Interactions Between Maternal and Fetal/Neonatal Lymphocytes

  • Lars B. Olding
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 66)


One of the most fascinating and challenging phenomena in immunology is the successful grafting of the fetus onto the uterus and the maintenance of fetus and placenta throughout gestation. The fetus inherits genetic material from its father and, accordingly, should be recognized as alien, “non-self,” by the mother’s immunocompetent cells and subsequently rejected. Obviously, rejection does not occur in the vast majority of pregnancies. Still, we have learned from several investigations that maternal immunocompetent cells are able to react against fetal antigens both in vitro and in vivo (reviewed by Beer and Billingham, 1971; Edwards et al., 1975). It also seems as if disparity between maternal and fetal histocompatibility antigens favor, to some extent, the invasiveness of the trophoblast and the size of the placenta (James, 1965; Billington, 1965; Beer and Billingham, 1971). Even though factors regulating the successful outcome of the pregnancy are still unknown in many ways, the advancements in immunology and endocrinology during the last decade have enabled us to discern some of the events that occur in the complicated interplay between mother and fetus.


Cord Blood Chorionic Villus Mixed Lymphocyte Reaction Newborn Baby Mononuclear Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinolfi, M., Gorvette, D.P.: The transfer of lymphocytes through the human placenta. In: Proceedings. 1st Int. Congr. Immunol, in Obstetrics and Gynaecology (Padua). Amsterdam: Excerpta Med. Intern. Congress Series No. 327, pp. 177–182, 1974Google Scholar
  2. Adinolfi, M.: The human placenta as a filter for cells and plasma proteins. In: Immunobiology of trophoblast. Edwards, R.G., Howe, C.W., Johnson, M.H. (eds.). Cambridge: Cambridge University Press 1975Google Scholar
  3. Aherne, W., Dunnill, M.S.: Morphometry of the human placenta. Br. Med. Bull. 22, 5–8 (1966)PubMedGoogle Scholar
  4. Alford, C.A., Blankenship, W.J., Straumfjord, J.V., Cassady, G.: In: Intrauterine infections. Bergsma, D. (ed.), pp. 5–19. New York: National Foundation 1968Google Scholar
  5. Angell, L., Adinolfi, M.: cited by: Adinolfi, M., Wood, C: Ontogenesis of immunoglobulins and components of complements in man. In: Immunology and development. Adinolfi, M. (ed.), pp. 27–32. London: Spastic Int. Med. Publ. 1969Google Scholar
  6. Beer, A.E., Billingham, R.E.: Immunobiology of mammalian reproduction. In: Advances in Immunology. Dixon, F.J., Kunkel, H.G. (eds.). New York, London: Academic Press 1971Google Scholar
  7. Beer, A.E., Billingham, R.E., Yang, S.L.: Maternal induced transplantation, immunity, tolerance and runt disease in rats. J. Exp. Med. 135, 808–826 (1972)PubMedCrossRefGoogle Scholar
  8. Beer, A.E., Billingham, R.-E.: Maternally acquired runt disease. Science 179, 240–243 (1973)PubMedCrossRefGoogle Scholar
  9. Benirschke, K., Sullivan, M.M.: The human placenta in relationship to the development of chimerism. In: The foeto-placental unit. Proceedings of an Internation Symposium. Milan: Excerpta Med. Int. Congr. Series No. 183, pp. 37–44, 1968Google Scholar
  10. Benirschke, K.: Chimerism, mosaicism and hybrids. In: Human Genetics. Proceedings Fourth International Congress Human Genetics (Paris), pp. 212–231. Amsterdam: Excerpta Med. Found. 1971Google Scholar
  11. Billingham, R., Silvers, W.: The Immunobiology of Tissue Transplantation. New Jersey: Prentice-Hall Englewood Cliffs 1971Google Scholar
  12. Billington, W.D.: The invasiveness of transplanted mouse trophoblast and the influence of immunological factors. J. Reprod. Fert. 10, 343–352 (1965)CrossRefGoogle Scholar
  13. Bodmer, W.F.: Evolutionary significance of the HL-A system. Nature 237, 139–140 (1972)PubMedCrossRefGoogle Scholar
  14. Bonnard, G.D., Lemos, L.: The cellular immunity of mother versus child at delivery: sensitization in unidirectional mixed lymphocyte culture and subsequent 5 1 Crrelease cytotoxicity test. Transplant. Proc. 4,177–179(1972)PubMedGoogle Scholar
  15. Bradbury, S., Billington, W.D., Kirby, D.R.S.: A histochemical and electron microscopical study of the fibrinoid of the mouse placenta. J. R. Microsc. Soc. 84, 199–206 (1965)PubMedGoogle Scholar
  16. Cantor, H., Boyse, E.A.: Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen. J. Exp. Med. 141, 1376–1389 (1975a)CrossRefGoogle Scholar
  17. Cantor, H., Boyse, E.A.: Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J. Exp. Med. 143, 1390–1399 (1975b)CrossRefGoogle Scholar
  18. Cantor, H., Shen, F.W., Boyse, E.A.: Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J. Exp. Med. 143, 1391–1401 (1976)PubMedCrossRefGoogle Scholar
  19. Carr, M.C., Stites, D.P.: Reactivity of maternal lymphocytes to phytohaemagglutinin. Lancet 1972 I, 1073Google Scholar
  20. Carr, M.C., Stites, D.P., Fudenberg, H.H.: Dissociation of responses to phytohemagglutinine and adult allogeneic lymphocytes in human foetal lymphoid tissues. Nature New Biol. 241, 279–281 (1973)PubMedCrossRefGoogle Scholar
  21. Carr, M.C., Stites, D.P., Fudenberg, H.H.: Cellular immune aspects of the human fetalmaternal relationship. III. Mixed lymphocyte reactivity between related maternal and cord blood lymphocytes. Cell. Immunol. 11, 332–341 (1974)PubMedCrossRefGoogle Scholar
  22. Ceppellini, R., Bonnard, G.D., Coppo, F., Miggiano, V.C.: Mixed leukocyte cultures and HL-A antigens. I. Reactivity of young fetuses, newborns, and mothers at delivery. Transplant. Proc. 3, 58–70 (1971)PubMedGoogle Scholar
  23. Ciba Foundation Symposium: Ontogeny of acquired immunity. Amsterdam, London, New York: Elsevier-Excerpta Medica-North-Holland Associated Scientific Publishers 1972Google Scholar
  24. Contractor, S.F., Davies, H.: Effect of human chorionic somatomammotrophin and HCG on phytohemagglutinin-induced lymphocyte transformation. Nature New Biol. 243, 284–286 (1973)PubMedCrossRefGoogle Scholar
  25. Currie, G., Van Doorninck, W., Bagshawe, K.: Effect of neuroaminidase on the immunogenicity of early mouse trophoblast. Nature 219, 191–192 (1968)PubMedCrossRefGoogle Scholar
  26. Dattwyler, R.J., Murgita, R.A., Tomasi, T.B.: The binding of alpha-feto-protein to murine T cells. Nature 256, 656–657 (1975)PubMedCrossRefGoogle Scholar
  27. Dixon, F.J., Weigle, W.O.: The nature of the immunologic inadequacy of neonatal rabbits as revealed by cell transfer studies. J. Exp. Med. 105, 75–83 (1956)CrossRefGoogle Scholar
  28. Dixon, F.J., Weigle, O.: The nature of the immunologic inadequacy of neonatal rabbits. II. Antibody formation by neonatal splenic cells transferred to adult recipients. J. Exp. Med. 110, 139–146 (1959)PubMedCrossRefGoogle Scholar
  29. Dutton, R.: Suppressor T cells. Transplant. Rev. 26, 39–55 (1975)PubMedGoogle Scholar
  30. Edidin, M.: Histocompatibility genes, transplantation antigens, and pregnancy. In: Transplantation Antigens, Markers of Biological Individuality. Kahan, B.D., Reisfeld, R.A. (eds.). New York: Academic Press 1972Google Scholar
  31. Edwards, R.G., Howe, C.W.S., Johnson, M.H. (eds.): Immunobiology of Trophoblast. Cambridge: Cambridge University Press 1975Google Scholar
  32. Faulk, P.W., Jeannet, M., Creighton, W.D., Carbonara, A.: Immunological studies of the human placenta. Characterization of immunoglobulins on the trophoblastic basement membranes. J. Clin. Invest. 54, 1011–1019 (1974)PubMedCrossRefGoogle Scholar
  33. Faulk, W.P., Trenchew, P., Dorling, J., Holborow, J.: Antigens on postimplantation placentae. In: Immunobiology of Trophoblast. Edwards, R.G., Howe, C.W.S., Johnson, M.H. (eds.). Cambridge: Cambridge University Press 1975Google Scholar
  34. Faulk, W.P., Temple, A.: Distribution of β2 microglobulin in HLA in chorionic villi of human placentae. Nature 262, 799–802 (1977)CrossRefGoogle Scholar
  35. Feldmann, M.: T cell suppression in vitro. II. Nature of specific suppressive factor. Eur. J. Immunol. 4, 660–666 (1974)PubMedCrossRefGoogle Scholar
  36. Feldmann, M., Basten, A.: Cell interaction in the immune response in vitro. III. Specific collaboration across a cell impermeable membrane. J. Exp. Med. 136, 49–62 (1972)PubMedCrossRefGoogle Scholar
  37. Fidler, J.M., Chiscon, M.O., Golub, E.S.: Functional development of the interacting cells in the immune response. II. Development of immunocompetence to heterologous erythrocytes in vitro. J. Immunol. 109, 136–140 (1972)PubMedGoogle Scholar
  38. Folch, H., Waksman, B.H.: The splenic suppressor cell. II. Suppression of the mixed lymphocyte reaction by thymus dependent adherent cells. J. Immunol. 113, 140–144(1974)PubMedGoogle Scholar
  39. Gershon, R.K., Cohen, P., Hencin, R., Liebhaber, S.A.: Suppressor T cells. J. Immunol. 108, 586–590 (1972)PubMedGoogle Scholar
  40. Gershon, R.K., Kondo, K.: Cell interactions in the production of tolerance: The role of thymic lymphocytes. Immunology 18, 723–737 (1970)PubMedGoogle Scholar
  41. Gershon, R.K., Lance, E.M., Kondo, G.: Immuno-regulatory role of spleen localizing thymocytes. J. Immunol. 112, 546–554 (1974)PubMedGoogle Scholar
  42. Gille, J., Williams, J.H., Hoffman, C.P.: The feto-maternal lymphocyte interaction in preeclampsia and in uncomplicated pregnancy. Europ. J. Obstet. Gynec. Reprod. Biol. 7/4,227–238 (1977)CrossRefGoogle Scholar
  43. Goto, S., Hishino, M., Tomoda, Y., Ishizuka, N.: Immunoelectron microscopy of the human chorionic villus in search of blood group A and B antigens. Lab. Invest. 35, 530–536 (1976)PubMedGoogle Scholar
  44. Hansson, L.A., Lindholm, L., Carlsson, B., Fasth, A., Fallstrom, S.P., Wadsworth, C., Vahrendh, G.: Suppressor cell activity in a male infant with T-and B-lymphocyte dysfunction treated with thymosin. Scand. J. Immunol. 5, 1227–1231 (1976)CrossRefGoogle Scholar
  45. Harrison, G.P.: Immunocompetence of maternal lymphocytes. Lancet 1972 II, 1319–1320CrossRefGoogle Scholar
  46. Hayward, A.R., Soothill, J.F.: Reaction to antigen by human foetal thymus lymphocytes. In: Ciba Foundation Symposium: Ontogeny of Acquired Immunity, pp. 261–268. Amsterdam, London, New York: Elsevier-Excerpta Medical North Holland, Associated Scientific Publishers 1972Google Scholar
  47. Hellström, K.E., Hellström, I., Brawn, J.: Abrogation of cellular immunity to antigenically foreign mouse embryonic cells by a serum factor. Nature 224, 914–915 (1969)PubMedCrossRefGoogle Scholar
  48. Hirsch, M.S., Phillips, S.M., Solnik, C, Black, P.H., Schwartz, R.S., Carpenter, C.B.: Activation of leukemia viruses by graft versus host and mixed lymphocyte reactions in vitro. Proc. Natl. Acad. Sci. US 69, 1069–1072 (1972)CrossRefGoogle Scholar
  49. Hirsch, M.S., Ellis, D.A., Black, P.H., Monaco, A.P., Wood, S.: Leukemia virus activation during homograft rejection. Science 180, 500 (1973)PubMedCrossRefGoogle Scholar
  50. Howe, C.: Lymphocyte physiology during pregnancy: in vivo and in vitro studies. In: Immunobiology of Trophoblast, pp. 131–146. Cambridge: Cambridge University Press 1975Google Scholar
  51. James, D.A.: Effects of antigenic dissimilarity between mother and foetus on placental size in mice. Nature 205, 613–614 (1965)CrossRefGoogle Scholar
  52. Jandinski, J., Cantor, H., Tadakuma, T., Peavy, D.L., Pierce, C.W.: Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T cell subclasses. J. Exp. Med. 143, 1382–1390 (1976)PubMedCrossRefGoogle Scholar
  53. Johnson, M.H. (ref.): Foeto-maternal interactions (Workshop report). In: Progress in Immunology II. Vol. II, p. 400. Brent, L., Holborow, J. (eds.). Amsterdam, Oxford, New York: North Holland and American Elsevier 1974Google Scholar
  54. Johnson, M.H.: Antigens of the pre-implantation trophoblast. In: Immunobiology of trophoblast. Edwards, R.G., Howe, C.W.S., Johnson, M.H. (eds.), pp. 87–112. Cambridge: Cambridge University Press 1975Google Scholar
  55. Kasakura, S.J.: A factor in maternal plasma that suppresses the reactivity of mixed leukocyte cultures. J. Immunol. 107, 1296–1301 (1971)PubMedGoogle Scholar
  56. Kirby, D.R.S., Billington, W.D., Bradbury, S., Goldstein, D.: Antigen barrier of the mouse placenta. Nature 204, 548–549 (1964)PubMedCrossRefGoogle Scholar
  57. Leventhal, B.G., Buell, D.N., Yankee, R., Rogentine, G.N., Terasaki, P.: The mixed leukocyte response. Effect of maternal plasma. In: Proceedings of the Fifth Leukocyte Culture Conference, pp. 473–485. New York: Academic Press 1970Google Scholar
  58. Loke, Y.W., Joysey, V.C., Borland, R.: HL-A antigens on human trophoblast cells. Nature 232, 403–405 (1971)PubMedCrossRefGoogle Scholar
  59. Loke, Y.W., Ballard, A.C.: Blood group A antigens on the human trophoblast cells. Nature 245, 329–330 (1973)PubMedCrossRefGoogle Scholar
  60. Loke, Y.W. (Discussion): In: Immunobiology of trophoblast. Edwards, R.-G., Howe, C.W.S., Johnson, M.H. (eds.), p. 101. Cambridge: Cambridge University Press 1975Google Scholar
  61. Marbrook, J.: Primary immune response in cultres of spleen cells. Lancet 1967 II, 1279–1281CrossRefGoogle Scholar
  62. Masson, P.L., Delire, M., Cambiaso, C.L.: Circulating immune complexes in normal human pregnancy. Nature 266, 542–543 (1977)PubMedCrossRefGoogle Scholar
  63. McCormick, J.N., Faulk, W.P., Fox, H., Fudenberg, H.H.: Immunohistological and elution studies of the human placenta. J. Exp. Med. 133, 1–18 (1971)PubMedCrossRefGoogle Scholar
  64. Mendelsohn, J., Skinner, A., Kornfeld, S.J.: The rapid induction by phytohemagglutinin of increased a-aminoisobuturic acid uptake by lymphocytes. J. Clin. Invest. 50, 818–826 (1971)PubMedCrossRefGoogle Scholar
  65. Möll;er, G. (ed.): Suppressor T lymphocytes. Transplant. Rev. 26, 1–205 (1975)Google Scholar
  66. Moretta, L., Ferrarini, M., Mingari, M.C., Moretta, A., Webb, S.: Subpopulations of human T cells identified by receptors for immunoglobulins and mitogen responsiveness. J. Immunol. 117, 2171–2176 (1976)PubMedGoogle Scholar
  67. Moretta, L., Webb, S.R., Grossi, C.E., Lydyard, P.M., Cooper, M.: Functional analysis of two human T-cell subpopulations: Help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG. J. Exp. Med. 146, 184–200 (1977)PubMedCrossRefGoogle Scholar
  68. Mosier, D., Cantor, H.: Functional maturation of mouse thymic lymphocytes. Eur. J. Immunol. 1, 459–461 (1971)PubMedCrossRefGoogle Scholar
  69. Mosier, D.E., Johnson, B.M., Paul, W.E., McMaster, P.R.B.: Cellular requirements for the primary in vitro antibody response to DNP-Ficoll. J. Exp. Med. 139, 1354–1360 (1974)PubMedCrossRefGoogle Scholar
  70. Mosier, D.E., Johnson, B.M.: Ontogeny of mouse lymphocyte function. II. Development of the ability to produce antibody is modulated by T lymphocytes. J. Exp. Med. 141, 216–226 (1975)PubMedCrossRefGoogle Scholar
  71. Murgita, R.A., Tomasi, T.B.: Suppression of the immune response by a-fetoprotein. I. The effect of mouse a-fetoprotein on the primary and secondary antibody response. J. Exp. Med. 141, 269–286 (1975a)CrossRefGoogle Scholar
  72. Murgita, R.A., Tomasi, T.B.: Suppression of the immune response by a-fetoprotein. II. The effect of mouse α-fetoprotein on mixed lymphocyte reactivity and mitogeninduced lymphocyte transformation. J. Exp. Med. 141, 440–452 (1975b)CrossRefGoogle Scholar
  73. Murgita, R.A., Goidl., E.A., Kontiainen, S., Wigzell, H.: α-fetoprotein induces suppresor T cells in vitro. Nature 267, 257–259 (1977)PubMedCrossRefGoogle Scholar
  74. Olding, L.: The possibility of materno-foetal transfer of lymphocytes in man. Acta Paed. Scand. 61, 73–75 (1972)CrossRefGoogle Scholar
  75. Olding, L.B., Oldstone, M.B.A.: Lymphocytes from human newborns abrogate mitosis of their mother’s lymphocytes. Nature 249, 161–162 (1974)PubMedCrossRefGoogle Scholar
  76. Olding, L.B., Benirschke, K., Oldstone, M.B.A.: Inhibition of mitosis of lymphocytes from human adults by lymphocytes from human newborns. Clin. Immunol. Immunopathol. 3, 79–89 (1974)PubMedCrossRefGoogle Scholar
  77. Olding, L.B., Jensen, F.C., Oldstone, M.B.A.: Pathogenesis of cytomegalo-virus infection. I. Activation of virus from bone marrow-derived lymphocytes by in vitro allogeneic reaction. J. Exp. Med. 141, 561–572 (1975)PubMedCrossRefGoogle Scholar
  78. Olding, L.B., Oldstone, M.B.A.: Thymus-derived peripheral lymphocytes from human newborns inhibit division of their mother’s lymphocytes. J. Immunol. 116, 682–686 (1976)PubMedGoogle Scholar
  79. Olding, L.B., Murgita, R.A., Wigzell, H.: Mitogen-stimulated lymphoid cells from human newborns suppress the proliferation of maternal lymphocytes across a cell-impermeable membrane. J. Immunol. 119, 1109–1114 (1977)PubMedGoogle Scholar
  80. Oldstone, M.B.A., Tishon, A., Moretta, L.: Active thymus derived suppressor lymphocytes in human cord blood. Nature 269, 333–335 (1977)PubMedCrossRefGoogle Scholar
  81. Parkman, R., Mosier, D., Umansky, I.: Cochran, W., Carpenter, C.B., Rosen, F.S.: Graft-verus-host disease after intrauterine and exchange transfusions for hemolytic disease of the newborn. New Eng. J. Med. 290, 359–363 (1974)PubMedCrossRefGoogle Scholar
  82. Peavy, D.L., Pierce, C.W.: Cell-mediated immune responses in vitro. I. Suppression of the generation of cytotoxic lymphocytes by Concanavalin A and Concanavalin Aactivated spleen cells. J. Exp. Med. 140, 356–369 (1974)PubMedCrossRefGoogle Scholar
  83. Pellegrino, M., Pellegrino, A., Kahan, B.: Solubilization of fetal HL-A antigens. A preliminary report. Transplantation 10, 425–430 (1970)PubMedCrossRefGoogle Scholar
  84. Perlmann, P., Perlmann, H., Wigzell, H.: Lymphocyte mediated cytotoxicity in vitro. Induction and inhibition by humoral antibody and nature of effector cells. Transplant. Rev. 13, 91–114 (1972)PubMedGoogle Scholar
  85. Purtilo, D.T., Hallgren, H.M., Yunis, E.J.: Depressed maternal lymphocyte response to phytohaemagglutinin in human pregnancy. Lancet 1972 I, 769–771CrossRefGoogle Scholar
  86. Revillard, J.P., Beutel, H., Robert, M.: Effects of alloantibodies on lymphocyte proliferation in vitro. Cell Immunol. 8, 339–355 (1973)PubMedCrossRefGoogle Scholar
  87. Rich, R.R., Rich, S.S.: Biological expressions of lymphocyte activation. IV. Concanavalin A-activated suppressor cells in mouse mixed lymphocyte reactions. J. Immunol. 114, 1112–1115 (1975)PubMedGoogle Scholar
