Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 6 / 6 A))

Abstract

The visual world offers a variety of information that enables animals to orient themselves to their surroundings. One specific feature of the visual information is the wavelength difference of light emittedfrom light sources or reflectedfrom objects. Under natural conditions, a general difference in the spectral composition of light is based upon the fact that light coming directly from light sources, e.g., the sun, sky, and moon, is characterized by its relatively high content of short wavelength (<450nm), whereas light reflected from natural objects such as leaves and soil lacks UV light and is dominated by green and yellow light (>450nm) (Figs. 1). The physical basis of these differences is the preferential absorption by pigment molecules, which—in contrast to atoms and small molecules—have resonances above 300 nm and shift the bulk of the reflected light into the green and orange region of the spectrum. In water, the wavelength range is compressed in the long-wavelength part of the spectrum due to water’s high absorption of red and infrared light (Fig. 1). But in water, too, direct light is relatively richer in shortwave light. Neglecting the finer differences in the spectral content of light, this general distinction between direct and reflected light could be the cue that allows an animal to differentiate such basically different habitats as open spaces, shadowed areas, spaces rich in food, hiding places, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, E.W., Fager, R.S.: The chemistry of vertebrate and invertebrate visual photoreceptors. Topics Bioenergetics 5, 125–196 (1973).

    CAS  Google Scholar 

  • Abramov, I.: Retinal mechanisms of colour vision. In: Handbook of Sensory Physiology, Vol. VII/2. Physiology of Photoreceptor Organs, ed. M.G.F. Fuortes, pp. 567–608. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Adolph, A. R.: Thermal and spectral sensitivities of discrete slow potentials in Limuluseye. J. gen. Physiol. 52, 584–599 (1968).

    Google Scholar 

  • Alawi, A.A., Jennings, V., Grossfield, J., Pak, W.L.: Phototransduction mutants of Drosophila melanogaster. In: The Visual System; Neurophysiology, biophysics and their clinic application, ed. G.B. Arden, pp. 1–21. New York: Plenum Press 1972.

    Google Scholar 

  • Alkon, D.L., Fuortes, M.G.F.: Responses of photoreceptors in Hermissenda. J. gen. Physiol. 60, 631 – 649 (1972).

    Google Scholar 

  • Arnett, D.W.: Spatial and temporal integration properties of units in first optic ganglion of Dipterans. J. Neurophysiol. 35, 429–444 (1972).

    PubMed  CAS  Google Scholar 

  • Arora, H.C: Photodynamic action of light on rotifera. J. Zool. Soc. India 17, 37–47 (1967).

    Google Scholar 

  • Arvanitaki, A., Chalazonitis, N.: Réactions bioelectrique neuroniques à la photoactivation spécifique d’une hâme-proteine et d’une caroténe-proteine. Arch. Sci. Physiol. 3, 27–44 (1949).

    CAS  Google Scholar 

  • Arvanitaki, A., Chalazonitis, N.: Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells in Aplysia). In: Nervous Inhibition, ed. E. Florey, pp. 194–231. New York: Pergamon Press 1961.

    Google Scholar 

  • Autrum, H.: Colour vision in Man and Animals. Naturwissenschaften 55, 10–18 (1968).

    PubMed  CAS  Google Scholar 

  • Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. vergl. Physiol. 60, 450–477 (1968).

    Google Scholar 

  • Autrum, H., Thomas, J.: Comparative physiology of colour vision in animals. In: Handbook of Sensory Physiology, ed. R. Jung, Vol. VII/3A, Central Processing of Visual Information, pp. 661–692. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Autrum, H., v. Zwehl, V.: Spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. vergl. Physiol. 48, 357–384 (1964).

    Google Scholar 

  • Baumann, F.: Electrophysiological properties of the honey bee retina. In: The Compound Eye and Vision of Insects, ed. G.A. Horridge, pp. 53–74. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Baylor, E.R.: Diurnal migration of plancton crustaceans. In: Recent Advances in Invertebrate Physiology, ed. B.T. Scheer, p. 21–35. University of Oregon: Eugene Publications 1957.

    Google Scholar 

  • Bennett, R., Ruck, P.: Spectral sensitivities of dark- and light adapted Notonectacompound eyes. J. Insect Physiol. 16, 83–88 (1970).

    Google Scholar 

  • Bennett, R., Tunstall, J., Horridge, G. A.: Spectral sensitivity of single retinula cells of the Locust. Z. vergl. Physiol. 55, 195–206 (1967).

    Google Scholar 

  • v. Berg, E., Schneider, G.: The spectral sensitivity of the dark adapted eye of Helix pomatiaL. Vision Res. 12, 2151–2152 (1972).

    Google Scholar 

  • Bernard, G.D.: Evidence for visual function of corneal interference filters. J. Insect Physiol. 17, 2287 – 2309 (1971).

    PubMed  CAS  Google Scholar 

  • Bernard, G.D., Miller, W.H.: Interference filters in the cornea of Diptera. Invest. Ophthalmol. 7, 416 – 434 (1968).

    PubMed  CAS  Google Scholar 

  • Bernhard, C.G.: Light transmission and its regulation in the compound eye. Med. Biol. 17, 100–107 (1967).

    CAS  Google Scholar 

  • Bernhard, C.G., Gemne, G., Moller, A.R.: Modification of specular reflexion and light transmission by biological surface structures. Quart. Rev. Biophys. 1, 89–105 (1968).

    CAS  Google Scholar 

  • Bernhard, C.G., Gemne, G., Sällström, J.: Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. vergl. Physiol. 67, 1–25 (1970).

    Google Scholar 

  • Bernhard, C.G., Miller, W.H.: Interference filters in the corneas of Diptera. Invest. Ophthalm. 7, 416 – 434 (1968).

    Google Scholar 

  • Bernhard, C.G., Miller, W.H., Moller, A. R.: Function of the corneal nipples in the compound eyes of insects. Acta. physiol. scand. 58, 381–382 (1963).

    PubMed  CAS  Google Scholar 

  • Bernhard, C.G., Miller, W. H., Møller, A. R.: The insect corneal nipple array—a biological broad-band impedance transformer that acts as an antireflection coating. Acta, physiol. scand. 63, Suppl. 243, 1–79 (1965).

    Google Scholar 

  • Bertholf, L.M.: Reactions of the honey bee to light. J. Agr. Res. 42, 379–419 (1931a).

    Google Scholar 

  • Bertholf, L.M.: The distribution of stimulative efficiency in the ultraviolet spectrum for the honey bee. J. Agr. Res. 43, 703–713 (1931b).

    Google Scholar 

  • Bertholf, L.M.: The extend of the spectrum for Drosophilaand the distribution of stimulative efficiency in it. Z. vergl. Physiol. 18, 32–64 (1932).

    Google Scholar 

  • Bertrand, D., Perrelet, A., Baumann, F.: Propriétés physiologiques des cellules pigmentaires de l’œil du faux bourdon. J. Physiol. (Paris) 65, 102 (1972).

    Google Scholar 

  • Bishop, L.G.: Spectral response of single neurons recorded in the optic lobes of the housefly and blowfly. Nature (Lond.) 219, 1372–1373 (1968).

    PubMed  CAS  Google Scholar 

  • Bishop, L.G.: A search for colour encoding in the responses of a class of fly interneurons. Z. vergl. Physiol. 64, 355–371 (1969).

    Google Scholar 

  • Bishop, L.G.: The spectral sensitivity of motion detector units recorded in the optic lobe of the honey bee. Z. vergl. Physiol. 70, 374–381 (1970).

    Google Scholar 

  • Bishop, L.G.: A note on the preservation of chromatic information in the lamina of the worker honey bee (Apis mellifera). J. comp. Physiol. 77, 233–283 (1972).

    Google Scholar 

  • Bishop, L. G.: An ultraviolet photoreceptor in a dipteran compound eye. J. comp. Physiol. 91,267–275 (1974).

    Google Scholar 

  • Block, G.D., Smith, J.T.: Cerebral photoreceptors in Aplysia. Comp. Biochem. Physiol. 46A, 115–121 (1973).

    Google Scholar 

  • Boltt, R.E., Ewer, D.W.: Studies on myoneural physiology of Echinodermata: IV The lantern retractor muscle of Par echinus, responses to stimulation by light. J. exp. Biol. 40, 713–726 (1963).

    PubMed  CAS  Google Scholar 

  • Boolootian, R.A.: Physiology of Echinodermata, 822 p. New York-London: J. Wiley 1967.

    Google Scholar 

  • Boschek, C.B.: On the structure and synaptic organization of the first optic ganglion in the fly. Z. Naturforsch. 25, 5 (1970).

    Google Scholar 

  • Bradshaw, W.E.: Action spectra of photoperiodic response in a diapausing mosquito. Science 175, 1361–1362 (1972).

    PubMed  CAS  Google Scholar 

  • Brady, J.: The physiology of insect circadian rhythms. Advanc. Insect Physiol. 10, 1–115 (1974).

    Google Scholar 

  • Braitenberg, V.B.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).

    CAS  Google Scholar 

  • Brandenburger, J. L.: Two new kinds of retinal cells in the eye of a snail Helix aspersa. J. Ultrastruct. Res. 50, 216–230 (1975).

    Google Scholar 

  • Brown, H.M., Ito, H., Ogden, T.E.: Spectral sensitivity of the planarian ocellus. J. gen. Physiol. 51,255 – 260 (1968).

    PubMed  CAS  Google Scholar 

  • Brown, H.M., Cornwall, M.C.: Spectral correlates of a quasi-stable depolarization in barnacle photoreceptors following red light. J. Physiol. (Lond.) 248, 555–578 (1975).

    PubMed  CAS  Google Scholar 

  • Bruckmoser, P.: Die spektrale Empfindlichkeit einzelner Sehzellen des Rückenschwimmers Notonecta glaucaL. (Heteroptera) Z. vergl. Physiol. 59, 187–204 (1968).

    Google Scholar 

  • Bruno, M.S., Goldsmith, T.H.: Rhodopsin of the blue crab Callinectes: Evidence for absorption differences in vitro and in vivo. Vision Res. 14, 653—ff. (1974).

