Advertisement

Photic Responses and Sensory Transduction in Motile Protists

  • B. Diehn
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 6 / 6 A)

Abstract

The fact that some unicellular organisms respond to illumination by accumulating either at the light or dark side of the vessel in which they are contained, has been the subject of scientific study for more than 150 years. The reason for this interest is, of course, the realization that such organisms contain a sensory system that enables them not only to perceive light, but apparently also to determine its direction. As will be seen, recent work has shown that in most cases, the observed accumulation pattern is not in fact a consequence of truly directional responses. Nevertheless, the obvious ability of certain motile protists to exhibit a distinctive behavioral response to stimulation with light, has continued to fascinate researchers to this day.

Keywords

Action Spectrum Euglena Gracilis Purple Membrane Sensory Transduction Phototactic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamberger, E.S., Black, C.C., Fewson, C.A., Gibbs, M.: Inhibitor studies of carbon dioxide fixation, adenosine-triphosphate formation, and triphosphopyridine nucleotide reduction by spinach chloroplasts. Plant. Physiol. 38, 483–487 (1963).PubMedCrossRefGoogle Scholar
  2. Bartlett, C.J., Walne, P.L., Schwarz, J., Brown, D.H.: Large scale isolation and purification of eye-spot granules from Euglena gracilis var. bacillaris. Plant Physiol. 48, 881–885 (1972).CrossRefGoogle Scholar
  3. Batra, P.P., Tollin, G.: Phototaxis in Euglena I. Isolation of the eye-spot granules and identification of the eye-spot pigments. Biochim. Biophys. Acta 79, 371–378 (1964).PubMedCrossRefGoogle Scholar
  4. Bendix, S.: Phototaxis. Botan. Rev. 26, 145–208 (1960).CrossRefGoogle Scholar
  5. Benedetti, P.A., Bianchini, G., Checcucci, A., Ferrara, R., Grassi, S.: Spectroscopic properties and related functions of the stigma measured in living cells of Euglena gracilis. Arch. Microbiol. 111, 73 – 76 (1976 a).PubMedCrossRefGoogle Scholar
  6. Benedetti, P.A., Bianchini, G., Chitti, G.: Fast-scanning microspectroscopy; an electrodynamic moving-condenser method. Appl. Optics 15, 2554–2557 (1976 b).CrossRefGoogle Scholar
  7. Benedetti, P. A., Checcucci, A.: Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant Sci. Letters 4, 47–51 (1975).CrossRefGoogle Scholar
  8. Berg, H.C: How to track bacteria. Rev. Sci. Instrum. 47, 868–873 (1971).CrossRefGoogle Scholar
  9. Berg, H.C., Brown, D. A.: Chemotaxis in E. coli analyzed by three-dimensional tracking. Nature 229, 500–504 (1972).CrossRefGoogle Scholar
  10. Berg, S.P., Krogmann, D.W.: Mechanism of KCN inhibition of Photosystem I. J. Biol. Chem. 250, 8957–8962 (1975).PubMedGoogle Scholar
  11. Böhme, H., Reimer, S., Trebst, A.: The effect of dibromothymoquinone, an antagonist of plastoquinone, on noncyclic and cyclic electron flow systems in isolated chloroplasts. Z. Naturforsch. 26b, 341–352 (1971).Google Scholar
  12. Boscov, J.S.: Response of Chlamydomonas reinhardii to single flashes of light. M. S. Thesis Tufts University (1974).Google Scholar
  13. Bound, K. E., Tollin, G.: Phototactic response of Euglena gracilis to polarized light. Nature 216, 1042 – 1044 (1967).CrossRefGoogle Scholar
  14. Brinkmann, K.: Keine Geotaxis bei Euglena. Z. Pflanzenphysiol. 59, 12–16 (1968).Google Scholar
  15. Bünning, E., Schneiderhöhn, G.: Über das Aktionsspektrum der phototaktischen Reaktionen von Euglena. Arch. Mikrobiol. 32, 310–321 (1959).CrossRefGoogle Scholar
  16. Clayton, R.K.: Primary processes in bacterial photosynthesis. Ann. Rev. Biophys. Bioeng. 2, 131–156 (1973).CrossRefGoogle Scholar
  17. Checcucci, A.: Photomovement methodology. In: Primary molecular events in photobiology. Amsterdam: Elsevier 1973.Google Scholar
  18. Checcucci, A.: Molecular sensory physiology of Euglena. Naturwissenschaften 63, 412–417 (1976).PubMedCrossRefGoogle Scholar
