Advertisement

Synergetics pp 107-113 | Cite as

Chaos and Strange Attractors in Chemical Kinetics

  • O. E. Rössler
Part of the Springer Series in Synergetics book series (SSSYN, volume 3)

Abstract

Open chemical systems of two variables, one of which may be temperature, can show multistability and oscillations as is well-known. If the right-hand sides of the equations are of a simple structure (either polynomials of low degree or Michaelis-Mentan type rational functions), only a small finite number of steady states and/or limit cycles are possible. Allowing complex transcendental functions on the right-hand sides — which is hard to realize chemically — , at most a countable number of steady states and limit cycles is possible generically.

Keywords

Chaotic Attractor Fractal Line Strange Attractor Singular Solution Lorenz Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartwright, M.L., J.E. Littlewood (1945). J.Lond.Math.Soc. 20, 180–189.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Rössler, O.E. (1978). Proc. AMS-Siam Summer School Nonlinear Oscillations in Biology, Salt Lake City, June.Google Scholar
  3. 3.
    Smale, S. (1967). Bull.Amer.Math. Soc. 73, 747–817.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Poincarê, H. (1899). Les Méthodes Nouvelles de la Mécanique Céleste, Vols. 1–3. Reprinted Dover: N.Y. 1957.Google Scholar
  5. 5.
    Ruelle, D., F. Takens (1971). Commun. Math. Phys. 20, 167–192.MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    May, R.M. (1974). Science 186, 645–647.ADSCrossRefGoogle Scholar
  7. 7.
    Lorenz, E.N. (1963). J.Atmos.Sci. 20, 130–141.ADSCrossRefGoogle Scholar
  8. 8.
    Winfree, A.T. (1973). Science _181, 937–939.ADSCrossRefGoogle Scholar
  9. 9.
    Winfree, A.T. (1975). Personal Communication.Google Scholar
  10. 10.
    Rössler, O.E., P.J. Ortoleva (1977). Springer Lecture Notes in Biomathematics 21, 67–73.Google Scholar
  11. 11.
    Rössler, O.E. (1976). Z.Naturforsch. 31 a, 259–264.ADSGoogle Scholar
  12. 12.
    Rössler, O.E. (1978). Ann.N.Y.Acad.Sci. Tin press).Google Scholar
  13. 13.
    Rössler, O.E. (1976). Phys.Lett..57 A, 397–398.CrossRefGoogle Scholar
  14. 14.
    Rössler, O.E. (1977). Bull.Math.Biol. 39, 274–289.Google Scholar
  15. 15.
    Rössler, O.E. (1976). Z.Naturforsch. 31 a, 1168–1172.ADSGoogle Scholar
  16. 16.
    Rössler, O.E. (1977). In: Synergetics: A Workshop (H. Haken, ed.), pp. 174–183. Springer-Verlag: N.Y.-Heidelberg.Google Scholar
  17. 17.
    Rössler, O.E. (1978). Proc.Int’l Symp.Math.Topics in Biology, Kyoto Sept.11–12, pp. 131–135. Research Institute for Math.Sci., Kyoto.Google Scholar
  18. 18.
    Olsen, L.F., H. Degn (1977). Nature 267, 177–178.ADSCrossRefGoogle Scholar
  19. 19.
    Schmitz, R.A., K.R. Graziani, J.L. Hudson (1977). J.chem.Phys. 67, 3040–3044.ADSCrossRefGoogle Scholar
  20. 20.
    Rössler, O.E., K. Wegmann (1978). Nature 271, 89–90.CrossRefGoogle Scholar
  21. 21.
    Wegmann, K., O.E. Rössler (1978). Z.Naturforsch. 33 a (in press).Google Scholar
  22. 22.
    Showalter, K., R.M. Noyes, K. Bar-Eli (1978). A modified Oregonator model exhibiting complicated limit cycle behavior in a flow system. (Preprint.)Google Scholar
  23. 23.
    MacDonald, N. (1978). Nature 271, 305–306.ADSCrossRefGoogle Scholar
  24. 24.
    Lefschetz, S. (1967). In: Differential Equations and Dynamical Systerns. (J.K. Hale & J.P. LaSalle, eds.), pp.1–14. Academic: N.Y.Google Scholar
  25. 25.
    Sel’kov, E.E. (1972). In: Analysis and Simulation of Biochemical Systems (H.C. Hemker & B. Hess, eds.), pp.145–162, N.Holland: N.Y.Google Scholar
  26. 26.
    Mandelbrot, B.B. (1977). Fractals: Form, Chance and Dimension. Freeman: San Francisco.zbMATHGoogle Scholar
  27. 27.
    Rössler, O.E. (1977). Z.Naturforsch. 32 a, 607–613.MathSciNetADSGoogle Scholar
  28. 28.
    Rössler, O.E. (1977). In: Synergetics: A Workshop (H. Haken, ed.), pp. 184–199. Springer Verlag: N.Y.-Heidelberg.Google Scholar
  29. 29.
    Plykin, R.V. (1974). Math. Sbornik 94, 243–246.MathSciNetGoogle Scholar
  30. 30.
    Guckenheimer, J. (1976). In: The Hopf Bifurcation and Its Applications (J.E. Marsden & M. McCracken, eds.), pp.368–381. Springer: N.Y.CrossRefGoogle Scholar
  31. 31.
    Williams, R.F. (1978). Ann.N.Y.Acad.Sci. (in press).Google Scholar
  32. 32.
    Rössler, O.E. (1976). Z. Naturforsch. 31 a, 1664–1670.ADSGoogle Scholar
  33. 33.
    Gurel, O. (1974). Int.J.Neuroscience 6, 165–179.CrossRefGoogle Scholar
  34. 34.
    Rössler, O.E. (1977). Z.Naturforsch. 32 a, 299–301.ADSGoogle Scholar
  35. 35.
    Kuramoto, Y., T. Yamada (1976). Progr.Theoret.Phys. 55, 679–683.MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Mimura, M., Y. Nishiura, M. Yamaguti (1978). Ann.N.Y.Acad.Sci. (in press).Google Scholar
  37. 37.
    Kuramoto, Y. (1978). Unpublished.Google Scholar
  38. 38.
    Kuramoto, Y. (1978). Progr.Theoret. Phys. 64, Suppl. (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • O. E. Rössler

There are no affiliations available

Personalised recommendations