The Role of Glutathione in Transport Activity in Kidney

  • F. H. Leibach
  • D. J. Pillion
  • J. Mendicino
  • D. Pashley
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Summary

Diamide oxidizes renal cortical GSH and causes inhibition of amino acid and sugar uptake and gluconeogenesis in the renal cortical slice. However, it does not inhibit the uptake of p-aminohippurate. The effects of diamide can be reversed by the addition of exogenous GSH, while other thiols are less effective. Diamide does not affect renal γ-Glutamyl transpeptidase, alkaline phosphatase, or Mg2+-ATPase, but does inhibit protein kinase activity, both soluble and particulate, microsomal Na+-K+-dependent ATPase and glucose-6-phosphatase. The inhibition of these enzymes is partially reversible upon addition of exogenous thiols. The results suggest that GSH is intimately associated with transport processes in kidney.

Keywords

Sugar Glutathione Arginine Pyruvate Bicarbonate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colowick, S., Lazarow, A., Racker, E., Schwartz, D.R., Stadtman, E., Waelsh, H. (eds.): Glutathione. New York: Academic Press 1954Google Scholar
  2. 2.
    Crook, E.M. (ed.): Glutathione. London: Cambridge University Press. 1959Google Scholar
  3. 3.
    Flohé, L., Benöhr, H.C., Sies, H., Waller, H.D., Wendel, A. (eds.): Glutathione. New York: Academic Press 1974Google Scholar
  4. 4.
    Arias, I.M., Jakoby, W.B. (eds.): Glutathione. New York: Raven Press 1976Google Scholar
  5. 5.
    Leibach, F.H., Fonteles, M.C., Pillion, D.J., Karow, A.M.: Glutathione in the isolated perfused rabbit kidney. J. Surg. Res. 17, 228–231 (1974)PubMedCrossRefGoogle Scholar
  6. 6.
    Fonteles, M.C., Pillion, D. J., Jeske, A.H., Leibach, F.H.: Extraction of glutathione by the isolated perfused rabbit kidney. J. Surg. Res. 21, 169–174 (1976)PubMedCrossRefGoogle Scholar
  7. 7.
    Pillion, D.J., Jeske, A.H., Leibach, F.H.: γ-Glutamyl transpeptidase in the urine from an isolated rabbit kidney perfused with and without DMSO. Biochem. Pharmacol. 25, 913–918 (1976)PubMedCrossRefGoogle Scholar
  8. 8.
    Kosower, N.S., Kosower, E.M., Wertheim, B., Correa, W.S.: Diamide, a new reagent for the intracellular oxidation of glutathione to the disulfide. Biochem. Bio-phys. Res. Commun. 37, 593–596 (1969)CrossRefGoogle Scholar
  9. 9.
    Hewitt, J., Pillion, D., Leibach, F.H.: Inhibition of amino acid accumulation in slices of rat kidney cortex by diamide. Biochim. Biophys. Acta 363, 267–276 (1974)PubMedCrossRefGoogle Scholar
  10. 10.
    Reimer, K.A., Jennings, R.B.: Alterations in renal cortex following ischemic injury. PAH uptake by slices of cortex after ischemia or autolysis. Lab. Invest. 25, 176–184 (1971)PubMedGoogle Scholar
  11. 11.
    Pillion, D.J., Leibach, F.H.: The effect of diamide and glutathione on the uptake of α-methyl-D-glucoside by slices of rat kidney cortex. Biochim. Biophys. Acta 382, 246–252 (1975)PubMedCrossRefGoogle Scholar
  12. 12.
    Segal, S., Rosenhagen, M., Rea, C.: Developmental and other characteristics of a-methyl-D-glucoside transport by rat kidney cortex slices. Biochim. Biophys. Acta 291, 519–530 (1973)PubMedCrossRefGoogle Scholar
  13. 13.
    Rea, C., Segal, S.: Dibutyryl cyclic adenosine monophosphate enhancement of a-methyl-D-glucoside accumulation by kidney cortex slices. Biochim. Biophys. Acta 311, 615–624 (1973)PubMedCrossRefGoogle Scholar
  14. 14.
    Weis, I.W., Morgan, K., Phang, J.M.: Cyclic adenosine monophosphate stimulates transport of amino acids in kidney cortex. J. Biol. Chem. 247, 760–764 (1972)Google Scholar
  15. 15.
    Reynolds, R., Segal, S.: Effects of dibutyryl cyclic AMP on a-methyl-D-glucoside accumulation in rabbit kidney. Am. J. Physiol. 226, 791–795 (1974)PubMedGoogle Scholar
  16. 16.
    Pillion, D.J., Leibach, F.H., von Tersch, J., Mendicino, J.: Inhibition of protein kinase activity and amino acid and a-methyl-D-glucoside transport by diamide. Biochim. Biophys. Acta 419, 104–111 (1976)PubMedCrossRefGoogle Scholar
  17. 17.
    Abou-Issa, H., Mendicino, J., Pillion, D.J., Leibach, F.H.: Phosphorylation and dephosphorylation of renal brush border membranes by protein kinase and phospho-protein phosphatase. FEBS Lett. 50, 121–124 (1975)PubMedCrossRefGoogle Scholar
  18. 18.
    Nordlie, R.: Metabolic regulation by multifunctional glucose-6-phosphatase, Curr. Top. Cell. Regul. 8, 33–117 (1974)PubMedGoogle Scholar
  19. 19.
    Schultz, S.G., Curran, P.F.: Coupled transport of sodium and organic solutes. Physiol. Rev. 50, 637–718 (1970)PubMedGoogle Scholar
  20. 20.
    Sies, H., Gerstenecker, C., Summer, K.H., Menzel, H., Flohé, L.: Glutathione-dependent hydroperoxide metabolism and associated metabolic transitions in hemoglobin-free perfused rat liver. In: Glutathione. Flohé, L. et al. (eds.) pp. 261–275. New York: Academic Press 1974Google Scholar
  21. 21.
    Giblin, F.J., Chakrapani, B., Reddy, V.N.: Glutathione and lens epithelial function. Invest. Ophthamol. 15, 381–393 (1976)Google Scholar
  22. 22.
    Harrap, K.R., Jackson, R.C., Riches, P.G., Smith, C.A., Hill, B.T.: The occurrence of protein-bound mixed disulfides in rat tissues. Biochim. Biophys. Acta 310, 104–110 (1973)PubMedGoogle Scholar
  23. 23.
    Mannervik, B., Axelsson, K.: Reduction of disulphide bonds in proteins and protein mixed disulphides catalysed by a thioltransferase in rat liver cytosol. Biochem. J. 149, 785–788 (1975)PubMedGoogle Scholar
  24. 24.
    Pillion, D.J., Moree, L., Rocha, H., Pashley, D., Mendicino, J., Leibach, F.H.: The role of glutathione in renal cortical tissue. Effects of diamide on Na+ and GSSG levels, amino acid transport and Na+-K+-ATPase activity. Mol. and Cell. Biochem. 18, 109–115 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • F. H. Leibach
  • D. J. Pillion
  • J. Mendicino
  • D. Pashley

There are no affiliations available

Personalised recommendations