    PubMed  CAS  Google Scholar 

  • Bruno, M.S., Kennedy, D.: Spectral sensitivity of photoreceptor neurons in the sixth ganglion of the crayfish. Comp. Biochem. Physiol. 6, 41–46 (1962).

    Google Scholar 

  • Bruno, M.S., Mote, M.J., Goldsmith, T.H.: Spectral absorption and sensitivity measurements in single ommatidia of the green crab, Carcinus. J. comp. Physiol. 82, 151–163 (1973).

    Google Scholar 

  • v. Buddenbrock, W.: Einige Bemerkungen zum augenblicklichen Stand der Frage nach dem Farbensinn der Tiere. Zool. Anz. 84, 189–201 (1929).

    Google Scholar 

  • Bullock, Th. H., Horridge, G.A.: Structure and function in the nervous system of invertebrates. San Francisco-London: W.H.Freeman and Co. 1965.

    Google Scholar 

  • Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol. 16, 86–108 (1962).

    Google Scholar 

  • Burkhardt, D.: Colour discrimination in insects. Advanc. Insect Physiol. 2, 131–203 (1964).

    CAS  Google Scholar 

  • Burkhardt, D.: Electrophysiological studies on the compound eye of a stalked-eye fly, Cyrtodiopsis dalmanni(Diopsidae, Diptera). J. comp. Physiol. 81, 203–214 (1972).

    Google Scholar 

  • Burkhardt, D., de la Motte, J.: Electrophysiological studies on the eyes of Diptera, Mecoptera and Hymenoptera. In: Information Processing in the Visual Systems of Arthropods, ed. R. Wehner, pp. 148–153. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Burr, A. H., Burr, C.: The amphid of the Nematode Oncholaimus vesicarius: Ultrastructural evidence for a dual function as chemoreceptor and photoreceptor. J. Ultrastructure Res. 51, 1–15 (1975).

    CAS  Google Scholar 

  • Butler, R.: The identification and mapping of spectral cell types in the retina of Periplaneta americana. Z. vergl. Physiol. 72, 67–80 (1971).

    Google Scholar 

  • Carricaburu, P., Chardenot, P.: Spectres d’absorption de la cornée de quelques arthropodes. Vision Res. 7, 43–50 (1967).

    PubMed  CAS  Google Scholar 

  • Carlson, S.D., Philipson, B.: Microspectrophotometry of the dioptric apparatus and compound rhabdom of the moth Manduca sextaeye. J. Insect Physiol. 18, 1721–1731 (1972).

    PubMed  CAS  Google Scholar 

  • Chapman, R.M., Lall, A.B.: Electroretinogram characteristics and the spectral mechanisms of the median ocellus and the lateral eye in Limulus polyphemus. J. gen. Physiol. 50, 2267–2287 (1967).

    PubMed  CAS  Google Scholar 

  • Chappell, R.L., DeVoe, R.D.: Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies. J. gen. Physiol. 65, 399–419 (1975).

    PubMed  CAS  Google Scholar 

  • Checcucci, A.: Molecular sensory physiology of Euglena. Naturwissenschaften 63, 412–417 (1976).

    PubMed  CAS  Google Scholar 

  • Checcucci, A., Colombetti, R., Ferrara, R., Lenci, F.: Action spectra for photoaccumulation of green and colourless Euglena: Evidence for identification of receptor pigments. Photochem. Photobiol. 23, 51–54 (1976).

    PubMed  CAS  Google Scholar 

  • Chi, C., Carlson, S.D.: Close apposition of photoreceptor cell axons in the house fly. J. Insect Physiol. 22, 1153–1157 (1976).

    PubMed  CAS  Google Scholar 

  • Clark, E.D., Kimeldorf, D. J.: Tentacle response of the sea anemone Anthopleura xanthogrammato UV and visible radiations. Nature (Lond.) 227, 856–857 (1970).

    PubMed  CAS  Google Scholar 

  • Clayton, R.K.: Phototaxis in microorganisms. In: Photophysiology, ed. A.C. Giese, Vol. II, pp. 50–77. New York: Academic Press 1964.

    Google Scholar 

  • Clayton, R.K.: Light and living matter: A guide to the study of photobiology. Vol. 2; The biological part. New York: McGraw Hill, 1971.

    Google Scholar 

  • Clement, P.: Les influences de la lumière sur les Rotifères. Thèse Doctorat Etat, Université Lyon, France (1976).

    Google Scholar 

  • Cole, W. H.: Circus movement of Limulusand the tropism theory. J. gen. Physiol. 5, 417–426 (1922).

    Google Scholar 

  • Cole, W.H.: The effect of laboratory age upon the phototrophic reaction of Limulus. J. gen. Physiol. 6, 295–297 (1923).

    Google Scholar 

  • Condit, H.R., Grum, F.: Spectral energy distribution of daylight. J. Opt. Soc. Amer. 54,937–944 (1964).

    Google Scholar 

  • Crane, J.: Comparative biology of salticid spiders at Rancho Grande, Venezuela Part IV. An analysis of display. Zoologica 34, 159–214 (1949).

    Google Scholar 

  • Croll, N. A.: The phototactic response and the spectral sensitivity of Chromadorina viridis(Nematoda, Chromadorina) with a note on the nature of the paired pigment spots. Nematologica (Leiden), 12, 610–614 (1966).

    CAS  Google Scholar 

  • Crony-Dillon, J.P.: Spectral sensitivity of the scallop Pecten maximus. Science 151, 345–346 (1966).

    Google Scholar 

  • Daan, N., Ringelberg, J.: Further studies on the positive and negative photo tactic reaction of Daphnia magnaStraus. Netherland. J. Zool. 19, 525–540 (1969).

    Google Scholar 

  • Daumer, K.: Reizmetrische Untersuchungen des Farbensehens der Bienen. Z. vergl. Physiol. 38, 413 – 478 (1956).

    Google Scholar 

  • Daumer, K.: Blumenfarben, wie sie die Bienen sehen. Z. vergl. Physiol. 41, 49–110 (1958).

    Google Scholar 

  • Daumer, K.: Kontrastempfindlichkeit der Bienen für „weiß“verschiedenen UV-Gehalts. Z. vergl. Physiol. 46, 321–335 (1963).

    Google Scholar 

  • Dembrowski, J.: On conditioned reactions of Paramecium caudatumtowards light. Acta biol. exp. 15, 5–17 (1950).

    Google Scholar 

  • Dennis, M.J.: Electrophysiology of the visual system in a nudibranch mollusc. J. Neurophysiol. 30, 1439–1465 (1967).

    PubMed  CAS  Google Scholar 

  • Detwiler, P.B.: Multiple light-evoked conductance changes in the photoreceptors of Hermissenda crassicornis. J. Physiol. (Lond.) 256, 691–708 (1976).

    PubMed  CAS  Google Scholar 

  • De Valois, R. L.: Central mechanisms of colour vision. In: Handbook of Sensory Physiology, ed. R. Jung, pp. 209–254, Vol. VII/3 A) Central processing of visual information. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • DeValois, R.L., Abramov, J.: Colour Vision. Ann. Rev. Psychol. 17, 337–362 (1966).

    Google Scholar 

  • DeVoe, R.D.: Dual sensitivity of cells in the wolf spider eyes at ultraviolet and visible wavelength of light. J. gen. Physiol. 59, 247–269 (1972).

    Google Scholar 

  • DeVoe, R.D.: Ultraviolet and green receptors in principal eyes of jumping spiders. J. gen. Physiol. 66, 193—ff. (1975).

    PubMed  Google Scholar 

  • DeVoe, R.D., Small, R. J. W., Zvargulis, J.E.: Spectral sensitivities of wolf spider eyes. J. gen. Physiol. 54, 1–32 (1969).

    Google Scholar 

  • Diehn, B.: Two perpendicularly oriented pigment systems involved in phototaxis of Euglena. Nature (Lond.) 221, 366–367 (1969a).

    Google Scholar 

  • Diehn, B.: Action spectra of the phototactic responses in Euglena. Biochim. biophys. Acta (Amst.) 177, 136–143 (1969b).

    PubMed  CAS  Google Scholar 

  • Diehn, B.: Photomovement of microorganisms. Photochem. Photobiol. 23, 455–456 (1976).

    PubMed  CAS  Google Scholar 

  • Dörrscheidt-Käfer, M.: Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge von Calliphora erythrocephala. J. comp. Physiol. 81, 309–340 (1972).

    Google Scholar 

  • Donner, K.O.: On vision in Pontoporeia affinisand P.femorata(Crustacea, Amphipoda). Soc. sci. fenn. Comment, biol. 32, 1–17 (1971).

    Google Scholar 

  • Dowling, J.E., Chappell, R.L.: Neural organization of the median ocellus of the dragonfly II. Synaptic structure. J. gen. Physiol. 60, 148 (1972).

    PubMed  CAS  Google Scholar 

  • Drachev, L.A., Kaulen, A.D., Ostroumov, S.A., Skulachev, V.P.: Electrogenesis by bacteriorhodopsin incorporated in a planar phospolipid membrane. FEBS Letters 39, 43–45 (1974).

    PubMed  CAS  Google Scholar 

  • Drees, O.: Untersuchungen über die angeborenen Verhaltensweisen bei Springspinnen (Salticidae). Z. Tierpsychol. 9, 169–207 (1952).

    Google Scholar 

  • Duelli, P., Wehner, R.: The spectral sensitivity of polarized light orientation in Cataglyphis bicolor(Formicidae, Hymenoptera). J. comp. Physiol. 86, 37–53 (1973).

    Google Scholar 

  • Eakin, R.M., Westfall, J.A.: Ultrastructure of the eye of the Rotifer Asplanchna brightwelli. J. Ultrastruct. Res. 12, 46–62 (1965).

    PubMed  CAS  Google Scholar 

  • Eaton, J. L.: Spectral sensitivity of the ocelli of the adult cabbage looper moth, Trichoplusia ni. J. comp. Physiol. 109, 17–24 (1976).

