Physics of Vision in Compound Eyes

  • Allan W. Snyder
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 6 / 6 A)


Invertebrates are the class par excellence where one finds all manner of variations in the structure and arrangement of photoreceptors and their associated light-gathering and processing structures. We are compelled to search for a physiologic explanation of these unique forms. This article offers a highly personalized view of the physics suited to the task.


Contrast Sensitivity Modulation Transfer Function High Spatial Frequency Polarization Sensitivity Retinula Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge. Z. Naturforsch. 17b, 480–482 (1962).Google Scholar
  2. Barlow, H.B.: The size of ommatidia in apposition eyes. J. Exp. Biol. 29, 667–674 (1952).Google Scholar
  3. Barlow, H. B.: Physical limits of visual discrimination. In: Photophysiology (ed. A.C. Giese), Vol. II, pp. 163–202. New York: Academic Press 1964.Google Scholar
  4. Barros-Pita, J.C., Maldonado, H.: A fovea in the praying mantis eye. II. Some morphological characteristics. Z. Vergl. Physiol. 67, 79–92 (1970).Google Scholar
  5. Beersma, D.G.M., Stavenga, D.G., Kuiper, J.W.: Optical organization of the eye of the fly Musca domestica and behavioural consequences. J. comp. Physiol. 102, 305–320 (1975).Google Scholar
  6. Bernard, G.: Physiological optics of the fused rhabdom. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  7. Blakemore, C., Muncey, J.P.J., Ridley, R.M.: Stimulus specificity in the human visual system. Vision Res. 13, 1915–1931 (1973).PubMedGoogle Scholar
  8. Born, M., Wolf, E.: Principles of optics, p. 367. New York: Pergamon Press 1970.Google Scholar
  9. Boscheck, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zeilforsch. 118, 369–409 (1971).Google Scholar
  10. Bracewell, R.: The Fourier transform and its applications. New York: McGraw-Hill 1965.Google Scholar
  11. Brown, P.K.: Rhodopsin rotates in the visual receptor membrane. Nature (Lond.) New Biol. 236, 35–38 (1972).Google Scholar
  12. Campbell, F.W., Gubisch, R.W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).Google Scholar
  13. Campbell, F.W., Robson, J.G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968).Google Scholar
  14. Carlson, A.B.: Communication systems, p. 337. New York: McGraw Hill 1968.Google Scholar
  15. Collett, T.S., Land, M. F.: Visual control of flight behaviour in the hoverfly, Syritta pipiens L. J. comp. Physiol. 99, 1–66 (1975).Google Scholar
  16. Cone, R. A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (Lond.) New Biol. 236, 39–43 (1972).Google Scholar
  17. Cosens, D., Wright, R.: Light elicited isolation of the complementary visual input systems in white-eye Drosophila. J. Insect Physiol. 21, 1111–1120 (1975).PubMedGoogle Scholar
  18. Crawford, B.H.: The dependence of pupil size upon external light stimuli under static and variable conditions. Proc. roy. Soc. Lond. B121, 376–395 (1936).Google Scholar
  19. Denton, E.J.: The contribution of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. roy. Soc. Lond. B150, 78–89 (1959).Google Scholar
  20. Døving, K.B., Miller, W.H.: Function of insect compound eyes containing crystalline tracts. J. gen. Physiol. 54, 250–267 (1969).PubMedGoogle Scholar
  21. Dvorak, D., Snyder, A. W.: The relationship between visual acuity and illumination in the fly, Lucilia sericata. Z. Naturforsch. 33c, (1978).Google Scholar
  22. Enoch, J.M.: Optical properties of the retinal receptors. J. opt. Soc. Amer. 53, 71–85 (1963).Google Scholar
  23. Fermi, G., Reichardt, W.: Optomotor reactions of the housefly Musca domestica. Kybernetik 2, 15–28 (1963).PubMedGoogle Scholar
  24. Fox, R., Lehmkuhle, S., Westendorf, D.H.: Falcon visual acuity. Science 192, 263–265 (1976).PubMedGoogle Scholar
  25. Franceschini, N.: Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor optics, (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  26. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971a).PubMedGoogle Scholar
