Genetic Approach to a Visual System

  • Martin Heisenberg
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 6 / 6 A)


Congenital diseases of vision have been investigated for a long time by ophthalmologists, and our knowledge about vision in man has been strongly influenced by these studies. But the usefulness of mutants in animal studies on vision has only recently been discovered. In the last decade fruitfly, mouse, cat, halobacterium, and even a white tiger entered the genetic literature on vision. Is the genetics of vision a new branch of science, is it a new (or newly sharpened) tool in neurobiology, or is it merely a new label for scattered work which happens to deal with genetic aspects of vision in animals?


Visual System Spectral Sensitivity Receptor Potential Visual Pigment Retinula Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alawi, A.A., Jennings, V., Grossfield, J., Pak, W.L.: Phototransduction mutants of Drosophila melanogaster. In: Advances in experimental medicine and biology (ed. G. B. Arden), Vol. XXIV. New York: Plenum 1972.Google Scholar
  2. Baylor, D. A., Hodgkin, A. L., Lamb, T.D.: Reconstruction of electrical responses of turtle cones to flashes and steps of light. J. Physiol. (Lond.) 242, 759–791 (1974).Google Scholar
  3. Benzer, S.: Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. nat. Acad. Sci. (Wash.) 58, 1112–1119 (1967).CrossRefGoogle Scholar
  4. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967).Google Scholar
  5. Buchner, E.: Elementary movement detectors in an insect visual system. Biol. Cybernetics 24, 85–101 (1976).CrossRefGoogle Scholar
  6. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. Exp. Biol. 16, 86–109 (1962).Google Scholar
  7. Cajal, S.R., Sanchez, D.: Contributión al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. (Madrid) 13, 1–164 (1915).Google Scholar
  8. Cervetto, L., Pasino, E., Torre, V.: Electrical responses of rods in the retina of Bufo marinus. J. Physiol. (Lond.) 267, 17–51 (1977).Google Scholar
  9. Cosens, D.J., Briscoe, D.: A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster. J. Insect Physiol. 18, 627–632 (1972).CrossRefGoogle Scholar
  10. Cosens, D. J., Manning, A.: Abnormal electroretinogram from Drosophila mutant. Nature (Lond.) 224, 285–287 (1969).CrossRefGoogle Scholar
  11. Deland, M.C, Pak, W.L.: Reversibly temperature sensitive phototransduction mutant of Drosophila melanogaster. Nature (Lond.) 244, 184–186 (1973).Google Scholar
  12. Ebrey, T.G., Honig, B.: Molecular aspects of photoreceptor function. Quart. Rev. Biophys. 8, 129–184 (1975).CrossRefGoogle Scholar
  13. Eckert, H.: Die spektrale Empfindlichkeit des Komplexauges von Musca. Kybernetik 9, 145–156 (1971).PubMedCrossRefGoogle Scholar
  14. Eckert, H.: Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14, 1–23 (1973).CrossRefGoogle Scholar
  15. Franceschini, N., Kirschfeld, K.: Etude optique in vivo des éléments photorécepteurs dans l’oeil composé de Drosophila. Kybernetik 8, 1–13 (1971).PubMedCrossRefGoogle Scholar
  16. Götz, K.G.: Flight control in Drosophila by visual perception of motion. Kybernetik 4, 199–208 (1968).PubMedCrossRefGoogle Scholar
  17. Götz, K. G., Wenking, H.: Visual control of locomotion in the walking fruitfly Drosophila. J. comp. Physiol. 85, 235–266 (1973).CrossRefGoogle Scholar
  18. Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors in invertebrates. In: Biochemistry and physiology of visual pigments (ed. H. Langer). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  19. Harris, W. A., Stark, W.S.: Hereditary retinal degeneration in Drosophila melanogaster: a mutant defect in the phototransduction process. J. gen. Physiol. 69, 261–291 (1977).PubMedCrossRefGoogle Scholar
  20. Harris, W. A., Stark, W.S., Walker, J. A.: Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. (Lond.) 256, 415–439 (1976).Google Scholar
  21. Heisenberg, M.: Comparative behavioral studies on two visual mutants of Drosophila. J. comp. Physiol. 80, 119–136(1972).CrossRefGoogle Scholar
  22. Heisenberg, M., Buchner, E.: The role of retinula cell types in visual behavior of Drosophila melanogaster. J. comp. Physiol. 117, 127–162 (1977).CrossRefGoogle Scholar
  23. Heisenberg, M., Götz, K.G.: The use of mutations for the partial degradation of vision in Drosophila melanogaster. J. comp. Physiol. 98, 217–241 (1975).CrossRefGoogle Scholar
  24. Hillmann, P., Hochstein, S., Minke, B.: A visual pigment with two physiologically active stable states. Science 175, 1486–1488 (1972).CrossRefGoogle Scholar
  25. Hotta, Y., Benzer, S.: Genetic dissection of the Drosophila nervous system by means of mosaics. Proc. nat. Acad. Sci. (Wash.) 67, 1156–1163 (1970).CrossRefGoogle Scholar
  26. Kaiser, W.: The relationship between visual movement detection and colour vision in insects. In: The compound eye and vision of insects (ed. G. A. Horridge). Oxford: Clarendon Press 1974.Google Scholar
  27. Kaplan, W.D.: The use of double mutants in the investigation of visual mutants of Drosophila (Abstract). Genetics 83, 38–39 (1976).Google Scholar
