative adherence of granulocytes to endothelial monolayers and nylon fiber. J.Clin. Invest. 61, 697–702 (1978)PubMedCrossRefGoogle Scholar
  111. Marchase, R.B., Vosbeck, K., Roth, S.: Intercellular adhesive specificity. Biochem. Biophys. Acta. 457, 385–416 (1976)PubMedGoogle Scholar
  112. Marchesi, V.T., Gowans, J.L.: The migration of lymphocytes through the endothelium of venules in lymph nodes: an electron microscopy study. Proc. R. Soc. Lond. B 159, 283–290 (1964)PubMedCrossRefGoogle Scholar
  113. Marsh, J.C., Boggs, D.R., Cartwright, G.E., Wintrobe, M.M.: Neutrophil kinetics in acute infection. J. Clin. Invest. 46, 1943–1953 (1967)PubMedCrossRefGoogle Scholar
  114. Mayrovitz, H.N., Tuma, R.F., Siedeman, M.P.: Relationship between microvascular blood velocity and pressure distribution. Am. J. Physiol. 232, H400–405 (1977)PubMedGoogle Scholar
  115. McCall, C.E., De Chatelet, L.R., Brown, D., Lachmann, P.: New biological activity following intravascular activation of the complement cascade. Nature (London) 249, 841–842 (1974)CrossRefGoogle Scholar
  116. McCutcheon, M.: Chemotaxis in leukocytes. Physiol. Rev. 26, 319–336 (1946)PubMedGoogle Scholar
  117. McFarland, W., Heilman, D.H.: Lymphocyte foot appendage: its role in lymphocyte function and in immunological reactions. Nature (London) 205, 887–888 (1965)CrossRefGoogle Scholar
  118. McFarland, W., Schechter, G.P.: The lymphocyte in immunological reactions in vitro: ultrastructural studies. Blood 35, 683–688 (1970)PubMedGoogle Scholar
  119. McFarland, W., Heilman, D.H., Moorhead, J.F.: Functional anatomy of the lymphocyte in immunological reactions in vitro. J. Exp. Med. 124, 851–858 (1966)PubMedCrossRefGoogle Scholar
  120. McGregor, D.D., Logie, P.S.: The mediator of cellular immunity. VII. Localization of sensitized lymphocytes in inflammatory exudates. J. Exp. Med. 139, 1415–1430 (1974)PubMedCrossRefGoogle Scholar
  121. Moore, A.R., Hall, J.G.: Non-specific entry of thoracic duct immunoblasts into intradermal foci of antigens. Cell Immunol. 8, 112–119 (1973)PubMedCrossRefGoogle Scholar
  122. Morell, A.G., Gregoriadis, G., Scheinberg, I.H., Hickman, J., Ashwell, G.: The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971)PubMedGoogle Scholar
  123. Naccache, P., Freer, R.J., Showell, H.J., Becker, E.L., Sha’afi, R.I.: Transport of sodium, potassium and calcium across rabbit polymorphonuclear leukocyte membranes: effect of chemotactic factor. J. Cell Biol. 73, 428–444 (1977)PubMedCrossRefGoogle Scholar
  124. Normann, S.J., Sorkin, E.: Cell-specific defect in monocyte function during tumor growth. J. Natl. Cancer Inst. 57, 135–140 (1976)Google Scholar
  125. Nossal, R., Zigmond, S.H.: Chemotropism indices for polymorphonuclear leukocytes. Biophys. J. 16, 1171–1182 (1976)PubMedCrossRefGoogle Scholar
  126. Nowak, T.P., Haywood, P.L., Barondes, S.H.: Developmentally regulated lectin in embryonic chick muscle and a myogenic cell line. Biochem. Biophys. Res. Commun. 68, 650–657 (1976)PubMedCrossRefGoogle Scholar
  127. O’Flaherty, J.T., Kreutzer, D.L., Ward, P.A.: Neutrophil aggregation and swelling induced by chemotactic agents. J. Immunol. 119, 232–239 (1977)PubMedGoogle Scholar
  128. O’Flaherty, J.T., Craddock, P.R., Jacob, H.S.: Effect of intravascular complement activation on granulocyte adhesiveness and distribution. Blood 51, 731–739 (1978)PubMedGoogle Scholar
  129. O’Neill, G.J., Parrott, D.M.V.: Locomotion of human lymphoid cells. I. Effect of culture and Con A on T and non-T lymphocytes. Cell. Immunol. 33, 257–267 (1977)PubMedCrossRefGoogle Scholar
  130. Ossowski, L., Quigley, J.P., Kellerman, G.M., Reich, E.: Fibrinolysis associated with oncogenic transformation. Requirement of plasminogen for correlated changes in cellular morphology, colony formation in agar, and cell migration. J. Exp. Med. 138, 1056–1064 (1973)PubMedCrossRefGoogle Scholar
  131. Otu, A.A., Russell, R.J., Wilkinson, P.C., White, R.G.: Alterations of mononuclear phagocyte function induced by Lewis lung carcinoma in C57B1 mice. Br. J..Cancer 36, 330–340 (1977)PubMedCrossRefGoogle Scholar
  132. Parrott, D.M.V., Good, R.A., O’Neill, G.J., Gupta, S.: Locomotion of human lymphoid cells. II. Heterogeneity of lymphocyte populations including T cell subsets. Proc. Natl. Acad. Sci. USA 75, 2392–2395 (1978)PubMedCrossRefGoogle Scholar
  133. Rabinovitch, M., DeStefano, M.J.: Macrophage spreading in vitro. I. Inducers of spreading. Exp. Cell Res. 77, 323–334 (1973a)PubMedCrossRefGoogle Scholar
  134. Rabinovitch, M., DeStefano, M.J.: Macrophage spreading in vitro. II. Manganese and other metals as inducers or as co-factors for induced spreading. Exp. Cell Res. 79, 423–430 (1973b)PubMedCrossRefGoogle Scholar
  135. Rabinovitch, M., DeStefano, M.J.: Macrophage spreading in vitro. III. The effect of metabolic inhibitors, anesthetics and other drugs on spreading induced by subtilisin. Exp. Cell Res. 88, 153–162 (1974)PubMedCrossRefGoogle Scholar
  136. Ramsey, W.S.: Analysis of individual leucocyte behaviour during chemotaxis. Exp. Cell Res. 70, 129–139 (1972)PubMedCrossRefGoogle Scholar
  137. Reich, E.: Plasminogen activator: secretion by neoplastic cells and macrophages. Cold Spring Harbor Symp. Cell Proliferat. 2, 333–341 (1975)Google Scholar
  138. Rivkin, I., Rosenblatt, J., Becker, E.L.: The role of cyclic AMP in the chemotactic responsiveness and spontaneous motility of rabbit neutrophils. J. Immunol. 115, 1126–1134 (1975)PubMedGoogle Scholar
  139. Robineaux, R.: Movements of cells involved in inflammation and immunity. In: Primitive motile systems in cell biology. Allen, R.D., Kamiya, N. (eds.), pp. 351–364. New York: Academic Press 1964Google Scholar
  140. Roseman, S.: The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem. Phys. Lipids 5, 270–297 (1970)PubMedCrossRefGoogle Scholar
  141. Rosen, S.D., Simpson, D.L., Rose, J.E., Barondes, S.H.: Carbohydrate-binding protein from Polysphondylium pallidum implicated in intercellular adhesion. Nature (London) 252, 128–151 (1974)CrossRefGoogle Scholar
  142. Rosenfeld, S.L, Baum, J., Steigbigel, R.T., Leddy, J.P.: Hereditary deficiency of the fifth component of complement in man: II. Biological properties of C5-deficient human serum. J. Clin. Invest. 57, 1635–1643 (1976a)PubMedCrossRefGoogle Scholar
  143. Rosenfeld, S.L, Kelly, M.E., Leddy, J.P.: Hereditary deficiency of the fifth component of complement in man. I. Clinical, immunochemical and family studies. J. Clin. Invest. 57, 1626–1634 (1976b)PubMedCrossRefGoogle Scholar
  144. Russell, R.J., Wilkinson, P.C., Sless, F., Parrott, D.M.V.: Chemotaxis of lymphoblasts. Nature (London) 256, 646–648 (1975)CrossRefGoogle Scholar
  145. Russell, R.J., Mclnroy, R.J., Wilkinson, P.C., White, R.G.: A lipid chemotactic factor from anaerobic coryneform bacteria including Corynebacterium parvum with activity for macrophages and monocytes. Immunology 30, 935–949 (1976a)PubMedGoogle Scholar
  146. Russell, R.J., Wilkinson, P.C., Mclnroy, R.J., McKay, S., McCartney, A.C., Arbuthnott, J.P.: Effects of staphylococcal products on locomotion and chemotaxis of human blood neutrophils and monocytes. J. Med. Microbiol. 9, 433–449 (1976b)PubMedCrossRefGoogle Scholar
  147. Sahu, S., Lynn, W.S.: Lipid chemotaxins isolated from culture filtrates of Escherichia coli and from oxidized lipids. Inflammation 2, 47–54 (1977)PubMedCrossRefGoogle Scholar
  148. Schiffer, C.A., Aisner, J., Wiernik, P.H.: Transient neutropenia induced by transfusion of blood exposed to nylon fiber filters. Blood 45, 141–146 (1975)PubMedGoogle Scholar
  149. Schiffer, C.A., Sanel, F.T., Young, V.B., Aisner, J.: Reversal of granulocyte adherence to nylon fibers using local anaesthetic: possible application to filtration leukapheresis. Blood 50, 213–225 (1977)PubMedGoogle Scholar
  150. Schiffmann, E., Corcoran, B.A., Wahl, S.A.: N-formyl methionyl peptides as chemoattractants for leucocytes. Proc. Natl. Acad. Sci. USA 72, 1059–1062 (1975a)PubMedCrossRefGoogle Scholar
  151. Schiffmann, E., Showell, H.V., Corcoran, B.A., Ward, P.A., Smith, E., Becker, E.L.: The isolation and partial characterization of neutrophil chemotactic factors from Escherichia coli. J. Immunol. 114, 1831–1837 (1975b)PubMedGoogle Scholar
  152. Schmidt, M.E., Douglas, S.D.: Effects of levamisole on human monocyte function and immunoprotein receptors. Clin. Immunol. Immunopathol. 6, 299–305 (1976)PubMedCrossRefGoogle Scholar
  153. Schoefl, G.I.: The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A re-examination. J. Exp. Med. 136, 568–588 (1972)PubMedCrossRefGoogle Scholar
  154. Schreiner, G.F., Unanue, E.R.: Anti-Ig-triggered movements of lymphocytes: specificity and lack of evidence for directional migration. J. Immunol. 114, 809–814 (1975)PubMedGoogle Scholar
  155. Sharp, J.A., Burwell, R.G.: Interaction (peripolesis) of macrophages and lymphocytes after skin homografting or challenge with soluble antigens. Nature (London) 188, 474–475 (1960)CrossRefGoogle Scholar
  156. Showell, H.J., Freer, R.J., Zigmond, S.H., Schiffmann, E., Aswanikumar, S., Corcoran, B., Becker, E.L.: The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils. J. Exp. Med. 143, 1154–1169 (1976)PubMedCrossRefGoogle Scholar
  157. Simionescu, M., Simionescu, N., Palade, G.E.: Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J. Cell Biol. 67, 863–885 (1975)PubMedCrossRefGoogle Scholar
  158. Snyderman, R., Phillips, J.K., Mergenhagen, S.E.: Biological activity of complement in vivo. Role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates. J. Exp. Med. 134, 1131–1143 (1971)PubMedCrossRefGoogle Scholar
  159. Snyderman, R., Pike, M.C., Blaylock, BX., Weinstein, P.: Effects of neoplasms on inflammation: depression of macrophage accumulation after tumor implantation. J. Immunol. 116, 585–589 (1976)PubMedGoogle Scholar
  160. Stamper, H.B., Woodruff, J.J.: Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144, 828–833 (1976)PubMedCrossRefGoogle Scholar
  161. Stamper, H., Woodruff, J.J.: An in vitro model of lymphocyte homing. I. Characterization of the interaction between thoracic duct lymphocytes and specialized highendothelial venules of lymph nodes. J. Immunol. 119, 772–780 (1977)PubMedGoogle Scholar
  162. Stecher, V.J., Sorkin, E.: Studies on chemotaxis. XII. Generation of chemotactic activity for polymorphonuclear leucocytes in sera with complement deficiencies. Immunology 16, 231–239 (1969)PubMedGoogle Scholar
  163. Steinberg, M.S.: Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–434 (1970)PubMedCrossRefGoogle Scholar
  164. Stossel, T.P., Hartwig, J.H.: Interactions of actin, myosin and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J. Cell Biol. 68, 602–619 (1976)PubMedCrossRefGoogle Scholar
  165. Tainer, J.A., Turner, S.R., Lynn, W.S.: New aspects of chemotaxis. Specific target-cell attraction by lipid and lipoprotein fractions of Escherichia coli chemotactic factor. Am. J. Pathol. 81, 401–410 (1975)PubMedGoogle Scholar
  166. Thorbecke, G.J., Maurer, P.H., Benacerraf, B.: The affinity of the reticulo-endothelial system for various modified serum proteins. Br. J. Exp. Pathol. 41, 190–197 (1960)PubMedGoogle Scholar
  167. Thorne, K.J.L, Oliver, R.C., Lackie, J.: Changes in the surface properties of rabbit polymorphonuclear leucocytes, induced by bacteria and bacterial endotoxin. J. Cell Sci. 27, 213–225 (1977)PubMedGoogle Scholar
  168. Toren, M., Goffinet, J.A., Kaplow, L.S.: Pulmonary bed sequestration of neutrophils during hemodialysis. Blood 36, 337–340 (1970)PubMedGoogle Scholar
  169. Turner, S.R., Lynn, W.S.: Lipid molecules as chemotactic factors. In: Leukocyte chemotaxis. Gallin, J.L, Quie, P.G. (eds.), pp. 289–298. New York: Raven Press 1978Google Scholar
  170. Turner, S.R., Tainer, J.A., Lynn, W.S.: Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature (London) 257, 680–681 (1975)CrossRefGoogle Scholar
  171. Unkeless, J.C., Gordon, S., Reich, E.: Secretion of plasminogen activator by stimulated macrophages. J. Exp. Med. 139, 834–850 (1974)PubMedCrossRefGoogle Scholar
  172. Van Epps, D.E., Tung, K.S.K.: Fucose-binding Lotus tetragonolobus lectin binds to human polymorphonuclear leukocytes and induces a chemotactic response. J. Immunol. 119, 1187–1189 (1977)Google Scholar
  173. Van Epps, D.E., Wiik, A., Garcia, M.L., Williams, R.C.: Enhancement of human neutrophil migration by prostaglandin E2. Cell Immunol. 37, 142–150 (1978)PubMedCrossRefGoogle Scholar
  174. Vasiliev, J.M., Gelfand, I.M., Domnina, L.V., Ivanova, O.Y., Komm, S.G., Olshevskaja, L.V.: Effect of colcemid on the locomotory behaviour of fibroblasts. J. Embryol. Exp. Morphol. 24, 625–640 (1970)PubMedGoogle Scholar
  175. Vejlens, G.: The distribution of leucocytes in the vascular system. Acta. Pathol. Microbiol. Scand. Suppl. 33 (1938)Google Scholar
  176. Wahl, S.M., Iverson, G.M., Oppenheim, J.J.: Induction of guinea pig B-cell lymphokine synthesis by mitogenic and non-mitogenic signals to Fc, Ig, and C3 receptors. J. Exp. Med. 140, 1631–1645 (1974)PubMedCrossRefGoogle Scholar
  177. Walther, B.T., Ohman, R., Roseman, S.: A quantitative assay for intercellular adhesion. Proc. Natl. Acad. Sci. USA 70, 1569–1573 (1973)PubMedCrossRefGoogle Scholar
  178. Ward, P.A., Cochrane, C.G., Muller-Eberhard, H.J.: The role of serum complement in chemotaxis of PMNs. J. Exp. Med. 122, 327–346 (1965)PubMedCrossRefGoogle Scholar
  179. Ward, P.A., Cochrane, C.G., Muller-Eberhard, H.J.: Further studies on the chemotactic factor of complement and its formation in vivo. Immunology 11, 141–153 (1966)PubMedGoogle Scholar
  180. Ward, P.A., Remold, H.G., David, J.R.: Leukotactic factor produced by sensitized lymphocytes. Science 163, 1079–1081 (1969)PubMedCrossRefGoogle Scholar
  181. Ward, P.A., Remold, H.G., David, J.R.: The production by antigen-stimulated lymphocytes of a leukotactic factor distinct from migration inhibitory factor. Cell. Immunol. 1, 162–174 (1970)PubMedCrossRefGoogle Scholar
  182. Ward, P.A., Offen, CD., Montgomery, J.R.: Chemoattractants of leukocytes with special reference to lymphocytes. Fed. Proc. 30, 1721–1724 (1971)PubMedGoogle Scholar
  183. Ward, P.A., Unanue, E.R., Goralnick, S.J., Schreiner, G.F.: Chemotaxis of rat lymphocytes. J. Immunol. 119, 416–421 (1977)PubMedGoogle Scholar
  184. Weisberger, A.S., Heinle, R.W., Hannah, R.: Transfusion of leukocytes and products of disintegrated leukocytes. Proc. Soc. Exp. Biol. Med. 70, 749–753 (1949)PubMedGoogle Scholar
  185. Wilkinson, P.C.: Recognition of protein structure in leukocyte chemotaxis. Nature (London) 244, 512–513 (1973)CrossRefGoogle Scholar
  186. Wilkinson, P.C.: Surface and cell membrane activities of leukocyte chemotactic factors. Nature (London) 251, 58–60 (1974a)CrossRefGoogle Scholar
  187. Wilkinson, P.C.: Chemotaxis and inflammation. Edinburgh: Churchill-Livingstone (1974b)Google Scholar
  188. Wilkinson, P.C.: Inhibition of leukocyte locomotion and chemotaxis by lipid-specific bacterial toxins. Nature (London) 255, 485–487 (1975)CrossRefGoogle Scholar
  189. Wilkinson, P.C.: Cellular and molecular aspects of chemotaxis of macrophages and monocytes. In: Immunobiology of the macrophage. Nelson, D.S. (ed.), pp. 349–365. New York: Academic Press 1976aGoogle Scholar
  190. Wilkinson, P.C.: Recognition and response in mononuclear and granular phagocytes. Clin. Exp. Immunol. 25, 355–366 (1976b)PubMedGoogle Scholar
  191. Wilkinson, P.C.: Action of sphingomyelinase C and other lipid-specific agents as inhibitors of Fc binding and locomotion in human leucocytes. Immunology 33, 407–412 (1977a)PubMedGoogle Scholar
  192. Wilkinson, P.C.: Succinyl bee venom melittin is a leukocyte chemotactic factor. Nature (London) 267, 713–714 (1977b)CrossRefGoogle Scholar
  193. Wilkinson, P.C.: Leucocyte chemotaxis. In: Taxis and behaviour. Hazelbauer, G.L. (ed.), pp. 293–329. London: Chapman-Hall 1978Google Scholar
  194. Wilkinson, P.C.: Synthetic peptide chemotactic factors for neutrophils: the range of active peptides, their efficacy and inhibitory activity, and susceptibility of the cellular response to enzymes and bacterial toxins. Immunology 36, 579–588 (1979)PubMedGoogle Scholar
  195. Wilkinson, P.C., Allan, R.B.: Assay systems for measuring leukocyte locomotion. An overview. In: Leukocyte chemotaxis. Gallin, J.I., Quie, P.G. (eds.), pp. 1–24. New York: Raven Press 1978aGoogle Scholar
  196. Wilkinson, P.C., Allan, R.B.: Binding of protein chemotactic factors to the surfaces of neutrophil leukocytes and its modification with lipid-specific bacterial toxins. Mol. Cell Biochem. 20, 25–40 (1978b)PubMedCrossRefGoogle Scholar
  197. Wilkinson, P.C., Allan, R.B.: Chemotaxis of neutrophil leucocytes towards substratumbound protein attractants. Exp. Cell. Res. 117, 403–412 (1978c)PubMedCrossRefGoogle Scholar
  198. Wilkinson, P.C., McKay, I.C.: Recognition in leucocyte chemotaxis. Studies with structurally modified proteins. Antibiot. Chemother. 19, 421–441 (1974)PubMedGoogle Scholar
  199. Wilkinson, P.C., Roberts, J.A., Russell, R.J., McLoughlin, M.: Chemotaxis of mitogen-activated human lymphocytes and the effects of membrane-active enzymes. Clin. Exp. Immunol. 25, 280–287 (1976)PubMedGoogle Scholar
  200. Wilkinson, P.C., Parrott, D.M.V., Russell, R.J., Sless, F.: Antigen-induced locomotor responses in lymphocytes. J. Exp. Med. 145, 1158–1168 (1977)PubMedCrossRefGoogle Scholar
  201. Williams, L.T., Snyderman, R., Pike, M.C., Lefkowitz, R.J.: Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 74, 1204–1208 (1977)PubMedCrossRefGoogle Scholar
  202. Wissler, J.H.: Chemistry and biology of the anaphylatoxin related serum peptide system. I. Purification, crystallization and properties of classical anaphylatoxin from rat serum. Eur. J. Immunol. 2, 73–83 (1972a)PubMedCrossRefGoogle Scholar
  203. Wissler, J.H.: Chemistry and biology of the anaphylatoxin-related serum peptide system. II. Purification, crystallization and properties of cocytotaxin, a basic peptide from rat serum. Eur. J. Immunol. 2, 84–89 (1972b)PubMedCrossRefGoogle Scholar
  204. Wissler, J.H., Stecher, V.J., Sorkin, E.: Chemistry and biology of the anaphylatoxin-related serum peptide system. III. Evaluation of leucotactic activity as a property of a new peptide system with classical anaphylatoxin and cocytotaxin as components. Eur. J. Immunol. 2, 90–96 (1972a)PubMedCrossRefGoogle Scholar
  205. Wissler, J.H., Stecher, V.J., Sorkin, E.: Biochemistry and biology of a leucotactic binary peptide system related to anaphylatoxin. Int. Arch. Allergy 42, 722–747 (1972b)PubMedCrossRefGoogle Scholar
  206. Woodruff, J.J., Gesner, B.M.: Lymphocytes: circulation altered by trypsin. Science 161, 176–178 (1968)PubMedCrossRefGoogle Scholar
  207. Woodruff, J.J., Gesner, B.M.: The effect of neuraminidase on the fate of transfused lymphocytes. J. Exp. Med. 129, 551–569 (1969)PubMedCrossRefGoogle Scholar
  208. Woodruff, J.J., Katz, I.M., Lucas, L.E., Stamper, H.B.: An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized high-endothelial venules of lymph nodes. J. Immunol. 119, 1603–1610 (1977)PubMedGoogle Scholar
  209. Wright, D.G., Gallin, J.I.: A functional differentiation of human neutrophil granules: generation of C5a by a specific (secondary) granule product and inactivation of C5a by azurophil (primary) granule products. J. Immunol. 119, 1068–1076 (1977)PubMedGoogle Scholar
  210. Wright, D.G., Bralove, D.A., Gallin, J.I.: The differential mobilization of human neutrophil granules. Effects of phorbol myristate acetate and ionophore A23187. Am. J. Pathol. 87, 273–284 (1977a)PubMedGoogle Scholar
  211. Wright, D.G., Kirkpatrick, C.H., Gallin, J.I.: Effects of levamisole on normal and abnormal leukocyte locomotion. J. Clin. Invest. 59, 941–950 (1977b)PubMedCrossRefGoogle Scholar
  212. Wünschmann-Henderson, B., Horwitz, D.L., Astrup, T.: Release of plasminogen activator from viable leukocytes of man, baboon, dog and rabbit. Proc. Soc. Exp. Biol. Med. 141, 634–638 (1972)PubMedGoogle Scholar
  213. Yamada, K.M., Yamada, S.S., Pastan, I.: Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc. Natl. Acad. Sci. USA 73, 1217–1221 (1976)PubMedCrossRefGoogle Scholar
  214. Zigmond, S.H.: Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature (London) 249, 450–452 (1974)CrossRefGoogle Scholar
  215. Zigmond, S.H.: Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)PubMedCrossRefGoogle Scholar
  216. Zigmond, S.H.: Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77, 269–287 (1978)PubMedCrossRefGoogle Scholar
  217. Zigmond, S.H., Hirsch, J.G.: Leukocyte locomotion and chemotaxis. New methods for evaluation and demonstration of cell-derived chemotactic factor. J. Exp. Med. 137, 387–410 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Peter C. Wilkinson
  • John M. Lackie

There are no affiliations available

Personalised recommendations