Skip to main content

Effect of Oxidation of Glutathione and Membrane Thiol Groups on Mitochondrial Functions

  • Conference paper
Functions of Glutathione in Liver and Kidney

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Summary

Diamide [diazenedicarboxylic acid bis (N,N’-dimethylamide)] a thiol oxidant, does not titrate more than 25% of total liver mitochondrial thiol groups. These include the nonprotein thiols present in the inter-membrane and matrix spaces and vicinal pairs of protein membrane-bound -SH. Mitochondrial glutathione content is decreased by diamide only at concentrations above 0.5 mil. At concentrations below those required for GSH oxidation, diamide slightly stimulates ATPase activity of intact rat liver mitochondria and induces an efflux of endogenous Mg2+ dependent on coupled respiration. These effects are fully preventy by EGTA and ruthenium red, a known inhibitor of Ca2+ transport across mitochondrial inner membrane. The dependence of these phenomena on an energy-dissipating Ca2+ flux is also supported by a release of state 4 respiration. In the presence of low concentrations of diamide (< 0.25 mM) external Ca2+ are rapidly taken up and retained within mitochondria, while Mg2+ are released in an energy-dependent process. It is assumed that diamide-induced Mg2+ efflux is the consequence of a cyclic in and out movement of Ca2+, in which the passive efflux promoted by the oxidation of pairs of membrane-bound thiols is compensated by a continuous energy-dependent reuptake. At higher concentrations (> 0.5 mM) Ca2+ are initially taken up by liver mitochondria but subsequently released. Concomitantly the efflux of Mg2+, initially dependent on respiration and sensitive to ruthenium red, becomes “passive” and insensitive to ruthenium red in coincidence with Ca2+ release. It is assumed that the redox state of some pairs of mitochondrial -SH (those sensitive to low diamide concentrations) might control, through a modulation of Ca2+ flux, the binding of Mg2+ to mitochondrial membranes as well as their permeability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Diamide:

diazenedicarboxylic acid bis (N,N-dimethylamide)

DTE:

dithio-erythritol

DTNB:

5,5′-dithio-bis-(2-nitrobenzoic acid)

EGTA:

ethylene glycol-bis-(2-aminoethyl-ether)-N,N′-tetracetic acid

GSH:

reduced glutathione

GSSG:

oxidized glutathione

pCMB:

para-chloromercuribenzoate

SDS:

sodium dodecyl sulfate

References

  • Bindoli, A., Cavallini, L., Siliprandi, N., Zoccarato, F.: Action of some thiol oxidizing reagents on mitochondrial sulfhydryl groups. Bull. Mol. Biol. Med. 1, 92–96 (1976)

    CAS  Google Scholar 

  • Bremer, J., Wojtczak, A., Skrede, S.: The leakage and destruction of CoA in isolated mitochondria. Eur. J. Biochem. 25, 190–197 (1972)

    Article  PubMed  CAS  Google Scholar 

  • Crompton, M., Capano, M., Carafoli, E.: Respiration-dependent efflux of magnesium ions from heart mitochondria. Biochem. J. 154, 735–742 (1976)

    PubMed  CAS  Google Scholar 

  • Ellman, G.L.: Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77 (1959)

    CAS  Google Scholar 

  • Fiske, C.H., Subbarow, Y.: The colorimetric determination of phosphorus. J. Biol. Chem. 66, 375–400 (1925)

    CAS  Google Scholar 

  • Flohé, L., Schlegel, W.: Glutathion-Peroxidase. IV. Intrazelluläre Verteilung des Glutathion-Peroxidase Systems in der Rattenleber. Hoppe-Seyler’s Z. Physiol. Chem. 352, 1401–1410 (1971)

    Article  Google Scholar 

  • Gaudemer, Y., Latruffe, N.: Evidence for penetrant and non-penetrant thiol reagents and their use in the location of rat liver mitochondrial D(-)-β-hydroxybutyrate dehydrogenase. FEBS Lett. 54, 30–34 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Gornall, A.G., Bardawill, C.J., David, M.M.: Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751–766 (1949)

    PubMed  CAS  Google Scholar 

  • Jocelyn, P.C.: Some properties of mitochondrial glutathione. Biochim. Biophys. Acta 396, 427–436 (1975)

    Article  PubMed  CAS  Google Scholar 

  • Jocelyn, P.C., Kamminga, A.: The non-protein thiol of rat liver mitochondria. Biochim. Biophys. Acta 343, 356–362 (1974)

    PubMed  CAS  Google Scholar 

  • Kosower, E.M., Correa, W., Kinon, B.J., Kosower, N.S.: Glutathione VII. Differentiation among substrates by the thiol-oxidizing agent, diamide. Biochim. Biophys. Acta 264, 39–44 (1972)