  28. Kaplan, W.D., Trout, W.E.: The behaviour of four neurological mutants of Drosophila. Genetics 61, 399–409 (1969).PubMedGoogle Scholar
  29. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967).CrossRefGoogle Scholar
  30. Kirschfeld, K.: The visual system of Musca: studies on optics, structure, and function. In: Information processing in the visual system of arthropods (ed. R.Wehner). Berlin-Heidelberg-New York: Springer 1972a.Google Scholar
  31. Kirschfeld, K.: Vision of polarized light. Symposia Proceedings of the IV. International Biophysics Congress, Moscow, 1972b.Google Scholar
  32. Kirschfeld, K.: Das neurale Superpositionsauge. Fortschr. Zool. 21, 229–257 (1973).PubMedGoogle Scholar
  33. Kirschfeld, K., Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge von Musca. Kybernetik 5, 47–52 (1968).PubMedCrossRefGoogle Scholar
  34. Kirschfeld, K., Reichardt, W.: Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. 25b, 228 (1970).Google Scholar
  35. Kirschfeld, K., Snyder, A.W.: Waveguide mode effects, birefringence, and dichroism in fly photoreceptors. In: Photoreceptor optics (eds. A. W. Snyder, R. Menzel). Berlin-Heidelberg-New York: Springer 1975.Google Scholar
  36. Koenig, J., Merriam, J.R.: Autosomal ERG mutants. Drosophila Information Service 52, 50–51 (1975).Google Scholar
  37. McCann, G.D., Arnett, D.W.: Spectral and polarization sensitivity of the dipteran visual system. J. gen. Physiol. 59, 534–558 (1972).PubMedCrossRefGoogle Scholar
  38. Minke, B., Wu, C.-F., Pak, W.L.: Isolation of light-induced response of the central retinula cells from the electroretinogram of Drosophila. J. comp. Physiol. 98, 345–355 (1975).CrossRefGoogle Scholar
  39. Nolte, J., Brown, J.E., Smith, T.G.: A hyperpolarizing component of the receptor potential in the median ocellus of Limulus. Science 162, 677–679 (1968).PubMedCrossRefGoogle Scholar
  40. Ostroy, S.E., Pak, W.L.: Protein differences associated with a phototransduction mutant of Drosophila. Nature (Lond.) 243, 120–121 (1973).Google Scholar
  41. Pak, W.L.: Mutations affecting the vision of Drosophila melanogaster. Handbook Gen. 3, 703–733 (1975).Google Scholar
  42. Pak, W.L., Liddington, K.J.: Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J. gen. Physiol. 63, 740–756 (1974).PubMedCrossRefGoogle Scholar
  43. Pak, W.L., Pinto, L.H.: Genetic approach to the study of the nervous system. Annu. Rev. Biophys. Bioeng. 5, 397–448 (1976).PubMedCrossRefGoogle Scholar
  44. Poggio, T., Reichardt, W.: Considerations on models of movement detection. Kybernetik 13, 223–227 (1973).PubMedCrossRefGoogle Scholar
  45. Poggio, T., Reichardt, W.: Visual control of orientation behaviour of the fly. II. Towards the underlying neural interactions. Quart. Rev. Biophys. 9, 377–438 (1976).CrossRefGoogle Scholar
  46. Reichardt, W., Poggio, T.: Visual control of orientation behaviour of the fly. I. A quantitative analysis. Quart. Rev. Biophys. 9, 311–375 (1976).Google Scholar
  47. Schümperli, R.: Evidence for colour vision in Drosophila melanogaster through spontaneous photo-tactic choice behaviour. J. comp. Physiol. 86, 77–94 (1973).CrossRefGoogle Scholar
  48. Sidman, R. L.: Development of interneuronal connections in brains of mutant mice. In: Physiological and biochemical aspects of nervous integration (ed. F. D. Carlson). New Jersey: Prentice-Hall 1968.Google Scholar
  49. Stark, W.S.: Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments in Drosophila. J. comp. Physiol. 96, 343–356 (1975).CrossRefGoogle Scholar
  50. Stark, W.S., Wasserman, G.S.: Wavelength-specific ERG characteristics of pigmented- and white-eyed strains of Drosophila. J. comp. Physiol. 91, 427–441 (1974).CrossRefGoogle Scholar
  51. Trujillo-Cenóz, O., Melamed, J.: Compound eye of dipterans: anatomical basis for integration—an electron microscope study. J. Ultrastruct. Res. 16, 395–398 (1966).PubMedCrossRefGoogle Scholar
  52. Varjú, D., Reichardt, W.: Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. IL Z. Naturforsch. 226, 1343–1351 (1967).Google Scholar
  53. Vigier, M.P.: Mécanisme de la synthèse des impressions lumineuses recueillies par les yeux composés des Diptères. C. R. Soc. Biol. 64, 1221–1223 (1908).Google Scholar
  54. Wu, C.-F., Pak, W.: Quantal basis of photoreceptor spectral sensitivity of Drosophila melanogaster. J. gen. Physiol. 66, 149–168 (1975).PubMedCrossRefGoogle Scholar
  55. Yeandle, S.: Studies on the slow potential and the effects of cation on the electrical responses of the Limulus ommatidium. Ph. D. Thesis: Johns Hopkins University, Baltimore, 1957.Google Scholar
  56. Zimmermann, G.: Der Einfluß stehender und bewegter Musteranteile auf die optomotorische Reaktion der FliegeDrosophila. Doctoral Thesis: Eberhard-Karls-Universität, Tübingen, 1973.Google Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1979

Authors and Affiliations

  • Martin Heisenberg
    • 1
  1. 1.WürzburgGermany

Personalised recommendations