Advertisement

Acute Care pp 14-23 | Cite as

Metabolic Acidosis and the Use of Buffers in the Critically III

  • H. Delooz
Part of the Anaesthesiology and Intensive Care Medicine/Anaesthesiologie und Intensivmedizin book series (A+I, volume 116)

Abstract

Metabolic acidosis can be caused by increased production of organic acids, by decreased excretion of hydrogen ions due to renal dysfunction, by loss of base or by increased intake of acid (22).

Keywords

Metabolic Acidosis Lactic Acidosis Circulatory Arrest Diabetic Ketoacidosis Metabolic Alkalosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, W.D., Marples, J.: Biguanides and lactic-acidosis. Lancet 1, 191–192 (1977)PubMedCrossRefGoogle Scholar
  2. 2.
    Broder, G., Weil, M.H.: Excess lactate: An index of reversibility of shock in human patients. Science 143, 1457–1459 (1964)PubMedCrossRefGoogle Scholar
  3. 3.
    Chisholm, D.J.: Insulin therapy. Recent advances in ketoacidosis, hyperosmolar and insulin to test. Med. J. Aust. 2, 494–498 (1976)PubMedGoogle Scholar
  4. 4.
    Cohen, R.D., Woods, H.F.: Clinical and biochemical aspects of lactic acidosis, 1st ed. Oxford- London-Edinburgh-Melbourne: Blackwell 1976, p 7Google Scholar
  5. 5.
    De Troyer, A., Franken, P., Thys, J.P., Cornil, A.: L’acidose Lactique induite par la phenformine a propos de 8 observations. Acta Clin. Belg. 31, 355–363 (1976)Google Scholar
  6. 6.
    Emmett, M., Narins, R.G.: Clinical use of the anion gap. Medicine 56, 38–54 (1977)PubMedGoogle Scholar
  7. 7.
    Gale, E.A.M., Tattersall, R.B.: Can phenformin-induced lactic acidosis be prevented? Brit. Med. J. 2, 972–975 (1976)CrossRefGoogle Scholar
  8. 8.
    Gottlieb, A.J., Duberstein, J., Geller, A.: Phenformin acidosis. New Engl. J. Med. 267, 806–809 (1962)Google Scholar
  9. 9.
    Hopkins, R.W., Sabga, G., Penn, I., Simeons, F.A.: Hemodynamic aspects of hemorrhagic and septic shock. JAMA 191, 731–735 (1965)PubMedGoogle Scholar
  10. 10.
    Insulin regimes for diabetic ketoacidosis. Brit. Med. J. 1, 405–406 (1977)Google Scholar
  11. 11.
    Kassirer, J.P.: Serious acid-base disorders. New Eng. J. Med. 291, 773–776 (1974)CrossRefGoogle Scholar
  12. 12.
    Lacher, J., Lasagna, L.: Phenformin and lactic acidosis. Clin. Pharmacol. Ther. 7, 477–481 (1966)PubMedGoogle Scholar
  13. 13.
    Levitan, A.A.: Phenformin and pancreatitis. Ann. of Inter. Med. 78, 306–307 (1973)Google Scholar
  14. 14.
    Marks, C.E., Goldring, R.M., Vecchione, J.J., Gordon, E.E.: Cerebrospinal fluid acid–base relationships in ketoacidosis and lactic acidosis. J. Appl. Physiol. 35, 813–819 (1973)PubMedGoogle Scholar
  15. 15.
    Minuck, M., Sharma, G.P.: Comparison of THAM and sodium-bicaxbonate in resuscitation of the heart after ventricular fibrillation in dogs. Anesth. Analg. 56, 38–45 (1977)PubMedCrossRefGoogle Scholar
  16. 16.
    Nahas, C.G.: Use of organic carbon dioxide buffer in vivo. Science 129, 782–783 (1959)PubMedCrossRefGoogle Scholar
  17. 17.
    Nahas, C.G.: Clinical pharmacology of THAM (tris hydroxymethyl aminomethane). Clin. Pharmacol. Ther. 4, 784–803 (1963)PubMedGoogle Scholar
  18. 18.
    Oliva, P.B.: Lactic acidosis. Amer. J. Med. 48, 209 (1970)PubMedCrossRefGoogle Scholar
  19. 19.
    Paillard, M., Sraer, J.D., Ardaillou, R.: Role des cellules dans la regulation de Tequilibre acido- basique. Acta Clin. Belg. 25, 116–128 (1970)Google Scholar
  20. 20.
    Peretz, D.I., Scott, H.M., Duff, J., Dossetor, J.B., MacLean, L.D., McGregor, M.: The significance of lacticacidemia in the shock syndrome. Ann. N.Y. Acad. Sci. 119, 1133–1141 (1965)PubMedCrossRefGoogle Scholar
  21. 21.
    Quintanilla, A.P.: Acute acid-base disorders. 2 specific disturbances.. Postgrad. Med. 60, 15–S3 (1976)Google Scholar
  22. 22.
    Randall, H.T.: Fluid, electrolyte and acid-base balance. Surg. Clin. N. Amer. 56, 1019–1058 (1976)PubMedGoogle Scholar
  23. 23.
    Rapoport, S.I., Thompson, H.K.: Effect of intravenous NH4C1 and NaHCC3 on the pH of the brain surface, as related to respiration and the blood-brain barrier. Exp. Neurol. 42, 320–331 (1974)PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz, W.B., Relman, A.S.: Whole-blood buffer base and standard bicarbonate compared with blood pH and plasma bicarbonate concentration. New Eng. J. Med. 268, 1382–1388 (1963)CrossRefGoogle Scholar
  25. 25.
    Tizianello, A., De Ferrari, G., Gurreri, G., Acquarone, N.: Effects of metabolic alkalosis, metabolic acidosis and uraemia on whole-body intracellular pH in man. Clin. Sci. molec. Dis. 52, 125–135 (1977)Google Scholar
  26. 26.
    Traisman, H.S.: More on the use of bicarbonate in the treatment of diabetic acidosis. J. Pediat. 90, 325–326 (1977)PubMedCrossRefGoogle Scholar
  27. 27.
    Tranquada, R.E., Bernstein, S., Martin, H.E.: Irreversible lactic acidosis associated with phenformin therapy. JAMA 184, 37–42 (1963)PubMedGoogle Scholar
  28. 28.
    Verdon, F., Bringolf, M., Enrico, J.F., Perret, C.: Interet du traitment alcalinisant de l’acido-cetose diabetique grave. Schweiz. med. Wschr. 106, 1827–1830 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • H. Delooz

There are no affiliations available

Personalised recommendations