  19. Checcucci, A., Colombetti, G., Ferrara, R., Lend, F.: Action spectra for photoaccumulation of green and colorless Euglena; evidence for identification of receptor pigments. Photochem. Photobiol. 23, 51–54 (1976).PubMedCrossRefGoogle Scholar
  20. Colombetti, G., Diehn, B.: Chemosensory responses toward oxygen in Euglena gracilis. J. Protozool. 25, 211–217 (1978).Google Scholar
  21. Cramer, W.A., Horton, P.: Recent studies on the chloroplast cytochrome b-559. Photochem. Photobiol. 22, 304–307 (1975).PubMedCrossRefGoogle Scholar
  22. Creutz, C., Diehn, B.: Motor responses to polarized light and gravity sensing in Euglena gracilis. J. Protozool. 23, 552–556 (1976).Google Scholar
  23. Creutz, C., Colombetti, G., Diehn, B.: Photophobic behavioral responses of Euglena in a light intensity gradient, and the kinetics of photoreceptor pigment interconversions. Photochem. Photobiol. 27, 611–616(1978).CrossRefGoogle Scholar
  24. Davenport, D., Culler, G.J., Greaves, J.O.B., Forward, R.B., Hand, W.G.: The investigation of the behavior of microorganisms by computerized television. IEEE Trans. Biomed. Eng. BME-17, 230–237(1970).PubMedCrossRefGoogle Scholar
  25. Diehn, B.: Phototactic response of Euglena to single and repetitive pulses of actinic light: Orientation time and mechanism. Exp. Cell Res. 56, 375–381 (1969a).PubMedCrossRefGoogle Scholar
  26. Diehn, B.: Action spectra of the phototactic responses in Euglena. Biochim. Biophys. Acta 177, 136 – 143 (1969 b).PubMedGoogle Scholar
  27. Diehn, B.: Mechanism and computer simulation of the phototactic accumulation of Euglena in a beam of light. Photochem. Photobiol. 11, 407–418 (1970).PubMedCrossRefGoogle Scholar
  28. Diehn, B., Kint, B.: The flavin nature of the photoreceptor pigment for phototaxis in Euglena. Physiol. Chem. Phys. 2, 483–488 (1970).Google Scholar
  29. Diehn, B.: The receptor-effector system of phototaxis in Euglena. Acta Protozool. 11, 325–332 (1972).Google Scholar
  30. Diehn, B.: Phototaxis and sensory transduction in Euglena. Science 181, 1009–1015 (1973).PubMedCrossRefGoogle Scholar
  31. Diehn, B.: Cybernetics and the behavior of microorganisms. In: Aneural Organisms in Neurobiology. New York: Plenum 1974.Google Scholar
  32. Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., Nultsch, W.: Terminology of behavioral responses in motile microorganisms. Photochem. Photobiol. 26, 559–560 (1977).CrossRefGoogle Scholar
  33. Diehn, B., Fonseca, J.R., Jahn, T.L.: High speed cinemicrography of the direct photophobic response of Euglena and the mechanism of negative phototaxis. J. Protozool. 24, 492–494 (1975).Google Scholar
  34. Diehn, B., Tollin, G.: Phototaxis in Euglena. II. Physical factors determining the rate of phototactic response. Photochem. Photobiol. 5, 839–844 (1966).PubMedCrossRefGoogle Scholar
  35. Diehn, B., Tollin, G.: Phototaxis in Euglena. IV. Effect of inhibitors of oxidative and photophosphorylation on the rate of phototaxis. Arch. Biochem. Biophys. 121, 169–177 (1967).PubMedCrossRefGoogle Scholar
  36. Eckert, R., Naitoh, Y.: Bioelectric control of locomotion in the ciliates. J. Protozool. 19, 237–241 (1972).PubMedGoogle Scholar
  37. Eisenstein, E.M., Osborn, D., Blair, H.: Behaviour modification in protozoa. In: Behavior of microorganisms. London-New York: Plenum 1973.Google Scholar
  38. Engelmann, T.W.: Über die Licht- und Farbenperzeption niederster Organismen. Pflügers Arch. 29, 387–400(1882).CrossRefGoogle Scholar
  39. Feinleib, M. E.: Phototacic response of Chlamydomonas to flashes of light. I. Response of cell populations. Photochem. Photobiol. 21, 351–354 (1975).PubMedCrossRefGoogle Scholar
  40. Feinleib, M.E., Curry, G.M.: Methods for measuring phototaxis of cell populations and individual cells. Physiol. Plantarum 20, 1083–1095 (1967).CrossRefGoogle Scholar
  41. Feinleib, M.E., Curry, G.M.: The nature of photoreceptor in phototaxis. In: Loewenstein, W. R. (Ed.): Handbook of Sensory Physiology, Vol. 1. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  42. Forward, R.B.: Phototaxis by the Dinoflagellate Gymnodinium splendens Lebour. J. Protozool. 21, 312–315(1974).PubMedGoogle Scholar
