Skip to main content

Instantaneous Blood Flow Velocity Profiles After Aortic Valve Replacement

  • Chapter
The Arterial System

Abstract

Modern artificial heart valves show good hydrodynamic characteristics when evaluated under in vitro conditions [14, 17, 18, 19, 32]. In vivo, however, after implantation in man — independent of whether they were inserted in a tricuspid, mitral, or aortic position — the hemodynamic properties of heart valve prostheses are less satisfying. Despite sufficiently large geometric orifice areas, important transvalvular pressure gradients were measured, especially during exercise [5, 9, 10]. The “effective orifice area” calculated from the hemodynamic data according to Gorlin’s formula [8] was shown to be only 50%–70% of the geometric value [5, 6, 12, 27]. Aside from the discussion of whether the constant in the Gorlin formula is appropriate for the different types of artificial valves [26], the presence of pressure gradients indicates a hemodynamieally effective stenosis, which cannot be explained on the basis of a small geometric opening area alone. According to the results of in vitro studies in the pulse duplicator system, this energy loss across the valve is most probably caused by eddies, splitting vortices, and turbulence, which originate from the sharp edges of the valve ring, the flat disc, the cage or struts or by heavy distortion of flow by a centrally moving obstacle [1, 3, 14, 17, 28, 33]. This fact is further supported by the clinical observation that in patients with heart valve prostheses even small pressure gradients at rest can increase sharply during exercise despite only modestly elevated transvalvular flows [5, 9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Affeld, K., Mohnhaupt, R.: Turbulenzuntersuchung an Herzklappen. Biomed. Tech. (Berlin) 20 [Suppl.] 73 (1975)

    Google Scholar 

  2. Bergel, D., Clark, C., Schultz, D.L., Tunstall Pedoe, D.S.: Measurement of instantaneous blood flow velocity in major vessels using a thin film anemometer. J. Physiol. (London) 204, 72 (1969)

    Google Scholar 

  3. Björk, V.O., Colin, C: A hydrodynamic comparison between the new tilting disc aortic valve prosthesis (Björk-Shiley) and the corresponding pros-theses of Starr-Edwards, Kay-Shiley, Smelloff-Cutter and Wada-Cutter in the pulse duplicator. Scand. I. Thorac. Cardiovasc. Surg. 4, 31 (1970)

    Article  Google Scholar 

  4. Blackshear, P.L., Forstrom, R., Watters, C., Dorman, F.D.: Effect of flow and turbulence on the formed elements of blood. In: Heart Valves. Brewer, L.A. (ed.). Springfield (Illinois): Thomas 1969 p. 52

    Google Scholar 

  5. Both, A., Haerten, K., Credner, Chr., Fischer, G., Herzer, J., Loogen, F., Lück, J.: Hämodynamische Untersuchungen nach Mitralklappenersatz in einem randomisierten Krankengut. Z. Kardiol. [SuppL] 3, 30 (1976)

    Google Scholar 

  6. Dalichau, H., Huhmann, W., Lichtlen, P., Borst, H.G.: Klinische und hämo-dynamische Untersuchungen über die Brauchbarkeit der Starr-Edwards Diskusklappen in Mitralposition. Thoraxchirurgie 24, 401 (1976)

    CAS  Google Scholar 

  7. Gleichmann, U., Schmidt, H., Sigwart, U., Mertens, H.M., Dalichau, H., Leitz, K., Borst, H.G.: Björk-Shiley oder Lillehei-Kaster Klappe? Vergleichende hämodynamische Untersuchungen zweier Aortenklappenprothesen. Z. Kardiol. [SuppL] 3, 26 (1976)

    Google Scholar 

  8. Gorlin, R., Gorlin, S.G.: Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves and central circulatory shunts. Am. Heart J. 41, 1 (1951)

    Article  PubMed  CAS  Google Scholar 

  9. Grosse, G., Rutsch, W., Krais, T., Michel, U.S., Michel, U., Paeprer, H., Schmutzler, H.: Vergleich hämodynamischer und angiographischer Parameter vor und nach Klappenersatz. Z. Kardiol. [SuppL] 3, 23 (1976)

    Google Scholar 

  10. Hagl, S.: Hämodynamik nach Mitral- und Aortenklappenersatz. Herz 2, 299 (1977)

    Google Scholar 

  11. Hagl, S., Méssmer, K., Pfau, B., Meisner, H.: Influence of stenosis on the velocity profile analyzed by a pulsed Doppler ultrasonic flowmeter. In: Cardiovascular Application of Ultrasound. Reneman, R.S. (ed.). Amsterdam-London: North Holland 1974 p. 216

    Google Scholar 

  12. Huhmann, W., Dalichau, H., Lichtlen, P., Borst, H.G.: Zur Funktionsfähigkeit der Lillehei-Kaster-Klappe in Aortenposition. Thoraxchirurgie 24, 390 (1976)

    CAS  Google Scholar 

  13. Indeglia, R.A., Shea, M.A., Varco, R.L.: Erythrocyte destruction by prosthetic heart valves. Circulation 37/38 [Suppl. II], 86 (1968)

    Google Scholar 

  14. Kaster, R.L., Bonnabeau, R.C., Tanaka, S., Lillehei, C.W.: Comparative analysis of in vitro flow characteristic heart valves. In: Heart Valves. Brewer, L.A. (ed.). Springfield (Illinois): Thomas 1969, p. 137

    Google Scholar 

  15. Knutti, J.W., GUI, R.W., Meindl, J.D., Brody, W.R., Angell, W.W.: Intraoperative blood flow measurements using the pulsed Doppler ultrasonic blood flowmete r. Proc. 26th ACEMB 15, 9.2 (1973)

    Google Scholar 

  16. Köhler, J., Kramer, C: Zum Schließvorgang künstlicher Herzklappen. Acta Medicotechnica 20, 36 (1972)

    Google Scholar 

  17. Köhler, J., Kurz, W.: Modelluntersuchung des Druckverlustes der Björk-Shiley und Lillehei-Kaster Klappen in Aortenposition. Biomed. Techn. (Berlin) 20, [Suppl. 1], 71 (1975)

    Google Scholar 

  18. Kramer, C., Naumann, A., Bleifeld, W., Effert, S.: Über die Durchströmung künstlicher Herzklappen. Thoraxchirurgie 16, 529 (1968)

    CAS  Google Scholar 

  19. Lillehei, C.W., Kaster, R.L., Colemann, M., Block, J.H.: Heart valve replacement with Lülehei-Kaster pivoting disc prosthesis. N.Y. State J. Med. 74, 1426 (1974)

    PubMed  CAS  Google Scholar 

  20. Lynch, P.R., Bove, A.A.: Patterns of blood flow through the intact heart and its valves. In: Heart Valves. Brewer, L.A. (ed.). Springfield (Illinois): Thomas 1969, p. 24

    Google Scholar 

  21. McDonald, D.A.: The velocity profiles in pulsatile blood flow. In: Flow Properties of Blood and Other Biological Systems. Copley, A.L., Stainsby, G. (ed.). London, New York: Pergamon Press 1960, p. 84

    Google Scholar 

  22. Meisner, H., Rushmer, R.F.: Eddy formation and turbulence in flowing liquids. Circ. Res. 12, 455 (1963)

    Google Scholar 

  23. Peronneau, P., Hinglais, J., Pellet, M., Leger, F.: Vélocimètre sanguin par effet Doppler à émission ultra-sonore puisée. L’onde Electrique 50, 3 (1970)

    Google Scholar 

  24. Reuben, S.R., Swalding, J.P., DeLee, G.J.: Velocity profiles in the main pulmonary artery of dogs and man, measured with a thin film resistance anemometer. Circ. Res. 27, 995 (1970)

    Google Scholar 

  25. Roberts, W.C., Fishbein, M.C., Golden, A.: Cardiac pathology after valve replacement by disc prosthesis: A study of 61 necropsy patients. Am. J. Cardiol. 35, 740 (1975)

    Article  PubMed  CAS  Google Scholar 

  26. Shepherd, R.L., Glancy, D.L., Reis, R.L., Epstein, St.E., Morrow, A.G.: Hemodynamic function of the Kay-Shiley prosthetic cardiac valve. Chest 63, 323 (1973)

    Article  PubMed  CAS  Google Scholar 

  27. Sigwart, U., Gleichmann, U., Schmidt, H., Borst, H.G.: Die Lillehei Klappen-prothese: Bemerkungen zur Hämodynamik und -mechanik in vivo. Thorax-chirurgie 24, 397 (1976)

    CAS  Google Scholar 

  28. Smelloff, E.A., Davey, T.B., Kaufman, B.: Patterns of blood flow through artificial valves. In: Heart Valves. Brewer, L.A. (ed.). Springfield (Illinois): Thomas 1969 p. 70

    Google Scholar 

  29. Smith, R.L., Blick, E.F., Coalson, J., Stein, P.D.: Thrombus production by turbulence. J. Appl. Physiol. 32, 261 (1972)

    PubMed  CAS  Google Scholar 

  30. Wetterer, E., Kenner, Th.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer Verlag 1968

    Google Scholar 

  31. Wieting, E.W., Hall, C.W., Liotta, D., DeBakey, M.E.: Dynamic Flow behavior of the natural human aortic valve. Proc. 21th ACEMB, 10, 9-B1 (1968)

    Google Scholar 

  32. Wieting, D.W., Hall, C.W., Liotta, D., DeBakey, M.E.: Dynamic flow behavior of artificial heart valves. In: Heart Valves. Brewer, L.A. (ed.). Springfield (Illinois): Thomas 1969, p. 34

    Google Scholar 

  33. Yellin, EX.: Laminar-turbulent transition process in pulsatile flow. Circ. Res. 19, 791 (1966)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagl, S., Meisner, H., Heimisch, W., Gams, E., Struck, E., Sebening, F. (1978). Instantaneous Blood Flow Velocity Profiles After Aortic Valve Replacement. In: Bauer, R.D., Busse, R. (eds) The Arterial System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67020-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67020-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08897-4

  • Online ISBN: 978-3-642-67020-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics