Hereditary Coproporphyria: Demonstration of a Genetic Defect in Coproporphyrinogen Metabolism

  • Y. Nordmann
  • B. Grandchamp
Conference paper


Coproporphyrinogen III oxidase is a mitochondrial enzyme (E.C. that catalyzes the conversion of coproporphyrinogen III to protoporphyrinogen IX by decarboxylation and oxidation of two propionyl groups, yielding two vinyl groups (13). Hereditary coproporphyria is a genetic disorder of heme and porphyrin biosynthesis (1). It is inherited as an autosomal dominant and clinically resembles two other forms of genetically transmitted hepatic porphyria, intermittent acute porphyria and porphyria variegata. Excessive excretion of copro1 III in feces is the most striking biochemical abnormality. Increased excretion of copro could result from a hereditary deficiency of the coproporphyrinogen III oxidase.


Levulinic Acid Aminolevulinic Acid Synthetase Activity Intermittent Acute Porphyria Delta Aminolevulinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, H., Goldberg, A.: Hereditary Coproporphyria. Br. Med. J. 1955 / 11, pp. 85–88CrossRefGoogle Scholar
  2. 2.
    Blincoe, C.: The simultaneous separation and washing of erythrocytes. Clin. Chim. Acta 57, 297–300 (1974)PubMedCrossRefGoogle Scholar
  3. 3.
    Boyum, A.: Separation of leukocytes from blood and bone marrow. Scand. J. Clin. Lab. Invest. 21, Suppl. 97 (1968)Google Scholar
  4. 4a.
    Elder, G.H.: Separation of porphyrin methyl esters by two dimensional thinlayer chromatography. J. Chromatogr. 59, 234–236 (1971)PubMedCrossRefGoogle Scholar
  5. 4b.
    Elder, G.H., Evans, J.O., Thomas, N., Cox, R., Brodie, M.J., Moore, M.R., Goldberg, A., Nicholson, D.C.: The Primary Enzyme Defect in Hereditary Coproporphyria. Lancet 1976/11, pp. 1217–1219CrossRefGoogle Scholar
  6. 5.
    Falk, J.E.: Porphyrins and Metalloporphyrins. Amsterdam: Elsevier 1974, pp. 162–163Google Scholar
  7. 6a.
    Grandchamp, B., Phung, N., Grelier, M., Nordmann, Y.: The spectrophotometric determination of uroporphyrinogen I synthetase activity. Clin. Chim. Acta 70, 113–118 (1976)PubMedCrossRefGoogle Scholar
  8. 6b.
    Grandchamp, B., Nordmann, Y.: Decreased lymphocytes Coproporphyrinogen III oxidase in hereditary Coproporphyria. Biochem. Biophys. Res. Commun. 74, 1089–1095 (1977)PubMedCrossRefGoogle Scholar
  9. 7.
    Josephson, A.S., Levere, R.D., Lowenthal, I., Swerdlow, F., Ginsberg, M.: Porphyrin synthesis by cultured lymphocytes. Blood 39, 568–574 (1972)PubMedGoogle Scholar
  10. 8.
    Kaufman, L., Marver, H.S.: Biochemical defects in two types of human hepatic porphyria. N. Engl. J. Med. 283, 954–958 (1970)PubMedCrossRefGoogle Scholar
  11. 9.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  12. 10.
    Marver, H.S., Schmid, R.: The porphyrias. In: The Metabolic Basis of Inherited Disease. Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S. (eds.). New York: McGraw-Hill 1972, pp. 1087–1140Google Scholar
  13. 11.
    Mauzerall, D., Granick, S.: The occurence and determination of delta aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219, 435–446 (1956)PubMedGoogle Scholar
  14. 12.
    Meyer, U.A., Strand, L.J., Doss, M., Rees, A.C., Marver, H.S.: Intermittent acute porphyria. Demonstration of a genetic defect in porphobilinogen metabolism. N. Engl. J. Med. 286, 1277–1282 (1972)PubMedCrossRefGoogle Scholar
  15. 13.
    Sano, S., Granick, S.: Mitochondrial Coproporphyrinogen oxidase and Protoporphyrin formation. J. Biol. Chem. 236, 1173–1180 (1961)PubMedGoogle Scholar
  16. 14.
    Schwartz, S., Berg, M.H., Bossenmaier, I., Dismore, J.: Determination of Porphyrins in biological materials. In: Methods of Biochemical Analysis. Glick, D. (ed.). New York: Interscience 1960, pp. 221–293CrossRefGoogle Scholar
  17. 15.
    Strand, L.J., Felsher, B.F., Redeker, A.G., Marver, H.S.: Heme biosynthesis in intermittent acute porphyria: Decreased hepatic conversion of porphobilinogen to prophyrins and increased delta aminolevulinic acid synthetase. Proc. Natl. Acad. Sci. U.S.A. 67, 1315–1320 (1970)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Y. Nordmann
    • 1
  • B. Grandchamp
    • 1
  1. 1.Department of BiochemistryFaculté de Médécine Xavier Bichat, Hôpital Louis MourierColombesFrance

Personalised recommendations