  88. Robert, M., Beutel, H., Revillard, J.P.: Inhibition of the mixed lymphocyte reaction by sera from multipara. Tissue Antigens 3, 39–56 (1973) Schröder, J., De la Chapelle, A.: Foetal lymphocytes in the maternal blood. Blood 39, 153–162 (1972)PubMedCrossRefGoogle Scholar
  89. Searle, R.F., Sellens, M.H., Elson, J., Jenkinson, E.J., Billington, W.D.: Detection of alloantigens during pre-implantation development and early trophoblast differentiation in the mouse by immunoperoxidase labeling. J. Exp. Med. 143, 348–359 (1976)(1976)PubMedCrossRefGoogle Scholar
  90. Siegal, F.P., Siegal, M., Good, R.A.: Suppression of B-cell differentiation by leukocytes from hypogammaglobulinemic patients. J. Clin. Invest. 58, 109–122 (1976)PubMedCrossRefGoogle Scholar
  91. Skowron-Cenrzak, A., Ptak, W.: Suppression of local graft-versus-host reactions by mouse fetal and newborn spleen cells. Eur. J. Immunol. 6, 451–452 (1976)CrossRefGoogle Scholar
  92. Spear, P.G., Edelman, G.M.: Maturation of the humoral immune response in mice. J. Exp. Med. 139, 249–263 (1974)PubMedCrossRefGoogle Scholar
  93. Stigbrand, T., Damber, M.G., Schoultz, B.v.: Biochemistry and properties of the immunosuppressive pregnancy zone protein (PZ). In: Protides of the Biological Fluids. 24th Colloquium (Bruges 1975). Peeters, H. (ed.), pp. 181–188. Oxford: Pergamon Press 1976Google Scholar
  94. Stites, D.P., Carr, M.C., Fudenberg, H.H.: Development of cellular immunity in the human fetus: dichotomy of proliferative and cytotoxic responses of lymphoid cells to phytohemagglutinin. Proc. Natl. Acad. Sci. USA 69, 1440–1444 (1972)PubMedCrossRefGoogle Scholar
  95. Stobo, J.D., Paul, R.-E., Van Scoy, Hermans, P.E.: Suppressor thymus-derived lymphocytes in fungal infection. J. Clin. Invest. 57, 319–328 (1976)PubMedCrossRefGoogle Scholar
  96. Strelkauskas, A.J., Wilson, B.S., Dray, S., Dodson, M.: Inversion of levels of human T and B cells in early pregnancy. Nature 258, 331–332 (1975)PubMedCrossRefGoogle Scholar
  97. Tada, T., Taniguchi, M., Takemori, T.: Properties of primed suppressor T cells and their products. Transplant. Rev. 26, 106–129 (1975)PubMedGoogle Scholar
  98. Tamerius, J., Hellstrom, I., Hellstrom, K.E.: Evidence that blocking factors in the sera of multiparous mice are associated with immunoglobulins. Int. J. Cancer 16, 456–463 (1975)PubMedCrossRefGoogle Scholar
  99. Tiilikainen, A., Schröder, J., De la Chapelle, A.: Foetal leukocytes in the maternal circulation after delivery. II. Masking of HL-A antigens. Transplantation 17, 355–360 (1974)PubMedCrossRefGoogle Scholar
  100. Turner, J.H., Wald, N., Quinlivan, W.L.: Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. Am. J. Obst. Gynec. 95, 831–833 (1966)Google Scholar
  101. Waldmann, T.A., Broder, S., Blaese, R.M., Durm, M., Blackman, M., Strober, W.: Role of suppressor T cells in pathogenesis of common variable hypogammaglobulinaemia. Lancet 19741, 609–613Google Scholar
  102. Walknowska, J., Conte, F.A., Grumbach, M.M.: Practical and theoretical implications of fetal/maternal lymphocyte transfer. Lancet 1969 I, 1119–1122CrossRefGoogle Scholar
  103. Wallis, W.J., Goldberg, E.H., Krco, C.J., Williams, R.C.: Suppression of stimulation in mixed lymphocyte reaction by newborn splenic lymphocytes. Fed. Proceed. 35, 734(1976)Google Scholar
  104. Weller, T.H.: The cytomegaloviruses: ubiquitous agents with protean clinical manifestations (I). New Engl. J. Med. 285, 203–214 (197la)CrossRefGoogle Scholar
  105. Weller, T.H.: The cytomegaloviruses: ubiquitous agents with protean clinical manifestations (II). New Engl. J. Med. 285, 267–278 (1971b)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • Lars B. Olding

There are no affiliations available

Personalised recommendations