    Google Scholar 

  • Eaton, P.B., Brown, C.M.: Photoreception in the nauplius eye of Pandalus borealisKröger: Decapoda, Crustacea. Canad. J. Zool. 48, 119–121 (1970).

    Google Scholar 

  • Eckert, M.: Die spektrale Empfindlichkeit des Komplexauges von Musca(Bestimmungen aus Messungen der optomotorischen Reaktion). Kybernetik 9, 145–156 (1971).

    PubMed  CAS  Google Scholar 

  • Edrich, W.: Die Rolle einzelner Farbrezeptortypen bei den verschiedenen Lichtreaktionen der Biene. Verh. dtsch. Zool. Ges. 70,236(1977).

    Google Scholar 

  • Eguchi, E.: Fine structure and spectral sensitivities of retinular cells in the dorsal sector of the compound eyes in the dragonfly. Z. vergl. Physiol. 71, 201–218 (1971).

    Google Scholar 

  • Eguchi, E., Waterman, T.H., Akiyma, J.: Localization of the violet and yellow receptor cells in the crayfish retinula. J. gen. Physiol. 62, 355–375 (1973).

    PubMed  CAS  Google Scholar 

  • Erber, J., Menzel, R.: Visual interneurons in the mediam photocerebrum in the bee. J. comp. Physiol. 121, 65–77 (1977)

    Google Scholar 

  • Feinleib, M.E., Curry, G. M.: The nature of the photoreceptor in phototaxis. In: Handbook of Sensory Physiology, ed. W. R. Loewenstein, Vol. I, pp. 366–395. Principles in Receptor Physiology. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Fernandez, H.R.: Spectral sensitivity and visual pigment of the compound eye of the galatheid crab Pleuroncodes planipes. Marine Biol. 20, 148–153 (1973).

    Google Scholar 

  • Fingerman, M., Brown, F.A.: A “Purkinje-shift” in insect vision. Science 116, 171–172 (1952).

    PubMed  CAS  Google Scholar 

  • Fleißner, G.: Untersuchungen zur Sehphysiologie der Skorpione. Verh. dtsch. Zool. Ges. Innsbruck, 375–380 (1968).

    Google Scholar 

  • Fleißner, G.: A new biological function of the scorpion’s lateral eyes as receptors of Zeitgeber stimuli. Proc. 6th int. Arachn. Congr. 1974 (1975).

    Google Scholar 

  • Folger, H.T.: A quantitative study of reactions to light in Amoeba. J. exp. Zool. 41, 261–291 (1925).

    CAS  Google Scholar 

  • Fraenkel, G.S., Gunn, D.L.: The orientation of animals. New York: Cover Publ. Inc. 1961.

    Google Scholar 

  • Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics, eds. A. Snyder, R. Menzel, pp. 98–125. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Friederichs, H.F.: Beiträge zur Morphologie und Physiologie der Sehorgane der Cicindelliden (Col.). Z. Morph. Ökol. Tiere 21, 1–172 (1931).

    Google Scholar 

  • Frisch, K.von: Der Farbensinn und Formensinn der Biene. Zool. J. Physiol. 37, 1–238 (1914).

    Google Scholar 

  • Frisch, K.von: Tanzsprache und Orientierung der Bienen. Berlin-Heidelberg-New York: Springer 1965.

    Google Scholar 

  • Frisch, K. von, Kupelwieser, E.M.: Über den Einfluß der Lichtfarbe auf die phototaktische Reaktion niederer Krebse. Biol. Zentralbl. 33, 517–552 (1913).

    Google Scholar 

  • Friza, F.: Zur Frage der Färbung und Zeichnung des facettierten Insektenauges. Z. vergl. Physiol. 8, 289–336 (1929).

    Google Scholar 

  • Fukushi, T.: Classical conditioning to visual stimuli in the housefly, Musca domestica. J. Insect Physiol. 22, 361–364 (1976).

    Google Scholar 

  • Geethabali, S., Pampapathi Rao, K.: A metasomatic neural photoreceptor in the scorpion. J. exp. Biol. 58, 189–196 (1973).

    Google Scholar 

  • Gillary, H.L.: Light-evoked electrical potentials from the eye and optic nerve of Strombus: Response waveform and spectral sensitivity. J. exp. Biol. 60, 383–396 (1974).

    PubMed  CAS  Google Scholar 

  • Gillary, H.L., Wolbarsht, L.M.: Electrical responses from the eye of a snail. Rev. canad. Biol. 26,125 – 134 (1967).

    PubMed  CAS  Google Scholar 

  • Gogala, M.: Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaroniusScop. (Neuroptera, Ascalaphidae). Z. vergl. Physiol. 57, 232–243 (1967).

    Google Scholar 

  • Goldsmith, T.H.: The colour vision of insects. In: Light and Life, eds. W.D. McElroy, B. Glass, pp. 771–794. Baltimore: Johns Hopkins Press, 1961.

    Google Scholar 

  • Goldsmith, T.H.: The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, ed. H.J.A. Dartnall, Vol. VII/1, pp. 685–719, Photochemistry of Vision. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Goldsmith, T.H., Bernard, G.D.: The visual system of insects (Chapter 5) In: Physiology of Insecta, ed. M. Rockstein, pp. 175–271, New York-London: Academic Press 1974.

    Google Scholar 

  • Goldsmith, T.H., Fernandez, H.R.: Comparative studies of crustacean spectral sensitivity. Z. vergl. Physiol. 60, 156–175 (1968).

    Google Scholar 

  • Goldstein, E.B., Williams, T.P.: Calculated effects of “screening pigments”. Vision Res. 6, 39–50 (1966).

    PubMed  CAS  Google Scholar 

  • Goodman, L.J.: The structure and function of the insect dorsal ocellus. Advanc. Insect Physiol. 9, 97 – 195 (1970).

    Google Scholar 

  • Gorman, A. L. F., McReynolds, J.S.: Hyperpolarizing and depolarizing receptor potentials in the scallop eye. Science 165, 309–310 (1969).

    PubMed  CAS  Google Scholar 

  • Gould, J.L.: Honey bee recruitment: The dance-language controverse. Science 189, 685–693 (1975).

    PubMed  CAS  Google Scholar 

  • Gouras, P.: S-Potentials. In: Handbook of Sensory Physiology, ed, M.G.F. Fuortes, Vol. VII/2. Physiology of photoreceptor organs, pp. 513–530. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Grabowski, U.: Experimentelle Untersuchungen über das angebliche Lernvermögen von Paramecium. Z. Tierpsychol. 2, 265–282 (1939).

    Google Scholar 

  • Graham, C.H., Hartline, H.K.: The response of single visual sense cells to lights of different wavelengths. J. gen. Physiol. 18, 917–931 (1935).

    PubMed  CAS  Google Scholar 

  • Gribakin, F.G.: Cellular basis of colour vision in the honey bee. Nature (Lond.) 233, 639–641 (1969).

    Google Scholar 

  • Gribakin, F.G.: The distribution of the long wave photoreceptors in the compound eye of the honey bee as revealed by selective osmic staining. Vision Res. 12, 1225–1230 (1972).

    PubMed  CAS  Google Scholar 

  • Gross, A.: The reactions of arthropods to monochromatic lights of equal intensities. J. exp. Zool. 14, 467–513 (1913).

    CAS  Google Scholar 

  • Hagiwara, S., Morita, H.: Electrotonic transmission between two nerve cells in the leech ganglion. J. Neurophysiol. 25, 721–731 (1962).

    PubMed  CAS  Google Scholar 

  • Hairston, N.G.: Photoprotection by carotenoid pigments in copepod Diaptomus nevadensis. Proc. nat. Acad. Sci. USA 73, 971 (1976).

    PubMed  CAS  Google Scholar 

  • Hamasaki, D.J.: The ERG-determined spectral sensitivity of the Octopus. Vision Res. 8, 1013–1021 (1968).

    PubMed  CAS  Google Scholar 

  • Hamdorf, K., Gogala, M.: Photoregeneration und Bereichseinstellung der Empfindlichkeit beim UV-Rezeptor. J. comp. Physiol. 86, 231–245 (1973).

    Google Scholar 

  • Hamdorf, K., Höglund, G., Langer, H.: Mikrophotometrische Untersuchungen an der Retinula des Nachtschmetterlings Deilephila elpenor. Verh. dtsch. Zool. Ges. 65, 276–281 (1972).

    Google Scholar 

  • Hamdorf, K., Schwemer, J.: Photoregeneration and adaptation process in insect photoreceptors. In: Photoreceptor Optics, eds. A.W. Snyder, R. Menzel, pp. 263–289. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Hamdorf, K., Schwemer, J., Täuber, K.: Der Sehfarbstoff, die Absorption der Rezeptoren und die spektrale Empfindlichkeit der Retina von Eledone moschata. Z. vergl. Physiol. 60, 375–415 (1968).

    Google Scholar 

  • Hand, W. G.: Photostatic orientation by the marine dinoflagellate Gyrodinium dorsum. I. A mechanism model. J. exp. Zool. 174, 33–38 (1970).

    Google Scholar 

  • Hand, W.G., Forward, R., Davenport, D.: Short term photic regulation of a receptor mechanism in a dinoflagellate. Biol. Bull. 133, 150–165 (1967).

    Google Scholar 

  • Hara, T., Hara, R.: Cephalopod retinochrome. In: Handbook of Sensory Physiology, ed. H.J.A. Dartnall, Vol. VII/1, pp. 720–746. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Haragsim, O., Pospisil, J.: Photopositive response of field-bees and drones to monochromatic light. Acta ent. bohemoslov. 66, 1–8 (1969).

    Google Scholar 

  • Harris, W. A., Stark, W., Walker, J. A.: Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. (Lond.) 256, 415–439 (1976).

    PubMed  CAS  Google Scholar 

  • Hartline, H. K., Graham, C.H.: Nerve impulses from single receptors in the eye. J. cell. comp. Physiol. 1, 277–295 (1932).

    Google Scholar 

  • Hartline, H.K., Wagner, G., MacNichol, E.F.: The peripheral origin of nervous activity in the visual system. Cold Spr. Harb. Symp. quant. Biol. 17, 125–141 (1952).

    CAS  Google Scholar 

  • Hasselmann, E.M.: Über die relative spektrale Empfindlichkeit von Käfer- und Schmetterlingsaugen bei verschiedenen Helligkeiten. Zool. J. Physiol. 69, 537–576 (1962).

    Google Scholar 

  • Heberdey, R.F.: Der Farbensinn helladaptierter Daphnien. Biol. Zentralbl. 56, 207–319 (1936).

    Google Scholar 

  • Heberdey, R.F.: Das Unterscheidungsvermögen von Daphniafür Helligkeiten farbiger Lichter. Z. vergl. Physiol. 31, (1), 89–111 (1948).

    CAS  Google Scholar 

  • Hecht, S.: The relation between the wavelength of light and its effect on the photosensory process. J. gen. Physiol. 3, 375–390 (1921).

    PubMed  CAS  Google Scholar 

  • Heintz, E.: La question de la sensibilité des abeilles à l’ultraviolet. Insect Soc. 6, 223–229 (1959).

    Google Scholar 

  • Heisenberg, M.: Comparative behavioural studies on two visual mutants of Drosophila. J. comp. Physiol. 80, 119–136(1972).

    Google Scholar 

  • Heisenberg, M., Buchner, E.: The role of retinula cell types in visual behaviour of Drosophila melanogaster. J. comp. Physiol. 117, 127–162 (1977).

    Google Scholar 

  • v. Helversen, O.: Theoretische Untersuchungen zum Farbensehen der Insekten. Diploma-Thesis, Universität Freiburg (1967).

    Google Scholar 

  • v. Helversen, O.: Untersuchungen zum Farbensehen der Honigbiene. Dissertation, Universität Freiburg (1970).

    Google Scholar 

  • v. Helversen O.: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. comp. Physiol. 80, 439–472 (1972).

    Google Scholar 

  • v. Heiversen, O., Edrich, W.: Der Polarisationsempfänger im Bienenauge: Ein Ultraviolettrezeptor. J. comp. Physiol. 94, 33–47 (1974).

    Google Scholar 

  • Hertel, H.: Analyse der spektralen Empfindlichkeit von Asplanchna priodontamit Hilfe der phototakti-schen Reaktion. Diploma Thesis, Techn. Hochschule Darmstadt (1972).

    Google Scholar 

  • Hertel, H.: Aspekte zur Photorezeption von Artemia salina. Verh. dtsch. Ges. Zool. Erlangen (1977).

    Google Scholar 

  • Hess, C.: Untersuchungen über den Lichtsinn bei Echinodermen. Pflüg. Arch. ges. Physiol. 160, 1–26 (1915).

    Google Scholar 

  • Hildebrand, E.: Untersuchungen zur Wirkung ultravioletten Lichts auf die elektrischen Eigenschaften der Zellmembran einiger Protozoen. Dissertation Techn. Hochschule Aachen (1969).

    Google Scholar 

  • Hildebrand, E.: Elektrophysiologische Untersuchungen der Rezeptoreigenschaften von Protozoen. Verh. dtsch. Zool. Ges. (64. Tag) 182–186 (1970).

    Google Scholar 

  • Hildebrand, E.: What does Halobacteriumtell us about photoreception? Biophys. Struct. Mech. 3,69 – 77 (1977).

    PubMed  CAS  Google Scholar 

  • Hildebrand, E., Dencher, N.: Photophobische Reaktionen von Halobacterium halobiumund ihre Beziehung zum Retinal-Proteinkomplex der Zellmembran. Ber. dtsch. Botan. Ges. 87, 93–99 (1974).

    Google Scholar 

  • Hildebrand, E., Dencher, N.: Two photosystems controlling behavioural responses of Halobacterium halobium. Nature (Lond.) 257, 46–48 (1975).

    PubMed  CAS  Google Scholar 

  • Hillman, P., Hochstein, S., Minke, B.: A visual pigment with two physiologically active stable states. Science 175, 1486–1488 (1972).

    PubMed  CAS  Google Scholar 

  • Hillman, P., Hochstein, S., Dodge, T.A., Knight, B.W., Minke, B.: Rapid dark recovery of the invertebrate early receptor potential. J. gen. Physiol. 62, 77–86 (1973).

    PubMed  CAS  Google Scholar 

  • Hisano, N., Tateda, H., Kuwabara, M.: Photosensitive neurons in the marine pulmonate mollusc Onchidium verruculatum. J. exp. Biol. 57, 651–660 (1972a).

    PubMed  CAS  Google Scholar 

  • Hisano, N., Tateda, H., Kuwabara, M.: An electrophysiological study of the photoexcitative neurons of Onchidium verruculatumin situ. J. exp. Biol. 57, 661–672 (1972b).

    PubMed  CAS  Google Scholar 

  • Hitchcock, L.jr.: Colour sensitivity of the Amoebarevisited. J. Protozool. 8, 322–324 (1961).

    Google Scholar 

  • Hochstein, S., Minke, B., Hillman, P.: Antagonistic components of the late receptor potential in the barnacle photoreceptor arising from different stages of the pigment process. J. gen. Physiol. 62, 105–128 (1973).

    PubMed  CAS  Google Scholar 

  • Homann, H.: Beitrag zur Physiologie der Spinnenaugen, I und II. Z. vergl. Physiol. 7, 201–268 (1928).

    Google Scholar 

  • Horridge, G. A.: Perception of polarization plane, colour and movement in two dimension by the crab Carcinus. Z. vergl. Physiol. 55, 207–224 (1967).

    Google Scholar 

  • Horridge, G.A.: Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62, 1–37 (1969).

    Google Scholar 

  • Horridge, G.A.: The compound eye of insects. Sci. Amer. 237, 108–121 (1977).

    Google Scholar 

  • Horridge, G.A., Mimura, K.: Fly photoreceptors I. Physical separation of two visual pigments in Calliphoraretinula cells 1–6. Proc. roy. Soc. B 190, 211–224 (1975).

    CAS  Google Scholar 

  • Horridge, G. A., Mimura, K., Tsukahara, Y.: Fly photoreceptors. Spectral and polarized light sensitivity in the drone fly Eristalis tenax. Proc. roy. Soc. B 190, 225–237 (1975).

    CAS  Google Scholar 

  • Howell, C.D.: The response to light in the earthworm Pheretima agrestis, Goto and Hatai, with special reference to the function of the nervous system. J. exp. Zool. 81, 231–259 (1939).

    Google Scholar 

  • Hu, K.G., Stark, W. S.: Specific receptor input into spectral preference in Drosophila. J. comp. Physiol. 121,241–252(1977).

    Google Scholar 

  • Hubbard, R., Wald, G.: Visual pigment of horseshoe crab Limulus polyphemus. Nature (Lond.) 186, 212—ff. (1960).

    PubMed  CAS  Google Scholar 

  • Hughes, H.P.J.: The spectral sensitivity and absolute threshold of Onchidorus fusca. J. exp. Biol. 52, 609–618 (1970).

    Google Scholar 

  • Hyatt, G.W.: Physiological and behavioural evidence for colour discrimination by fiddler crabs. In: Physiological Ecology of Estuarine Organisms, ed. J. Vernberg. University of South Carolina Press, 1973.

    Google Scholar 

  • Ilse, D.: Colour discrimination in the dronefly Eristalis tenax. Nature (Lond.) 163, 255–256 (1949).

    PubMed  CAS  Google Scholar 

  • Jander, R., Barry, C.K.: Die phototaktische Gegenkopplung von Stirnocellen und Facettenaugen in der Phototaxis der Heuschrecken und Grillen. Z. vergl. Physiol. 57, 432–458 (1968).

    Google Scholar 

  • Jennings, H.S.: Behaviour of the lower organisms. New York: Columbia University Press 1915.

    Google Scholar 

  • Jung, R.: Visual perception and neurophysiology. In: Handbook of Sensory Physiology, ed. R. Jung, Vol. VII/3, pp. 1–152. Berlin-Heidelberg-New York: Springer 1973.

    Google Scholar 

  • Kaestner, A.: Reaktion der Hüpfspinnen (Salticidae) auf unbewegte farblose und farbige Gesichtsreize. Zool. Beitr. 1, 13–50 (1950).

    Google Scholar 

  • Kaiser, W.: Zur Frage des Unterscheidungsvermögens für Spektralfarben: Eine Untersuchung der Optomotorik der königlichen Glanzfliege Phormia reginaM. Z. vergl. Physiol. 61, 71–102 (1968).

    Google Scholar 

  • Kaiser, W.: A preliminary report on the analysis of the optomotor system of the honey bee. In: Information processing in the visual system of arthropods, ed. R. Wehner, pp. 163–170. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Kaiser, W.: The spectral sensitivity of the honey bee’s optomotor walking response. J. comp. Physiol. 90, 405–408 (1974b).

    Google Scholar 

  • Kaiser, W.: The relationship between visual movement detection and colour vision in insects. In: The compound eye and vision of insects, ed. G.A. Horridge. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Kaiser, W., Bishop, L.G.: Directionally selective motion detecting units in the optic lobe of the honey bee. Z. vergl. Physiol. 67, 403–413 (1970).

    Google Scholar 

  • Kaiser, W., Liske, E.: Optomotor reactions of stationary flying bees during stimulation with spectral light. J. comp. Physiol. 89, 391–408 (1974).

    Google Scholar 

  • Kaiser, W., Seidl, R., Vollmar, J.: Spectral sensitivities of behavioural patterns in honey bees. J. Comp. Physiol. 122, 27–44 (1977).

    Google Scholar 

  • Kennedy, D.: Neural photoreceptors in a lamellibranch mollusc. J. gen. Physiol. 44, 551–572 (1960).

    Google Scholar 

  • Kennedy, D.: The photoreceptor process in lower animals. In: Photophysiology, ed. A.C. Giese, Vol. II, pp. 79–121. New York-London: Academic Press 1964.

    Google Scholar 

  • Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. I. J. comp. Physiol. 113, 17–34 (1977a).

    Google Scholar 

  • Kien, J., Menzel, R.: Chromatic properties of interneurons in the optic lobes of the bee. II. J. comp. Physiol. 113, 35–53 (1977b).

    Google Scholar 

  • Kirschfeld, K.: The Muscacompound eye. Symp. Zool. Soc. Lond. 23, 165–166 (1968).

    Google Scholar 

  • Kirschfeld, K.: Das neurale Superpositionsauge. Fortschr. d. Zool. 21, 229–257 (1973a).

    CAS  Google Scholar 

  • Kirschfeld, K.: Vision of polarized light. Intern. Biophysic Congress, USSR Pushchino (1973b).

    Google Scholar 

  • Kirschfeld, K.: Optomotor responses of the bee to moving “polarization patterns”. Z. Naturforsch. 28c, 329–338 (1973c).

    CAS  Google Scholar 

  • Kirschfeld, K., Franceschini, N.: Photostable pigments within the membrane of photoreceptors. Biophys. Struct. Mech. 3, 191–194 (1977).

    PubMed  CAS  Google Scholar 

  • Kirschfeld, K., Lindauer, M., Martin, H.: Problems of menotactic orientation according to the polarized light of the sky. Z. Naturforsch. 30c, 88–90 (1975).

    Google Scholar 

  • Kirschfeld, K., Lutz, B.: Lateral inhibition in the compound eye of the fly Musca. Z. Naturforsch. 29c, 95–97 (1974).

    Google Scholar 

  • Kirschfeld, K., Lutz, B.: The spectral sensitivity of the ocelli of Calliphora(Diptera). Z. Naturforsch. 32c, 439–441 (1977).

    Google Scholar 

  • Kirschfeld, K., Reichardt, W.: Optomotorische Versuche an Muscamit linear polarisiertem Licht. Z. Naturforsch. 25b, 228 (1970).

    Google Scholar 

  • Koehler, O.: Sinnesphysiologische Untersuchungen an Libellen-Larven. Verh. dtsch. Zool. Ges., Göttingen 29, 83–91 (1924).

    Google Scholar 

  • Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. comp. Physiol. 94, 1–6 (1974).

    Google Scholar 

  • Kolb, G., Autrum, H., Eguchi, E.: Die spektrale Transmission des dioptrischen Apparates von Aeschna cyaneaMüll. Z. vergl. Physiol. 63, 434–439 (1969).

    Google Scholar 

  • Kretz, J.R., Stent, G.S., Kristan, W.B.: Photosensory input pathways in the medicinal leech. J. comp. Physiol. 106, 1–37 (1976).

    Google Scholar 

  • Kühn, A.: Über den Farbensinn der Bienen. Z. vergl. Physiol. 5, 762–800 (1927).

    Google Scholar 

  • Kühn, A.: Über Farbensinn und Anpassung der Körperfarbe an die Umgebung bei Tintenfischen. Nachr. Ges. Wiss. Göttingen Math. phys. Kl. Biol. 1(1933).

    Google Scholar 

  • Kühn, A.: Über Farbwechsel und Farbensinn von Cephalopoden. Z. vergl. Physiol. 32, 572–598 (1950).

    Google Scholar 

  • Labhart, T.: Behavioural analysis of light intensity discrimination and spectral sensitivity in honey bee Apis mellifera. J. comp. Physiol. 95, 203–216 (1974).

    Google Scholar 

  • Lall, A.B., Chapman, R.M.: Phototaxis in Limulusunder natural conditions: Evidence for reception of near-ultraviolet light in the median dorsal ocellus. J. exp. Biol. 58, 213–224 (1973).

    Google Scholar 

  • Land, M.F.: Activity in the optic nerve of Pecten maximusin response to changes in light intensity, and to pattern and movement in the optical environment. J. exp. Biol. 45, 83–99 (1966).

    PubMed  CAS  Google Scholar 

  • Land, M.F.: Structure of the retina of the principle eyes of jumping spiders (Salticidae, Dendryphantinae) in relation to visual optics. J. exp. Biol. 51, 443–470 (1969a).

    PubMed  CAS  Google Scholar 

  • Land, M. F.: Movement of the retina of jumping spiders (Salticidae, Dendryphantinae) in response to visual stimuli. J. exp. Biol. 51, 471–493 (1969b).

    PubMed  CAS  Google Scholar 

  • Land, M.F.: Orientation by jumping spiders in the absence of visual feedback. J. exp. Biol. 54,119–139 (1971).

    PubMed  CAS  Google Scholar 

  • Langer, H.: Properties and functions of screening pigments in the insect eye. In: Photoreceptor Optics, eds. A.W. Snyder, R. Menzel, pp. 429–458. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Larimer, J. L., Trevino, D.L., Ashby, E.A.: A comparison of spectral sensitivities of caudal photoreceptors of epigeal and cavernicolous crayfish. Comp. Biochem. Physiol. 19, 404–415 (1966).

    Google Scholar 

  • Lasansky, A.: Cell junctions in ommatidia of Limulus. J. cell. Biol. 33, 365–383 (1967).

    PubMed  CAS  Google Scholar 

  • Laughlin, S.B.: Receptor function in the apposition eye: An electrophysiological approach. In: Photoreceptor Optics, eds. A.W. Snyder, R. Menzel, pp. 479–498. Berlin-Heidelberg-New York: Springer Verlag 1975.

    Google Scholar 

  • Laughlin, S.B.: Neural integration in the first optic neuropile of the dragonfly. IV. Interneuron spectral sensitivity and contrast coding. J. comp. Physiol. 112, 199–212 (1976a).

    Google Scholar 

  • Laughlin, S.B.: The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. comp. Physiol. 111, 221–247 (1976b).

    Google Scholar 

  • Laverack, M.S.: Mechanoreceptors, photoreceptors and rapid conduction pathways in the leech Hirudo medicinalis. J. exp. Biol. 50, 129–140 (1969).

    PubMed  CAS  Google Scholar 

  • Lichey, M.E., Block, G.D., Hudson, D.J., Smith, J.T.: Circadian oscillators and photoreceptors in the gastropod Aplysia. Photochem. Photobiol. 23, 253–273 (1976).

    Google Scholar 

  • Liebman, P. A.: Birefringence, dichroism and rod outer segment structure. In: Photoreceptor Optics, eds. A.W. Snyder, R. Menzel, pp. 199–214. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Lüdtke, H.: Dunkeladaptation und Verschiebung der Helligkeitswerte im Auge von Notonecta glauca. Z. Naturforsch. 9, 159–163 (1954).

    Google Scholar 

  • Lukowiak, K., Jacklet, J.W.: Habituation: A peripheral and central nervous system process in Aplysia. Fed. Proc. 31, 405–412 (1972).

    Google Scholar 

  • Machan, L.: Studies on structure, electroretinogram, and spectral sensitivity of the lateral and median eyes of the scorpion. Doct. Diss. Univ. Wisconsin, Madison 1966.

    Google Scholar 

  • Machan, L.: Spectral sensitivity of the scorpion eyes and the possible role of shielding pigment effect. J. exp. Biol. 49, 95–105 (1968).

    Google Scholar 

  • Machemer, H.: Versuche zur Frage der Dressierbarkeit hypotricher Ciliaten. Z. Tierpsychol. 23, 641 – 654 (1967).

    Google Scholar 

  • Marriott, F. H.C.: The absolute light sensitivity and spectral threshold curve of aquatic flatworm Dendrocoelum lacteum. J. Physiol. (Lond.) 143, 369–379 (1958).

    PubMed  CAS  Google Scholar 

  • Mast, S.O.: Reaction in Amoebato light. J. exp. Zool. 9, 265–278 (1910).

    Google Scholar 

  • Mast, S.O.: Light and behaviour of organisms. New York (1911).

    Google Scholar 

  • Mazokhin-Porshnyakov, G. A.: Insect Vision, p. 306. New York: Plenum Press 1969.

    Google Scholar 

  • Mazokhin-Porshnyakov, G.A., Cherkasov, A.D., Burakova, O.V., Vishnevskaya, T.M.: On the colour vision of Tabanidae (Diptera). Zool. Zh. 54(10), 1574–1576 (1975).

    Google Scholar 

  • McCann, G.D., Arnett, D.W.: Spectral and polarization sensitivity of the dipteran visual system. J. gen. Physiol. 54, 534–558 (1972).

    Google Scholar 

  • McEnroe, W.D.: The photoresponse to skyshine of the two-spotted spider mite Tetranychus urticae. Acarologia 11, 281–283 (1969).

    Google Scholar 

  • McEnroe, W.D., Dronka, K.: Eyes of the female two-spotted spider mite Tetranychus urticae. II. Behavioural analysis of the photoreceptor. Ann. Entom. Soc. Amer. 62, 466–469 (1966a).

    Google Scholar 

  • McEnroe, W.D., Dronka, K.: Colour vision in the adult femal two-spotted spider mite. Science 154, 782–784 (1966b).

    PubMed  CAS  Google Scholar 

  • McFarland, W.N., Munz, F.W.: The visible spectrum during twilight and its implication to vision. In: Light as an Ecological Factor, eds. G.C. Evans, R. Bainbridge, O. Rackham, Vol. II, pp. 249–270. Oxford-London-Edinburgh-Melbourne: Blackwell Sci. Publ. 1974.

    Google Scholar 

  • McReynolds, J.S., Gorman, A.L.F.: Membrane conductances and spectral sensitivities of Pectenphotoreceptors. J. gen. Physiol. 56, 392–406 (1970a).

    PubMed  CAS  Google Scholar 

  • McReynolds, J.S., Gorman, A.L.F.: Photoreceptor potentials of opposite polarity in the eye of the scallop Pecten irradians. J. gen. Physiol. 56, 376–391 (1970b).

    PubMed  CAS  Google Scholar 

  • Médioni, J.: Les organes de stimulation photique chez Drosophila melanogaster. Nonspécifité de cette stimulation relativement aux réaction à la lumière. C. R. Soc. Biol. 153, 1845–1854 (1959).

    Google Scholar 

  • Meffert, P., Smola, U.: Electrophysiological measurements of spectral sensitivity of central visual cells in the eye of blowfly. Nature (Lond.) 260, 342–344 (1976).

    PubMed  CAS  Google Scholar 

  • Menne, D., Spatz, H.C.: Colour vision in Drosophila melanogaster. J. comp. Physiol. 114, 301–312 (1977).

    Google Scholar 

  • Menzel, R.: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene, Apis mellifica. Z. vergl. Physiol. 56, 22–62 (1967).

    Google Scholar 

  • Menzel, R.: Das Gedächtnis der Honigbiene für Spektralfarben. I. Kurzzeitiges und langzeitiges Behalten. Z. vergl. Physiol. 60, 82–102 (1968).

    Google Scholar 

  • Menzel, R.: Spectral responses of moving detecting and “sustained” fibres in the optic lobe of the bee. J. comp. Physiol. 82, 135–150 (1973).

    Google Scholar 

  • Menzel, R.: Spectral sensitivity of monopolar cells in the bee lamina. J. comp. Physiol. 93, 337–346 (1974).

    Google Scholar 

  • Menzel, R.: Colour receptors in insects. In: The compound eye and vision in insects, ed. G. A. Horridge, pp. 121–153. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Menzel, R., Blakers, M.: Functional organization of an insect ommatidium with fused rhabdom. Cytobiology 11, 279–298 (1975).

    Google Scholar 

  • Menzel, R., Blakers, M.: Colour receptors in the bee eye—morphology and spectral sensitivity. J. comp. Physiol. 108, 11–33 (1976).

    Google Scholar 

  • Menzel, R., Knaut, R.: Pigment movement during light and chromatic adaptation in the retinula cells of Formica polyctena. J. comp. Physiol. 86, 125–138 (1973).

    Google Scholar 

  • Menzel, R., Roth, F.: Spektrale Phototaxis von Planktonrotatorien. Experientia (Basel) 28, 356–357 (1972).

    Google Scholar 

  • Menzel, R., Snyder, A.W.: Polarized light detection in the bee, Apis mellifera. J. comp. Physiol. 88, 247 – 270 (1974).

    Google Scholar 

  • Messenger, J. B.: Some evidence for colour blindness in Octopus. J. exp. Biol. 59, 68–77 (1973).

    Google Scholar 

  • Meyer-Rochow, V.B.: Axonal wiring and polarization sensitivity in eye of the rock lobster. Nature (Lond.) 254, 522–523 (1975).

    PubMed  CAS  Google Scholar 

  • Mikkola, K.: Behavioural and electrophysiological responses of night-flying insects, especially Lepidoptera, to near-ultraviolet and visible light. Ann. Zool. Fennici 9, 225–254 (1972).

    Google Scholar 

  • Millecchia, R., Bradbury, J., Mauro, A.: Simple photoreceptors in Limulus polyphemus. Science 154, 1199–1201 (1966).

    PubMed  CAS  Google Scholar 

  • Millecchia, R., Gwilliam, G.F.: Photoreception in a barnacle: Electrophysiology of the shadow reflex pathway in Balanus cariosis. Science 177, 438–440 (1972).

    PubMed  CAS  Google Scholar 

  • Miller, W.H., Bernard, G.D.: Butterfly glow, J. Ultrastruct. Res. 24, 286–294 (1964).

    Google Scholar 

  • Miller, W.H., Bernard, G.D.: Skipper glow. MIT Res. Lab. Electron, qu. Progr. Rep. 88, 114–117 (1968).

    Google Scholar 

  • Miller, W.H., Møller, A.R., Bernhard, C.G.: The corneal nipple array. In: The Functional Organization of the Compound Eye, ed. C.G. Bernhard, pp. 21–33. London: Pergamon Press 1966.

    Google Scholar 

  • Millott, N.: The dermal light sense, Invertebrate Receptors. Symp. Zool. Soc. London 23,1–6 (1968).

    Google Scholar 

  • Mills, L.R.: On the detail morphology of the visual system, dorsal setae and glands of the two-spotted spider mite, Tetranychus urticae, PhD-Thesis, Stanford University (1973).

    Google Scholar 

  • Mills, L.R.: Structure of the visual system of the two-spotted spider-mite, Tetranychus urticae. J. Insect Physiol. 20, 795–808 (1974).

    PubMed  CAS  Google Scholar 

  • Mimura, K.: Analysis of visual information in lamina neurones of the fly. J. comp. Physiol. 88, 335 – 347 (1974).

    Google Scholar 

  • Minke, B., Hochstein, S., Hillman, P.: Early receptor potentials evidence for the existence of two thermally stable states in the barnacle visual pigment. J. gen. Physiol. 62, 87–104 (1973a).

    PubMed  CAS  Google Scholar 

  • Minke, B., Wu, C.F., Pak, W.L.: Isolation of light induced response of central retinula cells from electroretinogram in Drosophila. J. comp. Physiol. 98, 345–355 (1975).

    Google Scholar 

  • Moller-Racke, J.: Farbensinn und Farbenblindheit bei Insekten. Zool. J. Physiol. (Lond.) 63,153–324 (1952).

    Google Scholar 

  • Mote, M.L, Goldsmith, T.H.: Spectral sensitivity of colour receptors in the compound eye of the cockroach Periplaneta. J. exp. Zool. 173, 137–145 (1970).

    PubMed  CAS  Google Scholar 

  • Mote, M. J., Goldsmith, T.H.: Compound eyes: localization of two receptors in the same ommatidium. Science 171, 1254–1255 (1971).

    PubMed  CAS  Google Scholar 

  • Mpitsos, G. J.: Physiology of vision in the mollusc Lima scabra. J. Neurophysiol. 36, 371–383 (1973).

    Google Scholar 

  • Müller, H.: Versuche über die Farbenliebhaberei der Honigbiene. Kosmos 12, 273–299 (1883).

    Google Scholar 

  • Müller, H.: Zur Phototaxis von Amoeba proteus. Exp. Cell Res. 39, 225–232 (1965).

    PubMed  Google Scholar 

  • Murray, G.: Intracellular absorption difference spectrum of Limulusextra-ocular photolabile pigment. Science 154, 1182–1183 (1966).

    PubMed  CAS  Google Scholar 

  • Naegele, J.A., McEnroe, W.D., Soans, A.B.: Spectral sensitivity and orientation response of the two-spotted spider mite, Tetranychus urticaefrom 350 nm—700 nm. J. Insect Physiol. 12, 1187–1195 (1966).

    PubMed  CAS  Google Scholar 

  • Neumeyer, Ch., v. Helversen, O.: Simultaner Farbkontrast bei der Honigbiene. Verh. dtsch. Zool. Ges. 69, 260 (1976).

    Google Scholar 

  • Newby, N.A.: Habituation to light and spontaneous activity in the isolated siphon of Aplysia. Pharmacological observations. Comp. gen. Pharmacol. 4, 91–100 (1973).

    CAS  Google Scholar 

  • Nolte, J., Brown, J.E.: The spectral sensitivities of single cells in the median ocellus of Limulus. J. gen. Physiol. 54, 636–649 (1969).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J. E.: The spectral sensitivity of single receptor cells in the lateral, median and ventral eye of normal and whiteeyed Limulus. J. gen. Physiol. 55, 787–801 (1970).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J. E.: Electrophysiological properties of cells in the median ocellus of Limulus. J. gen. Physiol. 59, 167–185 (1972a).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J. E.: Ultraviolet-induced sensibility to visible light in ultraviolet receptors of Limulus. J. gen. Physiol. 59, 186–200 (1972b).

    PubMed  CAS  Google Scholar 

  • Nolte, J., Brown, J. E., Smith, T.G.: A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science 162, 677–679 (1968).

    PubMed  CAS  Google Scholar 

  • North, W.J.: Sensitivity to light in the sea anemone Metridium senile. II. Studies of reaction time variability and the effects of changes in the light intensity and temperature. J. gen. Physiol. 40, 715–733 (1957).

    PubMed  CAS  Google Scholar 

  • North, W.J., Pantin, C.F.A.: Sensitivity to light in the sea anemone Metridium senile: Adaptation and action spectrum. Proc. roy. Soc. B. 148, 385–396 (1958).

    Google Scholar 

  • Northrop, J. H., Loeb, J.: The photochemical basis of animal heliotropism. J. gen. Physiol. 5, 581–595 (1922).

    Google Scholar 

  • Nosaki, H.: Electrophysiological study of colour encoding in the compound eye of crayfish Procambarus clarkii. Z. vergl. Physiol. 64, 318–328 (1969).

    Google Scholar 

  • 0’Benar, J.D., Matsumoto, Y.: Light-induced neural activity and muscle contraction in the marine worm Golflngia goulchi. Comp. Biochem. Physiol. 55A, 77–81 (1976).

    Google Scholar 

  • Oesterhelt, D., Stoeckenius, W.: Rhodopsin-like protein from purple membrane of Halobacterium halobium. Nature (Lond.) New Biol. 233, 149–152 (1971).

    CAS  Google Scholar 

  • Oesterhelt, D., Meenthen, M., Schumann, L.: Reversible dissociation of purple complex in bacteriorhod-opsin and identification of 13-cis and all-trans retinal as chromophores. Europ. J. Biochem. 40, 453–463 (1973).

    CAS  Google Scholar 

  • Ohnesorg, E.: Untersuchungen über die Entwicklung des Sehvermögens beim Rückenschwimmer Notonecta glauca. Z. vergl. Physiol. 37, 424–438 (1955).

    Google Scholar 

  • Olvio, R.F., Hiraga, Y., Koumjian, K.: Colour discrimination capability in the crayfish optokinetic system. Neuroscience 1, 902 (1975).

    Google Scholar 

  • Passano, L.M., McCullough, C.B.: The light response and the rhythmic potentials of Hydra. Proc. nat. Acad. Sci. (Wash.) 48, 1376–1382 (1962).

    PubMed  CAS  Google Scholar 

  • Perrelet, A.: The fine structure of the retina of the honey bee drone. An electron microscopical study. Z. Zellforsch. 108, 530–562 (1970).

    CAS  Google Scholar 

  • Pittendrigh, C.S., Eichhorn, J.M., Minis, D.M., Bruce, V.G.: Circadian systems, VI. Photoperiodic time measurement in Pectinophora gossypiella. Proc. nat. Acad. Sci. (Wash.) 66, 758–764 (1970).

    PubMed  CAS  Google Scholar 

  • Pourriot, R., Clement, P.: Photopériodisme et cycle hétérogonique chez Notommata copens. II. Influence de la qualité de la luminière, spectres d’action. Arch. Zool. exp. gén. 114,277–300 (1973).

    Google Scholar 

  • Prosser, C.L.: Action potentials in the nervous system of the crayfish. I. Spontaneous impulses, II. Response to illumination of the eye and caudal ganglion. J. Cell. Comp. Physiol. 4,185–209, 363 – 367 (1934).

    CAS  Google Scholar 

  • Razmjoo, S., Hamdorf, K.: Visual sensitivity and variation of total photopigment content in blowfly photoreceptor membrane. J. comp. Physiol. 105, 279–286 (1976).

    Google Scholar 

  • Resch, B.: Untersuchungen über das Farbensehen von Notonecta glaucaL. Z. vergl. Physiol. 36,27–40 (1954).

    Google Scholar 

  • Ribi, W.A.: The first optic ganglion of the bee. I. Correlation between visual cell types and their terminals in the lamina and medulla. Cell Tiss. Res. 165, 103–112 (1975).

    CAS  Google Scholar 

  • Robert, P., Scheffer, D., Médioni, J.: Réactions oculo-motrices de la Daphnie en response à des lumières monochromatiques d’égale énergie. Sensibilité visuelle et sensibilité dermatoptique. C. R. Seanc. Soc. Bio. 152, 1000–1003 (1958).

    Google Scholar 

  • Rodenhouse, J.Z., Guberlet, J.E.: The morphology and behaviour of the cushion star Pteraster tesselatus. Univ. Wash. Publ. Biol. 12, 21–47 (1946).

    Google Scholar 

  • Rodieck, R.W.: The vertebrate retina. San Francisco: Freeman & Co. 1973.

    Google Scholar 

  • Röhlich, P., Török, L.J.: Elektronenmikroskopische Untersuchungen des Auges von Planarien. Z. Zellforsch. Mikr. Anat. 54, 362–381(1961).

    Google Scholar 

  • Roth, H., Menzel, R.: ERG of Formica polyetenaand selective adaptation. In: Information processing in the visual system of Arthropods, ed. R. Wehner, pp. 177–182. Berlin-Heidelberg-New York: Springer 1972.

    Google Scholar 

  • Rozenberg, G.V.: Twilight—a study in atmospheric optics. New York: Plenum Press 1966.

    Google Scholar 

  • Ruck, P.: The electrical responses of dorsal ocelli in cockroaches and grashoppers. J. Insect Physiol. 1, 109–123 (1957).

    Google Scholar 

  • Ruck, P.: A comparison of the electrical response of compound eyes and dorsal ocelli in four insect species. J. Insect Physiol. 2, 261–274 (1958).

    Google Scholar 

  • Ruck, P.: The components of the visual system of a dragonfly. J. gen. Physiol. 49, 289–307 (1965).

    PubMed  CAS  Google Scholar 

  • Rushton, W.A.H.: Pigments and signals in colour vision. J. Physiol. (Lond.) 220, 1–31 (1972).

    Google Scholar 

  • Sander, W.: Phototaktische Reaktionen der Bienen auf Lichter verschiedener Wellenlängen. Z. vergl. Physiol. 20, 267–286 (1933).

    Google Scholar 

  • Saunders, D.S.: Spectral sensitivity and intensity threshold in Nasoniaphotoperiodic clock. Nature (Lond.) 253, 732–733 (1975).

    PubMed  CAS  Google Scholar 

  • Schamp, R.: Untersuchungen zur spektralen Phototaxis von Daphnia magnaund Polyphemus pediculus. Staatsexamensarbeit Techn. Hochsch. Darmstadt (1973).

    Google Scholar 

  • Schlegtendal, A.: Beitrag zum Farbensinn der Arthropoden. Z. vergl. Physiol. 20, 545–581 (1934).

    Google Scholar 

  • Schlieper, C.: Über die Helligkeitsverteilung im Spektrum bei verschiedenen Insekten. Z. vergl. Physiol. 8, 281–288 (1928).

    Google Scholar 

  • Schricker, B.: Die Orientierung der Honigbiene in der Dämmerung. Z. vergl. Physiol. 44, 420–458 (1965).

    Google Scholar 

  • Schümperli, R. A.: Evidence for colour vision in Drosophila melanogasterthrough spontaneous phototactic choice behaviour. J. comp. Physiol. 86, 77–94 (1973).

    Google Scholar 

  • Schümperli, R. A.: Monocular and binocular visual fields of butterfly interneurons in response to white and coloured light stimulation. J. comp. Physiol. 103, 273–289 (1975).

    Google Scholar 

  • Schultz, H.: Über die Bedeutung des Lichtes im Leben niederer Krebse. Z. vergl. Physiol. 7, 488–552 (1928).

    Google Scholar 

  • Scott, S., Mote, M.: Spectral sensitivity in some marine Crustacea. Vision Res. 14, 659–664 (1974).

    PubMed  CAS  Google Scholar 

  • Shaw, S.R.: Simultaneous recording from two cells in the locust retina. Z. vergl. Physiol. 55, 183–194 (1967).

    Google Scholar 

  • Shaw, S. R.: Interreceptor coupling in ommatidia of drone honey bee and locust compound eye. Vision Res. 9, 999–1029 (1969a).

    PubMed  CAS  Google Scholar 

  • Shaw, S.R.: Optics of arthropod compound eye. Science 164, 88–90 (1969b).

    Google Scholar 

  • Shaw, S.R.: Decrementai conduction of the visual signal in barnacle lateral eye. J. Physiol. (Lond.) 220, 145–175 (1972).

    PubMed  CAS  Google Scholar 

  • Shaw, S.R.: Retinal resistance barriers and electrical lateral inhibition. Nature (Lond.) 255, 480–483 (1975).

    PubMed  CAS  Google Scholar 

  • Siddle, N.: The absolute threshold and spectral sensitivity curve of barnacle nauplii. M. Sc. Thesis Univ. of Wales (1968).

    Google Scholar 

  • Singer, R.H., Rushforth, N.S., Burnett, A. L.: The photodynamic action of light on Hydra. J. exp. Zool. 154, 169–174 (1963).

    PubMed  CAS  Google Scholar 

  • Smith, F.E., Baylor, E.R.: Colour responses in the Cladocera and their ecological significance. Amer. Naturalist. 87, 49–55 (1953).

    Google Scholar 

  • Smith, T.G., Baumann, F.: The functional organization within the ommatidium of the lateral eye of Limulus. Prog. Brain Res. 31, 313–327 (1969).

    PubMed  CAS  Google Scholar 

  • Smola, U., Meffert, P.: A single-peaked UV receptor in the eye of Calliphora erythrocephala. J. comp. Physiol. 103, 353–357 (1975).

    Google Scholar 

  • Smola, U., Meffert, P.: Spektrale Empfindlichkeit der zentralen Sehzellen im Auge der Schmeißfliege Calliphora erythrocephala. Verh. dtsch. Zool. Ges. p. 282 (1976).

    Google Scholar 

  • Snyder, A. W.: Optical Properties of Invertebrate Photoreceptors. In: The compound eye and vision in insects, ed. G.A. Horridge. Oxford: Clarendon Press 1975.

    Google Scholar 

  • Snyder, A. W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973).

    Google Scholar 

  • Sonntag, C.: Spectral sensitivity studies on the visual system of the praying mantis Tenodera sinensis. J. gen. Physiol. 57, 93–112 (1971).

    Google Scholar 

  • Stark, W.S.: Spectral sensitivity of visual response alterations mediated by interconversions of native and intermediate photopigments in Drosophila. J. comp. Physiol. 96, 343–356 (1975).

    Google Scholar 

  • Stark, W.S.: Sensitivity and adaptation in R7, an ultraviolet photoreceptor, in the Drosophilaretina. J. comp. Physiol. 115, 47–59 (1977).

    Google Scholar 

  • Stark, W.S., Ivanyshyn, A. M., Hu, H.G.: Spectral sensitivities and photopigments in adaptation of fly visual receptors. Naturwissenschaften 63, 513–518 (1976).

    PubMed  CAS  Google Scholar 

  • Stavenga, D.G.: Dark regeneration of invertebrate visual pigments. In: Photoreceptor Optics, eds. A.W. Snyder, R. Menzel, pp. 290–295. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Stearns, S. C.: Light responses of Daphnia pulex. Limnol. Oceanogr. 20, 564–570 (1975).

    Google Scholar 

  • Steyskal, G.C.: Notes on colour pattern of eye in Diptera. Bull. Brooklyn Entomolog. Soc. 52, 89 (1957).

    Google Scholar 

  • Stratton, W.P.: Light induced contraction in Golfingiaproboscis retractor muscles. Biol. Bull. 129, 425–432 (1965).

    Google Scholar 

  • Strausfeld, N.: Atlas of an insect brain. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Strother, G.K., Superdock, D.A.: In situ absorption of Drosophila melanogastervisual screening pigments. Vision Res. 12, 1545–1547 (1972).

    PubMed  CAS  Google Scholar 

  • Struwe, G.: Spectral sensitivity of single photoreceptors in the compound eye of a tropical butterfly. J. comp. Physiol. 79, 197–201 (1972).

    Google Scholar 

  • Suga, N., Katsuki, Y.: Vision in insects in terms of the electrical activities of the descending nerve fibres. Nature (Lond.) 194, 658–660 (1962).

    PubMed  CAS  Google Scholar 

  • Suski, Z.W., Naegele, J.A.: Light response in the two spottet spider mite. Analysis of behavioural response. In: Advances in Acarology I, ed. J.A. Naegele, pp. 435–444. 1963.

    Google Scholar 

  • Swihart, Chr.: Colour discrimination by the butterfly Heliconius charitonius. Anim. Behav. 19, 156 – 169 (1971).

    Google Scholar 

  • Swihart, S.L.: Neural adaptations in the visual pathway of certain Heliconine butterflies and related forms to variations in wing coloration. Zoologica (N.Y.) 52, 1–14 (1967).

    Google Scholar 

  • Swihart, S. L.: Single unit activity in the visual pathway of the butterfly Heliconius erato. J. Insect Physiol. 14, 1589–1601 (1968).

    Google Scholar 

  • Swihart, S.L.: Colour vision and the physiology of the superposition eye of a butterfly (Hesperiidae). J. Insect Physiol. 15, 1347–1365 (1969).

    PubMed  CAS  Google Scholar 

  • Swihart, S. L.: The neural basis of colour vision in the butterfly Papilio troilus. J. Insect Physiol. 16, 1623–1636 (1970).

    Google Scholar 

  • Swihart, S.L.: Modelling the butterfly visual pathway. J. Insect Physiol. 18, 1915–1928 (1972a).

    Google Scholar 

  • Swihart, S.L.: The neural basis of colour vision in the butterfly Heliconius erato. J. Insect Physiol. 18, 1015–1025 (1972b).

    Google Scholar 

  • Takahashi, K.: Electrical responses to light stimuli in the isolated radial nerve of the sea urchin Diadema setosum. Nature (Lond.) 201, 1343–1344 (1964).

    PubMed  CAS  Google Scholar 

  • Tardent, P., Frei, E.: Reaction patterns of dark- and light-adapted Hydrato leight stimuli. Experientia (Basel) 25, 265–267 (1969).

    PubMed  CAS  Google Scholar 

  • Thomas, J., Autrum, H.: Die Empfindlichkeit der dunkel- und helladaptierten Biene Apis mellificafür spektrale Farben: Zum Purkinje-Phanomen der Insekten. Z. vergl. Physiol. 51, 204–218 (1965).

    Google Scholar 

  • Thorp, R.W., Briggs, D.L., Estes, E.H., Erickson, E.H.: Nectar fluorescence under ultraviolet irradiation. Science 189, 476–477 (1975).

    PubMed  CAS  Google Scholar 

  • Thorp, R.W., Briggs, D.L., Estes, J.R, Erickson, E.H.: Fluorescent nectar. Science 194, 342 (1976).

    PubMed  CAS  Google Scholar 

  • Trevino, D.L., Larimer, J.L.: The response of one class of neurons in the optic tracts of crayfish to monochromatic light. Z. vergl. Physiol. 69, 139–151 (1970).

    Google Scholar 

  • Trujillo-Cenóz, O.: Some aspects of the structural organization of the arthropod eye. Cold Spr. Harbor Symp. quant. Biol. 30, 371–382 (1966).

    Google Scholar 

  • Trujillo-Cenóz, O., Bernard, G.D.: Some aspects of the retinal organization of Sympycnus lineatusLoew (Diptera, Dolichopodidae). J. Ultrastruct. Res. 38, 149–160 (1972).

    PubMed  Google Scholar 

  • Truman, J.W.: Extra retinal photoreception in insects. Photochem. Photobiol. 23, 215–225 (1976).

    CAS  Google Scholar 

  • Unteutsch, W.: Über den Licht- und Schattenreflex des Regenwurms. Zool. Jahrb. (allg. Zool.) 58, 9 – 12 (1937).

    Google Scholar 

  • Varela, F.G.: Fine structure of the visual system of the honey bee Apis melliferaII. Lamina. J. Ultrast. 31, 178–194 (1970).

    CAS  Google Scholar 

  • Viaud, G.: Recherches expérimentales sur la phototropisme de rotifères. Bull. Biol. 74, 68–93 (1940); Bull. Biol. 77, 224–242 (1943).

    Google Scholar 

  • Viaud, G.: Le phototropisme et les deux modes de la photoréception. Experientia (Basel) 4, 81–88 (1948).

    Google Scholar 

  • Visscher, J.P., Luce, R. H.: Reactions of the cyprid larvae of barnacles to light with special reference to spectral colours. Biol. Bull. 54, 336–350 (1928).

    Google Scholar 

  • Wald, G.: Single and multiple systems in arthropods. J. gen. Physiol. 51, 125–156 (1968).

    PubMed  CAS  Google Scholar 

  • Wald, G., Krainin, J.M.: The median eye of Limulus, an ultraviolet receptor. Proc. nat. Acad. Sci. (Wash.) 50, 1011–1017 (1963).

    PubMed  CAS  Google Scholar 

  • Wald, G., Rayport, S.: Vision in annelid worms. Science 196, 1434–1438 (1977).

    PubMed  CAS  Google Scholar 

  • Walther, J.B., Dodt, E.: Spektralsensitivität von Insekten-Komplexaugen im UV bis 290 nm. Z. Naturforsch. 14b, 273–278 (1959).

    Google Scholar 

  • Waser, P.M.: The spectral sensitivity of the eye of Aplysia californica. Comp. Biochem. Physiol. 27, 339–347 (1968).

    Google Scholar 

  • Wasserman, G.S.: Limulusreceptor action spectra. Vision Res. 9, 611–619 (1969).

    PubMed  CAS  Google Scholar 

  • Wasserman, G.S.: Invertebrate colour vision and the tuned receptor paradigm. Science 180, 268–275 (1973).

    PubMed  CAS  Google Scholar 

  • Waterman, T.H., Fernández, H.R.: E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z. vergl. Physiol. 68, 154–174 (1970).

    Google Scholar 

  • Weiss, H.B.: Colour perception in insects. J. Ecol. Entomol. 36, 1–17 (1943a).

    CAS  Google Scholar 

  • Weiss, H.B.: The group behaviour of 14,000 insects to colours. Entomol. News 54, 152–156 (1943b).

    Google Scholar 

  • Weiss, H.B.: Insect responses to colours. J.N.Y. Entomol. Soc. 52, 267–271 (1944).

    Google Scholar 

  • Weiss, H.B.: Insects and the spectrum. J.N.Y. Entomol. Soc. 54, 17–30 (1946).

    Google Scholar 

  • Weiss, H.B., Soraci, F.A., McCoyjr.E.E.: Notes on the reaction of certain insects to different wavelengths of light. J.N.Y. Entomol. Soc. 49, 1–20 (1941).

    Google Scholar 

  • Weiss, H.B., Soraci, F.A., McCoyjr, E.E.: The behaviour of certain insects to various wavelengths of light. J.N.Y. Entomol. Soc. 50, 1–35 (1942).

    Google Scholar 

  • Welsh, J. H.: The caudal photoreceptor and response of the crayfish to light. J. Cell. Comp. Physiol. 4, 379–388 (1934).

    Google Scholar 

  • Wendland, S.: Spektrale Phototaxis weißäugiger Bienen. Diploma Thesis, Freie Universität Berlin (1977).

    Google Scholar 

  • Wiersma, C.A.G., Yamaguchi, T.: The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J. comp. Neurol. 128, 333–358 (1966).

    PubMed  CAS  Google Scholar 

  • Wiersma, C. A. G., Yamaguchi, T.: Integration of visual stimuli by the crayfish central nervous system. J. exp. Biol. 47, 409–431 (1967).

    PubMed  CAS  Google Scholar 

  • Wolken, J.J.: Studies of photoreceptor structure. Ann. N.Y. Acad. Sci. 74, 164–181 (1958).

    Google Scholar 

  • Woodcock, A.E.R., Goldsmith, T.H.: Spectral responses of sustaining fibres in the optic tracts of crayfish Procambarus. Z. vergl. Physiol. 69, 117–133 (1970).

    Google Scholar 

  • Woodcock, A.E.R., Goldsmith, T.H.: Differential wavelength sensitivity in the receptive fields of sustaining fibres in the optic tract of the crayfish Procambarus. J. comp. Physiol. 87, 247–257 (1973).

    Google Scholar 

  • Yamashita, S., Tateda, H.: Spectral sensitivities of jumping spider eyes. J. comp. Physiol. 105, 29–41 (1976).

    Google Scholar 

  • Yingst, D.R., Fernandez, H.R., Bishop, L.G.: The spectral sensitivity of a littoral annelid: Nereis mediator. J. comp. Physiol. 77, 225–232 (1972).

    Google Scholar 

  • Yoshida, M.: Spectral sensitivity of chromatophores in Diadema setosum. J. exp. Biol. 34, 222–225 (1957).

    CAS  Google Scholar 

  • Yoshida, M.: Photosensitivity. In: Physiology of Echinodermata, ed. R.A. Boolootian, pp. 435–465. New York-London-Sydney: Interscience Publ. 1966.

    Google Scholar 

  • Yoshida, M., Millott, N.: Light sensitive nerves in an echinoid. Experientia (Basel) 15, 13–14 (1959).

    Google Scholar 

  • Yoshida, M., Millott, N.: The shadow reaction of Diadema antillarum. Reexamination of spectral sensitivity. J. exp. Biol. 37, 390–397 (1960).

    Google Scholar 

  • Yoshida, M., Ohtsuki, H.: Compound ocellus of a starfish: Its function. Science 153, 197–198 (1966).

    PubMed  CAS  Google Scholar 

  • Young, St.: Directional differences in the colour sensitivity of Daphnia magna. J. exp. Biol. 61, 261–267 (1974).

    PubMed  CAS  Google Scholar 

  • Zettler, F., Autrum, H.: Chromatic properties of lateral inhibition in the eye of a fly. J. comp. Physiol. 97, 181–188 (1975).

    Google Scholar 

  • Zimmermann, W. F., Goldsmith, T. M.: Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila. Science 171, 1167–1969 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag, Berlin · Heidelberg

About this chapter

Cite this chapter

Menzel, R. (1979). Spectral Sensitivity and Color Vision in Invertebrates. In: Autrum, H. (eds) Comparative Physiology and Evolution of Vision in Invertebrates. Handbook of Sensory Physiology, vol 7 / 6 / 6 A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66999-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66999-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67001-5

  • Online ISBN: 978-3-642-66999-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics