Skip to main content

Summary

The problem of defining a vortex in a real fluid is discussed. The definition and identification of a vortex in unsteady motions is difficult since streamlines and pathlines are not invariant with respect to Galilean and rotational transformations. Recirculatory streamline patterns at a certain instant in time do not necessarily represent vortex motions in which fluid particles are moving around a common axis. Thus, instantaneous streamline patterns do not provide enough information to be used for the definition of a vortex. Extremal properties of the vorticity field are not helpful either, since a local extremum in the vorticity is not necessary for the existence of a vortex. A proposal for a definition based on pathlines is presented.

Zusammenfassung

Das Problem wird erörtert, Wirbel in einer realen Flüssigkeit zu definieren. In instationären Strömungen ist die Definition und Identifizierung eines Wirbels schwierig, weil Stromlinien und Teilchenbahnen nicht invariant hinsichtlich Galilei-Transformationen und Rotationen sind. Kreisförmige Stromlinienbilder zu einer bestimmten Zeit repräsentieren nicht notwendigerweise Wirbelbewegungen, in denen sich die Flüssigkeits-teilchen um eine gemeinsame Achse bewegen. Augenblickliche Stromlinienbilder geben daher nicht genügend Information zur Definition eines Wirbels. Extremaleigenschaften des Vorticityfeldes helfen ebenfalls nicht, da ein lokales Extremum der Vorticity nicht notwendig für die Existenz eines Wirbels ist. Ein Vorschlag für eine Definition auf der Basis von Teilchenbahnen wird gemacht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truesdell, C., “Kinematics of Vorticity,” Indiana University Press, Bloomington, 1954.

    MATH  Google Scholar 

  2. Prandtl, L. and O.G. Tietjens, “Fundamentals of Hydro- and Aeromechanics,” Dover Publications, Inc., New York, 1957.

    MATH  Google Scholar 

  3. Mehta, U.B. and Z. Lavan, Starting vortex, separation bubbles, and stall: a numerical study of laminar unsteady flow around an airfoil. Journ. Fluid Mech. 67 (1975), 227.

    Article  ADS  MATH  Google Scholar 

  4. Ringleb, F.O., Discussion of Problems Associated With Standing Vortices and Their Applications. Symposium on Fully Separated Flows, Ed. A.G. Hansen, ASME New York, 1964, 33.

    Google Scholar 

  5. Pruppacher, H.R., B.P. Le Clair, and A.E. Hamielec, Some relations between drag and flow pattern of viscous flow past a sphere and a cylinder at low and intermediate Reynolds numbers. Journ. Fluid Mech. 44 (1970), 781.

    Article  ADS  Google Scholar 

  6. Tennekes, H. and J.L. Lumley, A First Course in Turbulence. MIT Press, Cambridge, Mass., 1972.

    Google Scholar 

  7. Lagerstrom, P.A., Solutions of the Navier-Stokes Equation at Large Reynolds Number. SIAM J. Appl. Math. 28 (1975), 20.

    Article  Google Scholar 

  8. Lamb, H., Hydrodynamics. 6th ed., Dover Publications, Inc., New York, 1945.

    Google Scholar 

  9. Prandtl, L., Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Verh. III. Intern. Math. Kongress, Heidelberg, 1904. English trans. in NACA TM 452, 1928.

    Google Scholar 

  10. Batchelor, G.K., On steady laminar flow with closed streamlines at large Reynolds number. Journ. Fluid Mech. 1 (1956), 177.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Takami, H. and H.B. Keller, Steady Two-Dimensional Viscous Flow of an Incompressible Fluid past a Circular Cylinder. Phys. of Fluids Suppl. II (1969), II–51.

    Google Scholar 

  12. Burgers, J.M., Application of a Model System to Illustrate Some Points of the Statistical Theory of Free Turbulence. Proc. Acad. Sci., Amsterdam, Vol. 43, No. 1, 1940.

    Google Scholar 

  13. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. II, Inter-science Publishers, 1962, p. 320.

    MATH  Google Scholar 

  14. Telionis, D.P. and M.J. Werle, Boundary-Layer Separation From Downstream Moving Boundaries. ASME Journ. Appl. Mech. 40 (1973), 369.

    Article  ADS  MATH  Google Scholar 

  15. Lugt, H.J. and H.J. Haussling, Laminar flow past an abruptly accelerated elliptic cylinder at 45° incidence. Journ. Fluid Mech. 65 (1974), 711.

    Article  ADS  MATH  Google Scholar 

  16. Belotserkovskii, S.M. and M.I. Nisht, Investigation of Special Features of Flow over a Flat Plate at Large Angles of Attack. Fluid Dynamics 8 (1973), 772.

    Article  ADS  Google Scholar 

  17. Thoman, D.C. and A.A. Szewczyk, Time-Dependent Viscous Flow over a Circular Cylinder. Phys. of Fluids Suppl. II (1969), 11–76.

    Google Scholar 

  18. Powell, A., Theory of Vortex Sound. Journ. Acoust. Soc. Am. 36 (1964), 177.

    Article  ADS  Google Scholar 

  19. Phillips, O.M., The final period of decay of non-homogeneous turbulence. Cambridge Phil. Soc. Proc. 52 (1956), 135.

    Article  ADS  MATH  Google Scholar 

  20. Lugt, H.J., The Spectrum of the Final Decay of Localized Disturbances in a Viscous Fluid. Naval Ship Research and Development Center, Report 2785, June 1968.

    Google Scholar 

  21. Lugt, H.J., Recent Advances in the Numerical Treatment of the Navier-Stokes Equations. AGARD Lecture Series No. 86 on Computational Fluid Dynamics, April 1977.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lugt, H.J. (1979). The Dilemma of Defining a Vortex. In: Müller, U., Roesner, K.G., Schmidt, B. (eds) Recent Developments in Theoretical and Experimental Fluid Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67220-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67220-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67222-4

  • Online ISBN: 978-3-642-67220-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics