Advertisement

Synergetics pp 85-93 | Cite as

Velocity Field in the Rayleigh-Benard Instability: Transitions to Turbulence

  • M. Dubois
  • P. Bergé
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 3)

Abstract

When an horizontal layer of pure fluid, depth of which is d, is submitted to a temperature gradient ΔT, as shown on Fig.1, motion sets in, when ΔT exceeds a critical value ΔTc. The properties of this motion are related to the Rayleigh number
$${R_{a}} = \frac{{\partial g.\Delta T{d^{3}}}}{{vk}} ]$$
where α, ν and κ are respectively the volumic expansion coefficient, the cinematic viscosity and the thermal diffusivity of the fluid: the Rayleigh number takes into account the different mechanisms involved in the convective motion: buoyancy forces, viscous damping, and thermal relaxation, according to the fact that, here, we are dealing only with fluid layers under rigid-rigid horizontal boundaries. (In this case, Rac = 1707).

Keywords

Rayleigh Number Fluid Layer Convective Motion Hexagonal Pattern Asymmetric Roll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Bergé; Fluctuations, Instabilities and Phase Transitions, Nato Adv. Study Inst, B11, p.323 (1975)Google Scholar
  2. 2.
    H. Stork and O. Müller; J. Fluid Mech. 54, 599 (1972)ADSCrossRefGoogle Scholar
  3. 3.
    M. Dubois and P. Berge; J. Fluid Mech. 85, 641 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wesfried, Y. Pomeau, M. Dubois, C. Normand and P. Berge; J. de Phys. 7, 725 (1978)CrossRefGoogle Scholar
  5. 5.
    C. Normand, Y. Pomeau and M.G. Velarde; Rev. of Mod. Phys. 49, 581 (1977)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    F.H. Busse, J. Math, and Phys. 46, 140 (1967)zbMATHGoogle Scholar
  7. 7.
    F.H. Busse, J. Fluid Mech. 30, 625 (1967)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    C. Hoard, C. Robertson and A. Acrivos; Int. J. Heat Mass Transfer 13, 849(1970)Google Scholar
  9. 9.
    R. Krishnamurti; J. Fluid Mech. 33, 445 and 447 (1968)Google Scholar
  10. 10.
    S. Chandrasekhar; Hydrodynamic and Hydromagnetic Stability 1961. Oxford University Press-LondonzbMATHGoogle Scholar
  11. 11.
    M. Dubois, P. Berge and J. Wesfreid; J. de Phys. to appear (Dec. 1978)Google Scholar
  12. 12.
    F.H. Busse and J.A. Whitehead; J. Fluid Mech. 47, 305 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    P. Berge and M. Dubois; Optics Communication 19, 129 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    F.H. Busse and J.A. Whitehead; J. Fluid Mech. 66, 67 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    R. Krishnamurti; J. Fluid Mech. 42, 295 and 309 (1970)Google Scholar
  16. 16.
    L.N. Howard; Proc. 11th Int. Congr. Appl. Mech. (Springer) 1109, (1966)Google Scholar
  17. 17.
    G. Ahlers, R.P. Behringer; Phys. Rev. Lett. 40, 712 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    J. Maurer, A. Libchaber; Lettres du J. Phys., (Nov. 1978)Google Scholar
  19. 19.
    J.P. Gollub, S.V. Benson; Phys. Rev., Lett, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • M. Dubois
  • P. Bergé

There are no affiliations available

Personalised recommendations