  43. Froehlich, O., Diehn, B.: Photoeffects in a flavin-containing lipid bilayer membrane and implications for algal phototaxis. Nature 248, 802–804 (1974).PubMedCrossRefGoogle Scholar
  44. Goessel, I.: Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenflecks. Arch. Mikrobiol. 27, 288–305 (1957).CrossRefGoogle Scholar
  45. Haeder, D.-P.: Untersuchungen zur Photo-phototactic bei Phormidium uncinatum. Dissertation Marburg 1973.Google Scholar
  46. Haeder, D.-P.: The effect of inhibitors on the electron flow triggering Photophobic reactions in Cyanophycea. Arch. Microbiol. 103, 169–174 (1974 a).CrossRefGoogle Scholar
  47. Haeder, D.-P.: Participation of two photosystems in the photo-phototaxis of Phormidium uncinatum. Arch. Microbiol. 96, 255–266 (1974 b).CrossRefGoogle Scholar
  48. Haeder, D.-P.: Further evidence for the electron pool hypothesis. The effect of KCN and DSP on the Photophobic reaction in the filamentous blue-green alga Phormidium uncinatum. Arch. Microbiol. 110, 301–303 (1976).CrossRefGoogle Scholar
  49. Haeder, D.-P., Nultsch, W.: Negative photo-phototactic reactions in Phormidium uncinatum. Photochem. Photobiol. 18, 311–318 (1973).CrossRefGoogle Scholar
  50. Hand, W.G., Schmidt, J.: Phototactic orientation by the marine dinoflagellate Gyrodinium dorsum Kofoid. II. Flagellar activity and overall response mechanism. J. Protozool. 22, 494–498 (1975).Google Scholar
  51. Harayama, S., Iino, T.: Phototactic response of aerobically cultivated Rhodospirillium rubrum. J. Gen. Microbiol. 94, 173–179 (1976).PubMedGoogle Scholar
  52. Haupt, W.: Phototaxis in plants. Intern. Rev. Cytol. 19, 267–299 (1966).CrossRefGoogle Scholar
  53. Hildebrand, E., Dencher, N.: Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257, 46–48 (1975).PubMedCrossRefGoogle Scholar
  54. Horowicz, P., Caputo, C., Robeson, J.A.: Effects of azide on the electrical properties of frog striated muscle. Fed. Proc. 27, 702–704 (1962).Google Scholar
  55. Kung, C., Chang, S.-Y., Satow, Y., Van Houten, Y., Hansma, H.: Genetic Dissection of Behavior in Paramecium. Science 188, 898–904 (1975).PubMedGoogle Scholar
  56. Lindes, D., Diehn, B., Tollin, G.: Phototaxigraph; recording instrument for determination of rate of response of phototactic microorganisms to light of controlled intensity and wavelength. Rev. Sci. Instrum. 36, 1721–1724 (1965).CrossRefGoogle Scholar
  57. Macnab, R.M., Koshland, D. E.: The gradient sensing mechanism in bacterial Chemotaxis. Proc. Natl. Acad. Sci. (USA) 69, 2509–2512 (1972).CrossRefGoogle Scholar
  58. Mast, S.O.: Light and the behavior of organisms. New York: Wiley 1911.Google Scholar
  59. Mikolajczyk, E., Diehn, B.: The effect of potassium iodide on photophobic responses in Euglena; evidence for two photoreceptor pigments. Photochem. Photobiol. 22, 269–271 (1975).PubMedCrossRefGoogle Scholar
  60. Mikolajczyk, E., Diehn, B.: Light-induced body movement of Euglena gracilis coupled to flagellar Photophobie responses by mechanical stimulation. J. Protozool. 23, 144–147 (1976 a).Google Scholar
  61. Mikolajczyk, E., Diehn, B.: Differential effect of the cationic detergent CT AB on the Photophobie responses of Euglena. Proc. 7th Intl. Congress Photobiol., Rome (1976 b).Google Scholar
  62. Møller, K. M.: On the nature of stentorin. C. R. Trav. Lab. Carlsberg 32, 411–491 (1962).Google Scholar
  63. Naitoh, Y., Eckert, R.: Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164, 963–965 (1969).PubMedCrossRefGoogle Scholar
  64. Neuscheler, W.: Bewegung und Orientierung bei Micrasterias denticulata Breb. im Licht. Z. Pflanzen-physiol.57, 51–172(1967).Google Scholar
  65. Nultsch, W.: Photokinesis in Phormidium uncinatum. Planta 57, 613–617 (1962).CrossRefGoogle Scholar