    PubMed  CAS  Google Scholar 

  • Myers, D.K., Slater, E.C.: The enzymic hydrolysis of adenosine triphosphate by liver mitochondria I. Activities at different pH values. Biochem. J. 67, 558–572 (1957)

    PubMed  CAS  Google Scholar 

  • Pande, S., Parvin, R.: Characterization of carnitine acylcarnitine translocase of heart mitochondria. J. Biol. Chem. 251, 6683–6691 (1976)

    PubMed  CAS  Google Scholar 

  • Reed, P.W., Lardy, H.A.: A23187: a divalent cation ionophore. J. Biol. Chem. 247, 6970–6977 (1972)

    PubMed  CAS  Google Scholar 

  • Reynafarje, B., Lehninger, A.L.: High affinity and low affinity binding of Ca++ by rat liver mitochondria. J. Biol. Chem. 244, 584–593 (1969)

    PubMed  CAS  Google Scholar 

  • Riley, M.V., Lehninger, A.L.: Changes in sulfhydryl groups of rat liver mitochondria during swelling and contraction. J. Biol. Chem. 239, 2083–2089 (1964)

    PubMed  CAS  Google Scholar 

  • Scutari, G., Siliprandi, D., Zoccarato, F.: Action of diamide on some energy linked processes of rat liver mitochondria. FEBS Lett. 42, 197–199 (1974a)

    Article  PubMed  Google Scholar 

  • Sies, H., Moss, K.M.: A role of mitochondrial glutathione peroxidase in modulating mitochondrial oxidations in liver. Eur. J. Biochem. 84, 377–383 (1978)

    Article  PubMed  CAS  Google Scholar 

  • Siliprandi, D., Scutari, G., Zoccarato, F., Siliprandi, N.: Sulfhydryl groups oxidation and mitchondrial functions. In: Membrane proteins in transport and phosphorylation. Azzone, G.F., Klingenberg, M.E., Quagliariello, E., Siliprandi, N. (eds.), pp.265–274. Amsterdam: North Holland Publ. Co. 1974b

    Google Scholar 

  • Siliprandi, N., Siliprandi, D., Bindoli, A., Rugolo, M., Toninello, A., Zoccarato, F.: Action of diamide on ATPase activity of rat liver mitochondria. In: Electron transfer chains and oxidative phosphorylation. Quagliariello, E., Papa, S., Palmieri, F., Slater, E.C., Siliprandi, N. (eds.), pp.439–444. Amsterdam: North-Holland Publ. Co. 1975c

    Google Scholar 

  • Siliprandi, N., Siliprandi, D., Toninello, A., Rugolo, M., Zoccarato, F.: Respiration-linked efflux of Mg2+ and other ions from rat liver mitochondria: dependence on Ca2+ cycling. In: Mechanisms of proton and calcium pumps. Avron, M., Azzone, G.F., Metcalfe, J., Siliprandi, N. (eds.), pp.263–271. Amsterdam: Elsevier/Excerpta Medica/North-Holland 1978

    Google Scholar 

  • Siliprandi, D., Toninello, A., Zoccarato, F., Bindoli, A.: Phosphate transport across the mitochondrial membrane: the influence of thiol oxidation and of Mg++ on inhibition by mercurials. FEBS Lett. 51, 15–17 (1975a)

    Article  PubMed  CAS  Google Scholar 

  • Siliprandi, D., Toninello, A., Zoccarato, F., Rugolo, M., Siliprandi, N.: Synergistic action of calcium ions and diamide on mitochondrial swelling. Biochem. Biophys. Res. Commun. 66, 956–961 (1975b)

    Article  PubMed  CAS  Google Scholar 

  • Siliprandi, D., Toninello, A., Zoccarato, F., Siliprandi, N.: A possible mechanism for respiration-dependent efflux of Mg ions from liver mitochondria. Biochem. Biophys. Res. Commun. 78, 23–27 (1977)

    Article  PubMed  CAS  Google Scholar 

  • Tietze, F.: Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissues. Anal. Biochem. 27, 502–522 (1969)

    Article  PubMed  CAS  Google Scholar 

  • Vignais, P.M., Vignais, P.V.: Fucsin, an inhibitor of mitochondrial SH-dependent transport-linked functions. Biochim. Biophys. Acta 325, 357–374 (1972)

    Google Scholar 

  • Zoccarato, F., Rugolo, M., Siliprandi, D.: Phosphate transport in mitochondrial and submitochondrial particles: the influence of thiol oxidation. J. Bioenerg. and Biomembr. 9, 203–212 (1977)

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siliprandi, N., Siliprandi, D., Bindoli, A., Toninello, A. (1978). Effect of Oxidation of Glutathione and Membrane Thiol Groups on Mitochondrial Functions. In: Sies, H., Wendel, A. (eds) Functions of Glutathione in Liver and Kidney. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67132-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67132-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67134-0

  • Online ISBN: 978-3-642-67132-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics