Advertisement

The Effect of Systolic Rise in Arterial Pressure on Stroke Volume and Aortic Flow

  • H. Reichel
  • K. Baumann

Abstract

In many papers, the effect of arterial end diastolic pressure (afterload) on ventricular function has been studied [4, 5, 8,17, 28]. In all these experiments, afterload was varied before systole. Under conditions in situ, however, the heart encounters changes in pressure which occur during systole. Shortly after the onset of the primary pulse resulting from aortic flow [31], superimposed reflected pulse waves determine the further rise and time course of systolic aortic pressure. Such waves might depress flow and diminish stroke volume. The extent of this effect must depend on the properties of the heart, as far as its pumping function is concerned.

Keywords

Stroke Volume Aortic Pressure Ejection Time Aorta Ascendens Isotonic Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, R.D., Busse, R., Schabert, A., Summa, Y., Wetterer, E.: Methoden der Blutströmungsmessung in Physiologie und Klinik. Wiener Med. Wochenschr. 126, 225–260 (1976)Google Scholar
  2. 2.
    Baumann, KL, Reichel, H.: Time and rate dependence of the inotropic action of noradrenaline in the isolated guinea pig’s atrium. Pflügers Arch. 354, 339–348 (1975)PubMedCrossRefGoogle Scholar
  3. 3.
    Broemser, Ph.: Über die optimalen Beziehungen zwischen Herztätigkeit und physikalischen Konstanten des Gefäßsystems. Z. Biol. 96, 1–10 (1935)Google Scholar
  4. 4.
    Bugge-Asperheim, B., Kill, F.: Cardiac response to increased aortic pressure. Scand. J. Clin. Lab. Invest. 24, 345–360 (1969)PubMedCrossRefGoogle Scholar
  5. 5.
    Bugge-Asperheim, B., Kill, F.: Preloads contractility and afterload as determinants of stroke volume during elevation of aortic blood pressure in dogs. Cardiovasc. Res. 7, 528–541 (1973)CrossRefGoogle Scholar
  6. 6.
    Covell, J.W., Taylor, R.R., Sonnenblick, E.H., Ross, J. (Jr.): Series elasticity in the intact heart. Pflügers Arch. 357, 225–236 (1975)PubMedCrossRefGoogle Scholar
  7. 7.
    Elzinga, G., Westerhof, N.: Pressure and flow generated by the left ventricle against different impedances. Circ. Res. 32, 178–186 (1973)PubMedGoogle Scholar
  8. 8.
    Goodjer, A.V.N., Goodkind, M.J., Landry, A.B.: Ventricular response to a pressure load. Circ. Res. 10, 885–896 (1962)Google Scholar
  9. 9.
    Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. [Biol.] B 126, 136–169 (1938)CrossRefGoogle Scholar
  10. 10.
    Jacob, R., Kissling, G., Ohnhaus, E.E., Peiper, U., Segarra-Domenech, J.: Die „Kontraktilitä“des suffizienten Herzens unter rechtsventrikulärem Schrittmacherantrieb. Arch. Kreislaufforsch. 54, 192–215 (1967)PubMedCrossRefGoogle Scholar
  11. 11.
    Kaufmann, R., Bayer, R., Fürniss, T., Krause, H., Tritthart, H.: Calcium-Movement Controlling cardiac contractility IL Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multicompartment model. J. Mol. Cell. Cardiol. 6, 543–559 (1974)PubMedCrossRefGoogle Scholar
  12. 12.
    Kedem, J., Mahler, Y., Rogel, S.: The effect of heart rate on myocardial contractility during single and paired pulse stimulation in vivo. Arch. Int. Physiol. Biochim. 77, 880–892 (1969)PubMedCrossRefGoogle Scholar
  13. 13.
    Kenner, Th.: Zur Frage der Optimierung in der Abstimmung zwischen Herztätigkeit und Kreislauf. Pacemaker Digest 13, 51–82 (1977)Google Scholar
  14. 14.
    Kenner, Th., Estelberger, W.: Zur Frage der optimalen Abstimmung der Herzkontraktion an die Eigenschaften des Arteriensystems. Verh. Dtsch. Ges. Kreislaufforsch. 42, 132–135 (1976)PubMedGoogle Scholar
  15. 15.
    Kiwull, P., Rueadas, G., Reichel, H., Bleichert, A.: Der Einfluß definierter Druckstöße auf die Dynamik des Schildkrötenherzens. Pflügers Arch. 279, 228–238 (1964)CrossRefGoogle Scholar
  16. 16.
    Koch-Weser, J., Blinks, J.R.: The influence of interval between beats on myocardial contractility. Pharmacol. Rev. 15, 601–657 (1963)PubMedGoogle Scholar
  17. 17.
    Levine, H.J., Forwand, St.A., Mclntyre, K.M., Schechter, E.: Effect of afterload on force velocity relations and contractile element work in the intact dog heart. Cir. Res. 18, 729–744 (1966)Google Scholar
  18. 18.
    Liedtke, A.J., Buoncristiani, J.F., Kirk, E.S., Sonnenblick, E.H., Urschel, Ch.W.: Regulation of cardiac output after administration of isoproterenol and ouabain: interactions of systolic impedance and contractility. Cardiovasc. Res. 6, 325–332 (1972)PubMedCrossRefGoogle Scholar
  19. 19.
    Limbourg, P., Wende, W., Henrich, H., Peiper, U.: Frequenz-inotropie und Frank-Starling-Mechanismus am Hundeherzen in situ unter natürlichem und künstlichem Herzantrieb. Pflügers Arch. 322, 250–263 (1971)PubMedCrossRefGoogle Scholar
  20. 20.
    Lundin, G.: Mechanical properties of cardiac muscle. Act. Physiol. Scand. 7 [Suppl. 20] 7–84 (1944)Google Scholar
  21. 21.
    Noble, M.I.N., Trenchard, D., Guz, A.: Effect of changing heart rate on cardiovascular function in the conscious dog. Circ. Res. 19, 206–213 (1966)Google Scholar
  22. 22.
    Reichel, H.: Kontraktilität und Elastizität des Herzmuskels als Modellvorstellung. Verh. Dtsch. Ges. Kreislaufforsch. 16, 13–15 (1950)Google Scholar
  23. 23.
    Reichel, H.: Muskelphysiologie. Berlin-Heidelberg-New York: Springer 1960Google Scholar
  24. 24.
    Reichel, H., Kapal, E.: Die Mechanik des Herzens bei Änderung des arteriellen Drucks. Z. Biol. 99, 581–589 (1939)Google Scholar
  25. 25.
    Reichel, H., Zimmer, F., Bleichert, A.: Die elastichen Eigenschaften des Skelett- und Herzmuskels in verschiedenen Phasen der Einzelzuckung. Z. Biol. 108, 188–195 (1956)PubMedGoogle Scholar
  26. 26.
    Rumberger, E., Reichel, H.: The force-frequency relationship; a comparative study between warm- and cold blooded animals. Pflügers Arch. 332, 206–217 (1972)PubMedCrossRefGoogle Scholar
  27. 27.
    Sonnenblick, E.H.: Force-velocity relation in mammalian heart muscle. Am. J. Physiol. 202, 931–939 (1962)PubMedGoogle Scholar
  28. 28.
    Sonnenblick, E.H., Downing, S.V.: Afterload as a primary determinant of ventricular performance. Am. J. Physiol. 204, 604–610 (1963)PubMedGoogle Scholar
  29. 29.
    Templeton, G.H., Nardizzi, L.R.: Elastic and viscous stiffness of the canine left ventricle. J. Appl. Physiol. 36, 123–127 (1974)PubMedGoogle Scholar
  30. 30.
    Tritthart, H., Kaufmann, R., Volkmer, H.P., Bayer, R., Krause, H.: Camovement controlling myocardial contractility I. Voltage, current- and time- dependence of mechanical activity under voltage clamp conditions (cat papillary muscles and trabeculae). Pflügers Arch. 338, 207–231 (1973)PubMedCrossRefGoogle Scholar
  31. 31.
    Wetterer, E., Kenner, Th.: Grundlagen der Dynamik des Arterienpulses. Berlin-Heidelberg-New York: Springer 1968Google Scholar
  32. 32.
    Wilcken, D.E.L., Charlier, A.A., Hoffman, J.I.E., Guz, A.: Effects of alteration in aortic impedance on the performance of the ventricles. Circ. Res. 14, 283–293 (1964)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • H. Reichel
    • 1
  • K. Baumann
    • 1
  1. 1.Physiologisches InstitutUniversität HamburgHamburgGermany

Personalised recommendations