Kallikrein in Exocrine Glands

  • K. Bhoola
  • M. Lemon
  • R. Matthews
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 25 / 1)

Abstract

The earliest citations of a hypotensive substance (urohypotensine) resembling kallikrein appeared in the publications of Abelous and Bardier (1908, 1909). Later, similar hypotensive activity was observed by Pribram and Hernheiser (1920) in urine and by Migay and Petroff (1925) in pancreatic juice. About 50 years ago, attempts by Frey and Kraut to locate the source of a hypotensive macromolecule (F-Stoff) which they had characterized in urine (Frey and Kraut, 1928) and in serum (Kraut et al., 1928) led them to the discovery of a similar substance in a pancreatic cyst (Frey et al., 1930). Mammalian pancreas was subsequently found to contain such large amounts of F-Stoff that it was believed to be the site of origin of the hypotensive activity observed by them in urine and blood. This new substance was called “Kreislaufhormon” because of its marked vascular effects. F-Stoff was renamed “kallikrein,” the term being derived from the Greek word Kallikreas meaning pancreas. Later experiments indicated that pancreatic kallikrein was primarily released into the pancreatic juice in a precursor form which was readily activated by duodenal enterokinase (Frey and Werle, 1933; Werle, 1934). This finding spurred Werle and colleagues to search for this enzyme in other glandular tissues. Investigation of salivary tissue resulted in the identification of kallikrein in the submandibular glands of a number of mammals.

Keywords

Sucrose Testosterone Trypsin Luminal Maltose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelous, J. E, Bardier, E.: Action hypertensive de l’urine humaine normale. C.R. Soc. Biol. (Paris) 64,848–849 (1908)Google Scholar
  2. Abelous, J. E, Bardier, E.: Les substances hypotensives de l’urine humaine normale. C.R. Soc. Biol. (Paris) 66, 511–512 (1909)Google Scholar
  3. Adetuyibi, A, Mills, I.H.: Relationship between urinary kallikrein and renal function, hypertension, and excretion of sodium and water in man. Lancet 1972/II,203–207Google Scholar
  4. Albano, Janet, Bhoola, K.D, Croker, M, Harvey, R.F, Heap, P.F.: Stimulus-secretion coupling in the pancreas: role of cyclic GMP in modulating enzyme secretion produced by acetylcholine and cholecystokinin-pancreozymin. J. Physiol. (Lond.) 258, 87–88P (1976a)Google Scholar
  5. Albano, Janet, Bhoola, K.D, Harvey, R.F.: Cholecystokinin-pancreozymin and acetylcholinemediated increase in enzyme secretion and cyclic GMP levels in the pancreas. In: Stimulussecretion coupling in the gastrointestinal tract. Case, R.M, Goebell, H. (eds.), pp. 227–231. Lancaster: MTP 1975Google Scholar
  6. Albano, Janet, Bhoola, K.D, Harvey, R.F.: Intracellular messenger role of cyclic GMP in exocrine pancreas. Nature (Lond.) 262,404–406 (1976b)Google Scholar
  7. Albano, Janet, Bhoola, K.D, Heap, P.F, Lemon, M.J.C.: Stimulus-secretion coupling: Role of cyclic AMP, cyclic GMP, and calcium in mediating enzyme (kallikrein) secretion in the submandibular gland. J. Physiol. (Lond.) 258,631–658 (1976c)Google Scholar
  8. Albano, Janet, Bhoola, K.D, Kingsley, Gabrielle: The control of cyclic GMP by calcium, ionophore A 23187, potassium and acetylcholine in enzyme-secreting pancreatic slices. J. Physiol. (Lond.) 267, 35–36P (1977)Google Scholar
  9. Angelleti, R.A, Angeletti, P.U, Calissano, P.: Testosterone induction of estro-proteolytic activity in the mouse submaxillary gland. Biochim. Biophys. Acta 139, 372–381 (1967)Google Scholar
  10. Barlow, R. B, Berry, K. J, Glenton, P. A. M, Nikolaou, N. M, Soh, K. S.: A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 °C and in ileum at 29 °C and 37 °C. Br. J. Pharmacol. 58,613–620 (1976)PubMedGoogle Scholar
  11. Barton, S, Karpinski, E, Moriwaki, C, Schachter, M.: Sialotonin: Vasopressor substance in saliva and submandibular gland of the cat. J. Physiol. (Lond.) 261, 523–533 (1976)Google Scholar
  12. Barton, S, Saunders, E.J, Schachter, M, Uddin, M.: Autonomic nerve stimulation, kallikrein content and acinar cell granules of the cat’s submandibular gland. J. Physiol. (Lond.) 251, 363–369 (1975)Google Scholar
  13. Beilenson, S, Schachter, M, Smaje, L. H.: Secretion of kallikrein and its role in vasodilatation in the submaxillary gland. J. Physiol. (Lond.) 199,303–317 (1968)Google Scholar
  14. Beraldo, W.T, Siqueira, G, Rodrigues, J. A. A, Machado, C.R.S.: Changes in kallikrein activity of rat submandibular gland during postnatal development. Ad. Exp. Med. Biol. 21, 239–249 (1972)Google Scholar
  15. Bhoola, K.D.: Intracellular distribution of submaxillary kallikrein. J. Physiol. (Lond.) 196, 431–445 (1968)Google Scholar
  16. Bhoola, K.D.: Comparative study of the subcellular distribution of submaxillary kallikrein. Biochem. Pharmacol. 18,1252–1254 (1969)PubMedGoogle Scholar
  17. Bhoola, K.D.: Kallikrein granules in the submaxillary gland and pancreas. Adv. Exp. Med. Biol. 8,615–619(1970)Google Scholar
  18. Bhoola, K.D, Cogdell, R.: Electrophoresis of isolated secretory granules from the submaxillary gland. Br. J. Pharmacol. 50,419–423 (1974)PubMedGoogle Scholar
  19. Bhoola, K.D, Dorey, Gundula: Isolation of kallikrein-containing granules from the pancreas and submaxillary gland of the cat. J. Physiol. (Lond.) 203, 59–60P (1969)Google Scholar
  20. Bhoola, K.D, Dorey, Gundula: Intracellular localization of kallikrein, trypsin, and amylase in dog pancreas. J. Physiol. (Lond.) 214, 553–570 (1971a)Google Scholar
  21. Bhoola, K.D, Dorey, Gundula: Kallikrein, trypsin-like proteases, and amylase in mammalian submaxillary glands. Br. J. Pharmacol. 43,784–793 (1971b)Google Scholar
  22. Bhoola, K.D, Dorey, Gundula, Jones, C.W.: The influence of androgens on enzymes (chymotrypsin and trypsin-like proteases, renin, kallikrein, and amylase) and on cellular structure of the mouse submaxillary gland. J. Physiol. (Lond.) 235, 503–522 (1973)Google Scholar
  23. Bhoola, K.D, Dorey, Gundula, Jones, C.W.: The ontogenic development and action of sex hormones on kallikrein and other proteases in the submaxillary gland. In: Chemistry and biology of the kallikrein-kinin system in health and disease. Pisano, J. J, Austen, K. F. (eds.), pp. 365–373. Fogarty Internat. Center Proc. No. 27. Washington: U.S. Gov. Printing Office 1977Google Scholar
  24. Bhoola, K.D, Heap, P.F.: Properties of kallikrein-containing granules isolated from the submaxillary gland of the guinea-pig. J. Physiol. (Lond.) 210,421–432 (1970)Google Scholar
  25. Bhoola, K.D, Lemon, M.J.C.: Studies on the activation of adenylate cyclase from the submaxillary gland and pancreas. J. Physiol. (Lond.) 232, 83–84P (1973)Google Scholar
  26. Bhoola, K.D, Lemon, M.J.C.: Studies on enzyme secretion and cyclic AMP in the submaxillary gland and pancreas. J. Physiol. (Lond.) 245,121–122P (1975)Google Scholar
  27. Bhoola, K.D, Lemon, M.J.C., Matthews, R.W.: Immunofluorescent localization of kallikrein in guinea-pig submandibular gland. J. Physiol. (Lond.) 272,28–29P (1977)Google Scholar
  28. Bhoola, K.D, Matthews, R.W, Roberts, Fiona: Time-course of changes in salivary kallikrein during the menstrual cycle. J. Physiol. (Lond.) 273, 36P (1977)Google Scholar
  29. Bhoola, K.D, McNicol, M.W, Oliver, S, Foran, J.: Changes in salivary enzymes in sarcoidosis. N. Engl. J. Med. 281, 877–879 (1969)PubMedGoogle Scholar
  30. Bhoola, K.D, Morley, J, Schachter, M, Smaje, L. H.: Vasodilatation in the submaxillary gland of the cat. J. Physiol. (Lond.) 179,172–184 (1965)Google Scholar
  31. Bhoola, K.D, Ogle, C.W.: Subcellular localisation of kallikrein, amylase, and acetylcholine in the submaxillary gland of the guinea-pig. J. Physiol. (Lond.) 184,663–672 (1966)Google Scholar
  32. Brandtzaeg, P, Gautvik, K.M, Nustad, K, Pierce, J.V.: Rat submandibular gland kallikreins: Purification and cellular localization. Br. J. Pharmacol. 56,155–167 (1976)PubMedGoogle Scholar
  33. Bunch, J.L.: On the changes in the volume of the submaxillary gland during activity. J. Physiol. (Lond.) 26,1–29 (1900)Google Scholar
  34. Burnstock, G.B.: Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972)PubMedGoogle Scholar
  35. Caramia, F.: Ultrastructure of mouse submaxillary gland. I. Sexual differences. J. Ultrastruct. Res. 16, 505–523 (1966a)Google Scholar
  36. Caramia, F.: Ultrastructure of mouse submaxillary gland. II. Effect of castration in the male. J. Ultrastruct. Res. 16, 524–536 (1966b)Google Scholar
  37. Carvalho, I.F, Diniz, C.R.: Cellular localization of renin and kininogen. Ciencia Cult (Sao Paulo) 16,263(1964)Google Scholar
  38. Chiang, T.S, Erdös, E.G., Miwa, I, Tague, L.L, Coulson, J. J.: Isolation from a salivary gland of granules containing renin and kallikrein. Circulation Res. 23,507–517 (1968)PubMedGoogle Scholar
  39. Darke, A. C, Smaje, L. H.: Dependence of functional vasodilation in the cat submaxillary gland upon stimulation frequency. J. Physiol. (Lond.) 226,191–203 (1972)Google Scholar
  40. Dorey, Gundula, Bhoola, K.D.: II. Ultrastructure of duct cell granules in mammalian submaxillary glands. Z. Zellforsch. 126,335–347 (1972)PubMedGoogle Scholar
  41. Douglas, W.W.: Stimulus-secretion coupling. The concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34,451–474 (1968)PubMedGoogle Scholar
  42. Eichner, H, Eichner, V, Fiedler, F, Hochstrasser, K.: Zum Sekretionsverhalten der BAEEEsterase (Kallikrein) im gesunden menschlichen Parotissekret unter fraktionierter Abnahme bei Ruhe und Reiz. Laryng. Rhinol. 55,239–244 (1976)Google Scholar
  43. Ekfors T.O, Hopsu-Havu, V.K, Malmiharju, T.: Increased vascular permeability caused by the trypsin-like enzymes purified from rat submandibular gland. Acta Physiol. Scand. 75, 157–160(1969)PubMedGoogle Scholar
  44. Ekfors, T.O, Malmiharju, T, Hopsu-Havu, V. K.: Isolation of six trypsin-like esteropeptidase from the mouse submandibular gland. Enzymologia 43,151–165 (1972)PubMedGoogle Scholar
  45. Ekfors, T.O, Malmiharju, T, Riekkinen, P.J, Hopsu-Havu, V.K.: The depressor activity of trypsin-like enzymes purified from rat submandibular gland. Biochem. Pharmacol. 16, 1634–1639 (1967a)Google Scholar
  46. Ekfors, T.O, Riekkinen, P.J, Malmiharju, T, Hopsu-Havu, V.K.: Four isozymic forms of a peptidase resembling kallikrein purified from the rat submandibular gland. Hoppe Seylers Z. Physiol. Chem. 348,111–118 (1967b)Google Scholar
  47. Emmelin, N, Henriksson, K. G.: Depressor activity of saliva after section of the chorda tympani. Acta Physiol. Scand. 30,75–82 (1953)Google Scholar
  48. Erdös, E. G, Tague, L. L, Miwa, I.: Kallikrein in granules of the submaxillary gland. Biochem. Pharmacol. 17,667–674 (1968)PubMedGoogle Scholar
  49. Feldberg, W, Guimarais, J.A.: Some observations on salivary secretion. J. Physiol. (Lond.) 85, 15–35(1935)Google Scholar
  50. Ferreira, S.H, Smaje, L.H.: Bradykinin and functional vasodilatation in the salivary gland. Br. J. Pharmacol. 58,201–209 (1976)PubMedGoogle Scholar
  51. Fiedler, F, Werle, E.: Vorkommen zweier Kallikreinogene im Schweinpankreas und Automation der Kallikrein-und Kallikreinogenbestimmung. Hoppe Seylers Z. Physiol. Chem. 348, 1087–1089 (1967)PubMedGoogle Scholar
  52. Forrell, M. M.: Pancreatic kallikrein in physiological and pathological conditions. In: Polypeptides which affect smooth muscles and blood vessels. Schachter, M. (ed.), pp. 247–252. Oxford: Pergamon Press 1960Google Scholar
  53. Frey, E. K, Kraut, H.: Ein neues Kreislaufhormon und seine Wirkung. Naunyn Schmiedebergs Arch. Pharmak. 133,1–56 (1928)Google Scholar
  54. Frey, E. K, Kraut, H, Schultz, F.: Über eine neue innersekretorische Funktion des Pankreas. Naunyn Schmiedebergs Arch. Pharmakol. 158,334–347 (1930)Google Scholar
  55. Frey, E.K, Werle, E.: Kallikrein im inneren und aÜber en Pankreassekret. Klin. Wochenschr. 12, 600–601 (1933)Google Scholar
  56. Garrett, J.R.: The innervation of salivary glands. III. The effects of certain experimental procedures on cholinesterase-positive nerves in glands of the cat. J1 R. microsc. Soc. 86, 1–13 (1966a)Google Scholar
  57. Garrett, J.R.: The innervation of salivary glands. IV. The effects of certain experimental procedures on the ultrastructure of nerves in glands of the cat. J1 R. microsc. Soc. 86, 15–31 (1966b)Google Scholar
  58. Garrett, J.R, Kidd, A.: Effects of nerve stimulation and denervation on secretory material in submandibular striated duct cells of cats, and the possible role of these cells in the secretion of salivary kallikrein. Cell. Tissue Res. 161,71–84 (1975)PubMedGoogle Scholar
  59. Gautvik, K.: Studies on vasodilator mechanisms in the submandibular salivary gland of cats. Universitetsforlaget 1970Google Scholar
  60. Gautvik, K. M, Berg-Oerstadvik, T, Nustad, K.: Role of kallikrein-kinin system in glandular secretion. In: Chemistry and biology of the kallikrein-kinin system in health and disease. Pisano, J.J, Austen, K.F. (eds.), pp. 335–357. Fogarty Internat. Center Proc. No. 27. Washington: U.S. Gov. Printing Office 1977Google Scholar
  61. Gautvik, K. M, Kriz, M.: Release of kallikrein from isolated cellular organelles of the rat submandibular salivary gland. Acta Physiol. Scand. 92,95–102 (1974)PubMedGoogle Scholar
  62. Gautvik, K.M, Kriz, M, Lund-Larsen, K, Nustad, K.: Control of kallikrein secretion from salivary glands. In: Secretory mechanisms of exocrine glands. Thorn, N.A, Pettersen, O. (eds.), pp. 168–182. Copenhagen: Munksgaard 1974Google Scholar
  63. Geipert, F, Erdös, E. G.: Properties of granules that contain kallikrein and renin. Experientia 27, 912–913 (1971)PubMedGoogle Scholar
  64. Heidenhain, R.: Über die Wirkung einiger Gifte auf die Nerven der glandula submaxillaris. Pflugers Arch. 5,309–318 (1972)Google Scholar
  65. Hickson, J.C.D.: The secretion of pancreatic juice in response to stimulation of the vagus nerves in the pig. J. Physiol. (Lond.) 206,275–297 (1970a)Google Scholar
  66. Hickson, J.C.D.: The secretory and vascular response to nervous and hormonal stimulation in the pancreas of the pig. J. Physiol. (Lond.) 206,299–322 (1970b)Google Scholar
  67. Hilton, S.M.: The physiological role of glandular kallikreins. In: Handbook of experimental pharmacology. Vol. XXV: Bradykinin, kallidin, and kallikrein. Erdös, E.G. (ed.), pp. 389–399 Berlin, Heidelberg, New York: Springer 1970Google Scholar
  68. Hilton, S.M, Jones, M.: The role of plasma kinin in functional vasodilatation in the pancreas. J. Physiol. (Lond.) 795, 521–533 (1968)Google Scholar
  69. Hilton, S. M, Lewis, G. P.: The cause of the vasodilatation accompanying activity in the submandibular gland. J. Physiol. (Lond.) 128,235–248 (1955)Google Scholar
  70. Hilton, S.M, Lewis, G.P.: The relationship between glandular activity, bradykinin formation and functional vasodilatation in the submandibular gland. J. Physiol. (Lond.) 134, 471–483 (1956)Google Scholar
  71. Hojima, Y, Maranda, B, Moriwaki, C, Schachter, M.: Direct evidence for the location of kallikrein in the striated ducts of the cat’s submandibular gland by the use of specific antibody. J. Physiol. (Lond.) 268,193-801 (1977)Google Scholar
  72. Jacobsen, S.: Substrates for plasma kinin-forming enzymes in rat and guinea-pig plasma. Br. J. Pharmacol. 28,64–72 (1966)Google Scholar
  73. Jacoby, F, Leeson, C.R.: The post-natal development of the rat submandibular gland. J. Anat. 93,201–216(1959)PubMedGoogle Scholar
  74. Junqueira, L.C, Fajer, A, Rabinovitch, M, Frankenthal, L.: Biochemical and histochemical observations on the sexual dimorphism of mice submaxillary glands. J. Cell. Comp. Physiol. 34,129–135 (1949)Google Scholar
  75. Kraut, H, Frey, E. K, Bauer, E.: Über ein neues Kreislaufhormon. II. Mitteilung. Hoppe Seylers Z. Physiol. Chem. 175,97 (1928)Google Scholar
  76. Kraut, H, Frey, E. K, Werle, E.: Der Nachweis eines Kreislaufhormons in der Pankreasdriise. IV. Mitteilung Über dieses Kreislaufhormon. Hoppe Seylers Z. Physiol. Chem. 189, 97–106 (1930)Google Scholar
  77. Lacassagne, A.: Dimorphisme sexuel de la glande sous-maxillaire chez la souris. C.R. Soc. Biol. (Paris) 133,180–181 (1940)Google Scholar
  78. Lemon, M.J.C, Bhoola, K.D.: Excitation-secretion coupling in exocrine glands: Properties of cyclic AMP phosphodiesterase and adenylate cyclase from the submaxillary gland and pancreas. Biochim. Biophys. Acta 385,101–113 (1975)PubMedGoogle Scholar
  79. Marin-Grez, M, Cottone, P, Carretero, O. A.: Evidence for an involvement of kinins in regulation of sodium excretion. Am. J. Physiol. 223,794–796 (1972)PubMedGoogle Scholar
  80. Matthews, E. K.: The ionogenic nature of the granule surface. In: Subcellular organisation and function in endocrine tissues. Heller, H, Lederis, K. (eds.), pp. 959–968. Cambridge: University Press 1971Google Scholar
  81. Matthews, R.W.: Measurement of protein synthesis in the rat submandibular gland using tritiated tryptophane. Arch. Oral. Biol. 19,985–988 (1974)PubMedGoogle Scholar
  82. Matthews, R.W, Beynon, A.D.G, Tonge, C.H.: A preliminary study into the significance of the granular convoluted tubule of the rat submandibular gland. J. Dent. Res. 50, 677 (1971)Google Scholar
  83. Matthews, R.W, Bhoola, K.D.: Influence of sympathetic nerve stimulation on the kallikrein content and secretory granules in the guinea-pig submandibular gland. J. Dent. Res. 55, D123 (1976)Google Scholar
  84. Matthews, R.W, Bhoola, K.D.: Autonomic control of kallikrein and amylase in guinea-pig submandibular glands. J. Dent. Res. 56, D130 (1977)Google Scholar
  85. Migay, T.I, Petroff, J.R.: Untersuchungen über die Wirkung des Pancreassaftes auf den Organismus bei parenteraler Einfuhrung. Z. Gesamte Exp. Med. 36,457 (1923)Google Scholar
  86. Mills, I.H, Ward, P. E.: The relationship between kallikrein and water excretion and the conditional relationship between kallikrein and sodium excretion. J. Physiol. (Lond.) 246, 695–707 (1975)Google Scholar
  87. Moriwaki, C, Hojima, Y, Schachter, M.: Purification of kallikrein from cat submaxillary gland. Adv. Exp. Med. Biol. 70,151–156 (1975)Google Scholar
  88. Oliver, G, Schafer, E.A.: On the physiological action of extracts of pituitary body and certain other glandular organs. J. Physiol. 18,277 (1895)PubMedGoogle Scholar
  89. Oliver, W.J, Gross, F.: Effect of testerone and duct ligation on submaxillary renin-like principle. Am. J. Physiol. 213,341–349 (1967)PubMedGoogle Scholar
  90. Orstavik, T. B, Brandtzaeg, P, Nustad, K, Halvorsen, K. M.: Cellular localization of kallikreins in rat submandibular and sublingual salivary glands. Immunofluorescent tracing related to histochemical characteristics. Acta Histochem. (Jena) 54,183–192 (1975)Google Scholar
  91. Palm, S, Schill, W.B, Wallner, O, Prinzen, R, Fritz, H.: Occurrence of components of the kallikrein-kinin system in human genital tract secretions and their possible function in stimulation of sperm motility and migration. Adv. Exp. Med. Biol. 70,271–280 (1975)Google Scholar
  92. Pisano, J. J, Geller, R, Margolius, H. S, Keiser, H. S.: Urinary kallikrein in hypertensive rats. Acta Physiol. Lat. Am. 24,73–78 (1974)Google Scholar
  93. Poulsen, J. H.: Two phases of chorda-lingual induced vasodilatation in the cat’s submandibular gland during prolonged perfusion with Locke solution. J. Physiol. (Lond.) 253,19–94 (1975)Google Scholar
  94. Pribram, H, Hernheiser, G.: Zur Kenntnis der adialysablen Bestandteile des Menschenharnes. Biochem. Z. 111, 30 (1920)Google Scholar
  95. Rawlinson, H.E.: Cytological changes after autonomic and adrenalin stimulation of the cat’s submaxillary gland. Anat. Rec. 57,289–296 (1933)Google Scholar
  96. Rawlinson, H. E.: The changes in the cells of the striated ducts of the cat’s submaxillary gland after autonomic stimulation and nerve section. Anat. Rec. 63,295–313 (1935) ai]Schachter, M.: Kallikreins and kinins. Physiol. Rev. 49, 509–547 (1969)Google Scholar
  97. Schachter, M.: Vasodilatation in the submaxillary gland of the cat, rabbit, and sheep. In: Handbook of experimental pharmacology. Vol. XXV: Bradykinin, kallidin, and kallikrein. Erdös, E.G. (ed.), pp. 400–408. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  98. Schachter, M, Barton, S.: Recent observations on salivary, renal, and coagulating gland kininogenases. In: Chemistry and biology of the kallikrein-kinin system in health and disease. Pisano, J.J, Austen, K.F. (eds.), pp. 359–364. Fogarty Internat. Center Proc. No. 27. Washington: U.S. Gov. Printing Office 1977Google Scholar
  99. Schachter, M, Barton, Susanne, Uddin, M, Karpinski, E, Saunders, E.J.: Effect of nerve stimulation, denervation, and duct ligation on kallikrein content and duct cell granules of the cat’s submandibular gland. Experientia (1977)Google Scholar
  100. Scott, B. L, Pease, D. C.: Electron microscopy of the salivary and lacrimal glands of the rat. Am. J. Anat. 704,115–140 (1959)Google Scholar
  101. Siebert, G, Werle, E, Jung, G, Maier, L.: Intracellular Verteilung von Kallikrein und von Bradykininogen in Schweinepankreas. Biochem. Z. 326,420–423 (1955)PubMedGoogle Scholar
  102. Siekevitz, P, Palade, G. E.: A cytochemical study on pancreas of the guinea-pig. I. Isolation and enzymic activities of cell fractions. J. Biophys. Biochem. Cytol. 4,203–217 (1958)PubMedGoogle Scholar
  103. Smaje, L. H.: Spontaneous secretion in the rabbit submaxillary gland. In: Secretory mechanism of exocrine glands. Alfred Benzon Symposium VII. Thorn, N.A, Peterson, O.H. (eds.), pp. 608–625. Copenhagen: Munksgaard 1974Google Scholar
  104. Sreebny, L.M, Meyer, J.: Hormones, inanition, and salivary glands. In: Salivary glands and their secretions. Sreebny, L.M, Meyer, J. (eds.), pp. 83–102. Oxford: Pergamon Press 1964Google Scholar
  105. Thulin, A.: Motor and secretory effects of autonomic nerves and drugs in the rat submandibular gland. Acta Physiol. Scand. 92,217–223 (1974)PubMedGoogle Scholar
  106. Trautschold, I, Werle, E, Schmal, A, Hendrikoff, N.G.: Die hormonelle Beeinflussung des Isorenin-Spiegels der Submandibularisdriise der weiBen Maus und zur Lokalisierung des Enzymes in der Druse. Hoppe Seylers Z. Physiol. Chem. 344,232–243 (1966)PubMedGoogle Scholar
  107. Ungar, G, Parrot, J. L.: Sur la presence de la callicreine dans la salive, et la possibilite de son intervention dans la transmission chimique de l’influx nerveux. C.R. Soc. Biol. (Paris) 122, 1052–1055(1936)Google Scholar
  108. Vogel, R, Werle, E.: Kallikrein inhibitors. In: Handbook of experimental pharmacology. Vol. XXV: Bradykinin, kallidin, and kallikrein. Erdös, E.G. (ed.), pp. 213–249. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  109. Webster, Marion E.: Kallikreins in glandular tissues. In: Handbook of experimental pharmacology. Vol. XXV: Bradykinin, kallidin, and kallikrein. Erdös, E.G. (ed.), pp. 131–155. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  110. Werle, E.: Zur Kenntnis des Haushalts des Kallikreins. Biochem. Z. 269,415–434 (1934)Google Scholar
  111. Werle, E.: Über die Wirkung des Kallikreins auf den isolierten Darm und Über eine neue darmkontrahierende Substanz. Biochem. Z. 281,217–233 (1937)Google Scholar
  112. Werle, E.: Kallikrein, kallidin, and related substances. In: Polypeptides which affect smooth muscles and blood vessels. Schachter, M. (ed.), pp. 199–209. Oxford: Pergamon Press 1960Google Scholar
  113. Werle, E, Berek, U.: Zur Kenntnis des Kallikreins. Z. Angew. Chem. 60A, 53 (1948)Google Scholar
  114. Werle, E, Eckey, P.: Vergleichende Untersuchung über Kallikrein und Trypsinkonzentration im menschlichen Duodenalsaft. Biochem. Z. 269,435–440 (1934)Google Scholar
  115. Werle, E, Forell, M. M, Maier, L.: Zur Kenntnis der blutdrucksenkenden Wirkung des Trypsins. Naunyn Schmiedebergs Arch. Pharmakol. 225, 369 (1955)Google Scholar
  116. Werle, E, Gotze, W, Keppler, A.: Über die Wirkung des Kallikreins auf den isolierten Darm und über eine neue darmkontrahierende Substanz. Biochem. Z. 289,217–233 (1937)Google Scholar
  117. Werle, E, Grunz, M.: Zur Kenntnis der darmkontrahierenden uteruserregenden und blutdrucksenkenden Substanz DK. Biochem. Z. 301,429–436 (1939)Google Scholar
  118. Werle, E, Korsten, H.: Das Kallikreingehalt des Harns, des Speichels und des Blutes bei Gesunden und Kranken. Z. Gesamte Exp. Med. 10103,153 (1938)Google Scholar
  119. Werle, E, Rosen, P.: Über das Vorkommen von Kallikrein in den Speicheldriisen und im Mundspeichel. Biochem. Z. 286,213–219 (1936)Google Scholar
  120. Werle, E, Roden, P.: Über das Vorkommen von Kallikrein in den Speicheldriisen und im Mundspeichel und über eine blutdrucksteigernde Substanz in der Submaxillarisdruse des Hundes. Biochem. Z.,301,328–337 (1939)Google Scholar
  121. Werle, E, Urhahn, K.: Über den Aktivitatszustand des Kallikreins in der Bauchspeicheldruse. Biochem. Z. 304,387–396 (1940)Google Scholar
  122. Werle, E, Vogel, R, Goldel, L. F.: Über ein blutdrucksteigerndes Prinzip in Extrakten aus der Glandula submaxillaris der weißen Maus. Naunyn Schmiedebergs Arch. Exp. Path. Pharmakol. 230,236 (1957)Google Scholar
  123. Wotman, S, Greenbaum, L, Mandel, I.: Studies on human salivary kallikrein. Biochem. Pharmacol. 18,1261–1264(1969)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • K. Bhoola
  • M. Lemon
  • R. Matthews

There are no affiliations available

Personalised recommendations