  66. Nultsch, W.: Phototaxis and photokinesis. In: Primitive Sensory and Communications Systems; the Taxes and Tropisms of Microorganisms and Cells. London-New York-San Francisco: Academic Press 1975.Google Scholar
  67. Nultsch, W., Wenderoth, K.: Phototactic investigations in single cells of Navicula peregrina (Ehrenberg) Kuetzing. Arch. Mikrobiol. 90, 47–58 (1973).CrossRefGoogle Scholar
  68. Pagni, P.G.S., Walne, P.L., Wehry, E.L.: Fluorometric evidence for flavins in isolated eyespots of Euglena gracilis var. bacillaris. Photochem. Photobiol. 24, 373–375 (1976).CrossRefGoogle Scholar
  69. Piccini, E., Omodeo, P.: Photoreceptors and phototactic programs in protista. Boll. Zool. 42, 57–79 (1975).CrossRefGoogle Scholar
  70. Racker, E., Stoeckenius, W.: Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. Nature New Biol. 233, 149–152 (1974).Google Scholar
  71. Radmer, R., Kok, B.: Energy capture in photosynthesis; photosystem. II. Ann. Rev. Biochem. 44, 409–433 (1975).PubMedCrossRefGoogle Scholar
  72. Riedl, G.: Änderung der phototaktischen Reaktionsrichtung bei Chlamydomonas reinhardi durch freie und thigmophobische Umkehr. Zulassungsarbeit, Universität Erlangen-Nürnberg (1976).Google Scholar
  73. Saji, M., Oosawa, F.: Mechanism of photoaccumulation in Paramecium bursaria. J. Protozool. 21, 556–567 (1974).PubMedGoogle Scholar
  74. Schuldiner, S., Spencer, R.D., Weber, C., Weil, R., Kaback, H.R.: Lifetime and rotational relaxation time of dansylgalactoside bound to the lac carrier protein. J. Biol. Chem. 250, 8893–8896 (1975).PubMedGoogle Scholar
  75. Smyth, R.D.: Genetic control of phototactic aggregation in Chlamydomonas reinhardtii. Ph. D. diss. University of California, Los Angeles (1971). Ann Arbor: University Microfilms, No.72 11899 (1972).Google Scholar
  76. Song, P.-S.: On the basicity of the excited state of flavins. Photochem. Photobiol. 7, 311–313 (1968).PubMedCrossRefGoogle Scholar
  77. Sperling, P.G., Walne, P.L., Wehry, E.L.: Fluorometric evidence for flavins in isolated eyespots of Euglena gracilis var. bacillaris. Photochem. Photobiol. 24, 373–376 (1976).CrossRefGoogle Scholar
  78. Stahl, E.: Über den Einfluß von Richtung und Stärke der Beleuchtung auf einige Bewegungserscheinungen im Pflanzenreiche. Bot. Z. 38, 297–413 (1880).Google Scholar
  79. Stavis, R.L.: The effect of azide on phototaxis in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. (USA) 71, 1824–1827 (1974).CrossRefGoogle Scholar
  80. Strother, G.K., Wolken, J.J.: Microspectrophotometry of Euglena chloroplast and eyespot. Nature 188, 601–602(1960).CrossRefGoogle Scholar
  81. Taylor, B. L., Koshland, D. E.: Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli. J. Bacteriol. 123, 557–569 (1975).PubMedGoogle Scholar
  82. Throm, G.: Untersuchungen zum Reaktionsmechanismus von Phototaxis und Kinesis in Rhodospirillium rubrum. Arch. Protistenk. 110, 313–371 (1968).Google Scholar
  83. Tollin, G., Robinson, M. I.: Phototaxis in Euglena. VI. Correlations between ATP production by light and phototactic rates. Bioenergetics 1, 139–145 (1970).CrossRefGoogle Scholar
  84. Trebst, A., Burba, M.: Über die Hemmung photosynthetischer Reaktionen in isolierten Chloroplasten und in Chlorella durch Disalicylidenpropandiamin. Z. Pflanzenphysiol. 57, 419–433 (1967).Google Scholar
  85. Tsang, N., Macnab, R., Koshland,D.E.: Common mechanism for repellents and attractants in bacterial Chemotaxis. Science 181, 60–63 (1973).PubMedCrossRefGoogle Scholar
  86. Walne, P.L., Arnott, H.: The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos. Planta 77, 325–353 (1967).CrossRefGoogle Scholar
  87. Wolken, J. J., Shin, E.: Photomotion in Euglena gracilis. I. Photokinesis. IL Phototaxis. J. Protozool. 5, 39–46 (1958).Google Scholar
  88. Wood, D.C: Action spectrum and electrophysiological responses correlated with the Photophobic responses of Stentor coeruleus. Photochem. Photobiol. 24, 261–266 (1976)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1979

Authors and Affiliations

  • B. Diehn
    • 1
  1. 1.ToledoUSA

Personalised recommendations