  27. Franceschini, N., Kirschfeld, K.: Les phénomènes de pseudopupille dans l’oeil composé de Drosophila. Kybernetik 9, 159–182 (1971b).PubMedGoogle Scholar
  28. French, A. S., Snyder, A. W., Stavenga, D.G.: Image degradation by an irregular retinal mosaic. Biol. Cybernetics 27, 229–233 (1977).Google Scholar
  29. Georgeson, M. A., Sullivan, G.D.: Contrast constancy: deblurring in human vision by spatial frequency channels. J. Physiol. (Lond.) 252, 627–656 (1975).Google Scholar
  30. Goetz, K.G.: Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2, 215–221 (1965).Google Scholar
  31. Goldman, S.: Information theory. New York: Prentice Hall 1953.Google Scholar
  32. Goldsmith, T.H.: The polarization sensitivity—dichroic absorption paradox in arthropod photoreceptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 392–409. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  33. Goldsmith, T. H., Bernard, G. D.: The visual system of insects. In: The physiology of insecta, Vol. II, 2nd ed. New York: Academic Press 1974.Google Scholar
  34. Goodman, J.W.: Introduction to Fourier optics. New York: McGraw Hill 1968.Google Scholar
  35. Gribakin, F.G., Govardovskii, V.I.: The role of the photoreceptor membrane in photoreceptor optics. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel), pp. 215–236. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  36. Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol. 86, 281–292 (1973).Google Scholar
  37. Harosi, R.E., MacNichol, E.F., Jr.: Dichroic microspectrophotometer: a computer assisted, rapid, wavelength-scanning photometer for measuring the linear dichroism of single cells. J. opt. Soc. Amer. 64, 903–918 (1974).Google Scholar
  38. Harris, W. A., Stark, W.S., Walker, J. A.: Genetic dissection of the photoreceptor system in compound eye of Drosophila melangaster. J. Physiol. (Lond.) 256, 415–439 (1976).Google Scholar
  39. Horridge, G. A.: Optical mechanism of clear zone eyes. In: The compound eye and vision of insects, (ed. G.A. Horridge). Oxford: Clarendon Press 1975.Google Scholar
  40. Horridge, G.A.: The compound eyes of insects. Sci. Am. 237, 108–120 (1977).Google Scholar
  41. Horridge, G.A., Giddings, C., Stange, G.: The superposition eye of skipper butterflies. Proc. roy. Soc. Lond. B182, 457–495 (1972).Google Scholar
  42. Horridge, G. A., Mimura, K., Hardie, R.C.: Fly photoreceptors. III. Angular sensitivity as a function of wave length and the limits of resolution. Proc. roy. Soc. Lond. B194, 151–177 (1976).Google Scholar
  43. Israelachvili, J., Sammut, R., Snyder, A. W.: Birefringence and dichroism in invertebrate photoreceptors. J. Opt. Soc. Amer. 65, 221–222 (1976).Google Scholar
  44. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).PubMedGoogle Scholar
  45. Kirschfeld, K.: The absolute sensitivity of lens and compound eyes. Z. Naturforsch. 29c, 592–596 (1974).Google Scholar
  46. Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural processing in visual systems (eds. F. Zettler, R. Weiler). Berlin-Heidelberg-New York: Springer 1976.Google Scholar
  47. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).PubMedGoogle Scholar
  48. Kirschfeld, K., Franceschini, N.: Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6, 13–22 (1969).PubMedGoogle Scholar
  49. Kirschfeld, K., Franceschini, N.: The possible role of photostable pigments within the membrane of photoreceptors. In: Biophysics of structure and mechanism. Contribution presented at EMBO Workshop October, 1976.Google Scholar
  50. Kirschfeld, K., Snyder, A. W.: Waveguide mode effects, birefringence, and dichroism in fly photoreceptors. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  51. Kirschfeld, K., Snyder, A. W.: Measurement of a photoreceptor’s characteristic waveguide parameter. Vision Res. 16, 775–778 (1976).PubMedGoogle Scholar
  52. Kirschfeld, K., Wenk, P.: Dorsal eye of simuliid flies. Z. Naturforsch. 31c, 764–765 (1976).Google Scholar
  53. Kuiper, J.W.: On the image formation in a single ommatidium of the compound eye in diptera. In: The functional organization of the compound eye (ed. C.G. Bernhard), pp. 35–50. Oxford: Pergamon Press 1966.Google Scholar
  54. Kuiper, J.W., Leutscher-Hazelhoff, J.T.: Linear and nonlinear responses from the compound eye of Calliphora erythrocephala. In: Cold Spring Harbor Symp. Quant. Biol. 30, 419–428 (1965).Google Scholar
  55. Land, M. F., Collett, T.S.: Chasing behaviour of houseflies (Fannia canicularis). J. comp. Physiol. 89, 331–357 (1974).Google Scholar
  56. Lasansky, A.: Ultrastructural features of and extra-cellular ionic pathways in the Limulus ommatidium. Neurosci. Res. Program Bull. 8, 467–469 (1970).PubMedGoogle Scholar
  57. Laughlin, S.B.: Receptor function in the apposition eye. An electrophysiological approach. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel) pp. 479–498. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  58. Laughlin, S.B., Menzel, R., Snyder, A. W.: Dichroism, absorption, and the polarisation sensitivity of photoreceptors. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  59. Le Grand, Y.: Light, colour, and vision, p. 84. London: Chapman and Hall, 2nd ed. 1968.Google Scholar
  60. Liebman, P. A.: In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J. 2, 161–178 (1962).PubMedGoogle Scholar
  61. Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Handbook of sensory physiology (ed. H.J.A. Dartnall), Vol. VII/1. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  62. Liebman, P.A.: Birefringence, dichroism, and rod outer segment structure. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  63. Liebman, P. A., Entine, G.: Lateral diffusion of visual pigment in photoreceptor disc membrane. Science 185, 457–459 (1974).PubMedGoogle Scholar
  64. Liebman, P.A., Jagger, W.S., Kaplan, M.W., Borgoot, F.G.: Membrane structure changes in rod outer segments associated with rhodopsin bleaching. Nature (Lond.) 251, 31–36 (1974).Google Scholar
  65. Lillywhite, P. G., Laughlin, S.B.: Transducer noise in a photoreceptor. Nature (Lond.) (submitted) (1977).Google Scholar
  66. Mallock, A.: Proc. roy. Soc. Lond. B55, 85 (1894).Google Scholar
  67. Mallock, A.: Divided composite eyes. Nature (Lond.) 110, 770–771 (1922).Google Scholar
  68. Mason, W. T., Fager, R.S., Abrahamson, E.W.: Structural response of vertebrate photoreceptor membranes to light. Nature (Lond.) 247, 188–191 (1974).Google Scholar
  69. Mazokhin-Porshnyakov, G.A.: Insect vision. New York: Plenum Press 1969.Google Scholar
  70. McIntyre, P., Kirschfeld, K.: Chromatic aberration of a Dipteran Corneal Lens (in preparation) (1978)Google Scholar
  71. Melamed, J., Trujillo-Cenóz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21, 313–334 (1968).Google Scholar
  72. Menzel, R.: Polarization sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  73. Menzel, R., Blakers, M.: Colour receptors in bee eye: morphology and spectral sensitivity. J. comp. Physiol. 108, 11–33(1976).Google Scholar
  74. Menzel, R., Snyder, A. W.: Polarized light detection in the bee, Apis mellifera. J. comp. Physiol. 88, 247–270 (1974).Google Scholar
  75. Minke, B., Wu, C.F., Pak, W.L.: Isolation of light induced response of the central retinula cells from the electroretinogram of Drosophila. J. comp. Physiol. 98, 345–355 (1975).Google Scholar
  76. Moody, M.F.: Photoreceptor organelles in animals. Biol. Rev. 39, 43–86 (1964).PubMedGoogle Scholar
  77. Moody, M.F., Parriss, J.R.: The discrimination of polarised light by Octopus: a behavioural and morphological study. Z. vergl. Physiol. 44, 268–291 (1961).Google Scholar
  78. Mote, M.I.: Polarization sensitivity. A phenomenon independent of stimulus intensity or state of adaptation in the retinula cells of the crabs Carduus and Callinectes. J. comp. Physiol. 90, 389–403 (1974).Google Scholar
  79. O’Neill, E.L.: Introduction to statistical optics. Reading, Massachusetts: Addison-Wesley 1963.Google Scholar
  80. Petersen, D. P., Middleton, D.: Sampling and reconstruction of wave number limited functions in N-dimensional euclidean spaces. Information and Control. 5, 279–293 (1962).Google Scholar
  81. Pierce, J.R.: Symbols, signals, and noise. New York: Harper and Row 1961.Google Scholar
  82. Poo, M., Cone, R.A.: Lateral diffusion of rhodopsin in the photoreceptor membrane. Nature (Lond.) 247, 438–441 (1974).Google Scholar
  83. Portillo, J. del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. vergl. Physiol. 23, 100–145 (1936).Google Scholar
  84. Raubach, R. A., Nemes, P.P., Dratx, E. A.: Molecular organisation of rod disc membrane. Exp. Eye Res. 18, 1–19 (1974).PubMedGoogle Scholar
  85. Robson, J.G.: Receptive fields. In: Handbook of perception. New York: Academic Press 1976.Google Scholar
  86. Rodieck, R.W.: The vertebrate retina, principles of structure and function. San Francisco: W.H. Freeman and Co. 1973.Google Scholar
  87. Rose, A.: Vision, human, and electronic. New York-London: Plenum Press 1973.Google Scholar
  88. Sammut, R., Snyder, A. W.: Ambiguity in determination of waveguide parameter V from mode cutoffs. Vision Res. 16, 881–882 (1976).PubMedGoogle Scholar
  89. Schmidt, W.J.: Polarisationsoptische Analyse eines Eiweiß-Lipoid-Systems, erläutert am Außenglied der Sehzellen. Kolloid-Z. 85, 137–148 (1938).Google Scholar
  90. Seitz, G.: Der Strahlengang im Appositionsauge von Calliphora erythrocephala (Meig.). Z. vergl. Physiol. 59, 205–231 (1968).Google Scholar
  91. Seitz, G.: Polarisationsoptische Untersuchungen am Auge von Calliphora erythrocephala (Meig.). Z. Zellforsch. 93, 525–529 (1969).PubMedGoogle Scholar
  92. Shaw, S. R.: Interreceptor coupling in ommatidia of drone honey bee and locust compound eyes. Vision Res. 9, 999–1029 (1969a).PubMedGoogle Scholar
  93. Shaw, S.R.: Sense cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9, 1031–1041 (1969b).PubMedGoogle Scholar
  94. Sherk, T.E.: Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. exp. Zool. 203, 61–80 (1978).PubMedGoogle Scholar
  95. Sidman, R.L.: The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. Biophys. Cytol. 3, 15–29 (1957).PubMedGoogle Scholar
  96. Snyder, A. W.: Asymptotic expressions for eigenfunctions and eigenvalues of dielectric or optical waveguides. IEEE Transactions on Microwave Theory and Techniques 17, 1130–1138 (1969).Google Scholar
  97. Snyder, A. W.: Coupled mode theory for optical fibers. J. opt. Soc. Amer. 62, 1267–1277 (1972).Google Scholar
  98. Snyder, A.W.: Polarization sensitivity of individual retinula cells. J. comp. Physiol. 83, 331–360 (1973).Google Scholar
  99. Snyder, A. W.: Leaky ray theory of optical waveguides of circular cross section. Appl. Phys. 4, 273–298 (1974).Google Scholar
  100. Snyder, A. W.: Photoreceptor optics—theoretical principles. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975a.Google Scholar
  101. Snyder, A.W.: Acuity of compound eyes: physical limitations and design. J. comp. Physiol. 116, 161–182 (1977).Google Scholar
  102. Snyder, A. W., Laughlin, S.B.: Dichroism and absorption by photoreceptors. J. comp. Physiol. 100, 101–106 (1975).Google Scholar
  103. Snyder, A. W., Laughlin, S.B., Stavenga, D.G.: Information capacity of eyes. Vision Res. 17, 1163–1175 (1977a).PubMedGoogle Scholar
  104. Snyder, A.W., Love, J.D.: Optical Waveguide Theory, Chapman and Halls; Wiley 1980.Google Scholar
  105. Snyder, A.W., McIntyre, P.D.: Polarization sensitivity of twisted fused rhabdoms. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  106. Snyder, A. W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. comp. Physiol. 87, 99–135 (1973).Google Scholar
  107. Snyder, A.W., Miller, W.H.: Fly colour vision. Vision Res. 12, 1389–1396 (1972).Google Scholar
  108. Snyder, A. W., Miller, W.H.: Photoreceptor diameter and spacing for highest resolving power. J. opt. Soc. Amer. 67, 696–698 (1977).Google Scholar
  109. Snyder, A.W., Miller, W.H.: Telephoto lens system of falcoriform eyes, Nature 275, 128, 129 (1978).Google Scholar
  110. Snyder, A. W., Pask, C.: Light absorption in the bee photoreceptor. J. opt. Soc. Amer. 62, 998–1008 (1972).Google Scholar
  111. Snyder, A. W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol. 84, 59–76 (1973).Google Scholar
  112. Snyder, A. W., Sammut, R.: Direction of E for maximum response of a retinula cell. J. comp. Physiol. 85, 37–45 (1973).Google Scholar
  113. Snyder, A. W., Sammut, R.: Contribution of unbound modes to light absorption in visual photoreceptors. J. opt. Soc. Amer. 64, 1711–1714 (1974).Google Scholar
  114. Snyder, A.W., Srinivasan, M.V.: Human psychophysics: functional interpretation for contrast sensitivity vs spatial frequency curve. Biological Cybernetics (in press) (1978).Google Scholar
  115. Snyder, A. W., Stavenga, D.G., Laughlin, S.B.: Spatial information capacity of compound eyes. J. comp. Physiol. 116, 183–207 (1977b).Google Scholar
  116. Srinivasan, M.V., Bernard, G.D.: The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res. 15, 515–525 (1975).PubMedGoogle Scholar
  117. Stark, W.A.: Spectral selectivity of visual response alterations mediated in interconversions of native and intermediate photopigments in Drosophila. J. comp. Physiol. 96, 343–356 (1975).Google Scholar
  118. Stark, W.A., Harris, W., Walker, J.: Genetic isolation of three receptor spectral sensitivities with different photopigment conversions in Drosophila. Abstract of paper presented at Spring, 1975, meeting of the Association for Research in Vision and Ophthalmology, Sarasota, Fla. (1975).Google Scholar
  119. Stavenga, D.G.: Visual receptor optics, rhodopsin, and pupil in fly retinula cells. Thesis, Rijks-universiteit Groningen, Groningen, The Netherlands (1974).Google Scholar
  120. Stavenga, D.G.: Optical qualities of the fly eye. An approach from the side of geometrical, physical, and waveguide optics. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel), pp. 126–144. Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  121. Stockhammer, K.: Zur Wahrnehmung der Schwingungsrichtung linear polarisierten Lichtes bei Insekten. Z. vergl. Physiol. 38, 30–83 (1956).Google Scholar
  122. Täuber, U.: Photokinetics and dichroism of visual pigments in the photoreceptors of Eledone (Ozoena) moschata. In: Photoreceptor optics (eds. A.W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  123. Trujillo-Cenóz, O.: The structural organization of the compound eye in insects. In: Handbook of sensory physiology (ed. M.G.F. Fuortes), Vol. VII/2, pp. 5–62. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  124. Tunstall, J., Horridge, G. A.: Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55, 167–182 (1967).Google Scholar
  125. Varela, G., Wiitanen, W.: The optics of the compound eye of the honeybee (Apis mellifera). J. gen. Physiol. 55, 336–358 (1970).PubMedGoogle Scholar
  126. Vries, H. de: Physical aspects of the sense organs. Prog. Biophys. 6, 208–264 (1956).Google Scholar
  127. Wald, G.: Visual pigment and photoreceptor physiology. In: Biochemistry and physiology of visual pigments (ed. H. Langer), pp. 1–16. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  128. Walcott, B.: Anatomical changes during light adaptation in insect eyes. In: The compound eyes and vision of insects (ed. G. A. Horridge). London: Oxford Press 1975.Google Scholar
  129. Watanabe, A., Mori, T., Nagata, S., Hiwatashi, K.: Spatial sinewave responses of the human visual system. Vision Res. 8, 1245–1263 (1968).PubMedGoogle Scholar
  130. Wehner, R.: Pattern recognition. In: The compound eye and vision of insects (ed. G. A. Horridge), pp. 75–113. Oxford: Clarendon Press 1975.Google Scholar
  131. Wehner, R.: Polarized light navigation by insects. Sci. Amer. 235, No. 1, 106–115 (1976).PubMedGoogle Scholar
  132. Wehner, R., Bernard, G. D., Geiger, E.: Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J. comp. Physiol. 104, 225–245 (1975).Google Scholar
  133. Worthington, C.R.: Structure of photoreceptor membranes. Ann. Rev. Biophys. Bioeng. 3, 53–109 (1974).Google Scholar
  134. Wright, W.E.: Orientation of intermediates in the bleaching of sheer-oriented rhodopsin. J. gen. Physiol. 62, 509–523 (1973).PubMedGoogle Scholar
  135. Wyszecki, G., Stiles, W.S.: Color science: concepts and methods, quantitative data, and formula. New York: John Wiley 1967.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1979

Authors and Affiliations

  • Allan W. Snyder
    • 1
  1. 1.CanberraAustralia

Personalised recommendations