Skip to main content

Cytochemistry and Autoradiography in the Search for Transmitter-Specific Neuronal Pathways

  • Conference paper
Peripheral Neuroendocrine Interaction
  • 48 Accesses

Abstract

Current physiological and morphological data are consistent with the hypothesis that neurotransmitters are stored in presynaptic organelles, the synaptic vesicles, from which they are released in discrete ‘packets’ or ‘quanta’ upon arrival of a nerve impulse (Katz, 1971). Recent evidence suggests that neurotransmitters may be released not only from nerve terminals but also from dendrites (Geffen et al. , 1976). Biogenic amines, as neurotransmitters, have been implicated in a number of neuroregulatory functions in the brain and in the periphery (Axelrod, 1974; von Euler, 1971). The nature and distribution of storage sites for biogenic amines can be investigated by a variety of cytochemical, cytopharmacological and autoradiographical techniques. These morphological studies provide evidence that fulfills one of the criteria essential for the identification of a given substance as a neurotransmitter, viz its demonstration in well–defined neurons in intact nerve tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K., Gallager, D.W.: Raphe origin of serotonergic nerves terminating in the cerebral ventricles. Brain Res. 88, 221–231 (1975).

    Article  PubMed  Google Scholar 

  • Axelrod, J.: Neurotransmitter. Sci. Am. 230, 59–71 (1974).

    Article  PubMed  Google Scholar 

  • Baumgarten, H.G., Björklund, A.:Neurotoxic indoleamines and monoamine neurons. Ann. Rev. Pharmacol. Toxicol. 16, 101–113 (1976).

    Article  Google Scholar 

  • Burnstock, G.: Purinergic Transmission: In: Handbook of Psychopharmacology, Vol. V. Iversen, L.L. Iversen, S.D. Snyder, S.H. (eds.), pp. 131–194. New York: Plenum Press 1975.

    Google Scholar 

  • von Euler, U.S.: Adrenergic neurotransmitter functions. Science 173, 202–206 (1971).

    Google Scholar 

  • Fillenz, M.: The factors which provide short–term and long–term control of transmitter release. Prog. Neurobiol. 8, 251–278 (1977).

    Article  Google Scholar 

  • Geffen, L., Jessell, T., Cuello, A., Iversen, L.L.:Release of dopamine from dendrites in rat substantia nigra. Nature (London) 260, 258–261 (1976).

    Article  Google Scholar 

  • Holtzmann, E.: The origin and fate of secretory packages, especially synaptic vesicles. Neurosci. Res. 2, 327–355 (1977).

    Google Scholar 

  • Iversen, L.L.: Uptake processes for biogenic amines. In: Handbook of Psychopharmacology, Vol. III. Iversen, L.L. Iversen, S.D. Snyder, S.H. (eds.), pp. 381–442. New York: Plenum Press 1975.

    Google Scholar 

  • Katz, B.: Quantal mechanism of neural transmitter release. Science 173, 123–126 (1971).

    Article  PubMed  Google Scholar 

  • Livett, B.G.: Axonal transport and neuronal dynamics: Contributions to the study of neuronal connectivity. Int. Rev. Physiol. 10, 37–124 (1976).

    Google Scholar 

  • Lorez, H.P., Richards, J.G.: Effects of intracerebroventricular injection of 5,6–dihydroxytryptamine and 6–hydroxydopamine on supra–ependymal nerves. Brain Res. 116, 165–171 (1976).

    Article  PubMed  Google Scholar 

  • Lorez, H.P., Pieri, L., Richards, J.G.: Disappearance of supra–ependymal 5–HT axons in the rat forebrain after electrolytic and 5,6–DHT–induced lesions of the medial forebrain bundle. Brain Res. 100, 1–12 (1975).

    Article  PubMed  Google Scholar 

  • Malmfors, T., Thoenen, H.: 6–Hydroxydopamine and Catecholamine Neurons, p. 368. Amsterdam: North Holland 1971.

    Google Scholar 

  • Pletscher, A.: Platelets as models for monoaminergic neurons. Essays in Neurochemistry and Neuropharmacology 3, London: Wiley & Sons Ltd. (in press).

    Google Scholar 

  • Richards, J.G.: Autoradiographic evidence for the selective accumulation of 3H–5HT by supra–ependymal nerve terminals. Brain Res. 134, 151–157 (1977).

    Article  PubMed  Google Scholar 

  • Richards, J.G., Da Prada, M.: Uranaffin reaction: A new cytochemical technique for the localization of adenine nucleotides in organelles storing biogenic amines. J. Histochem. Cytochem. 25, 1322–1336 (1977a).

    Article  Google Scholar 

  • Richards, J.G., Da Prada, M.: Autoradiographic localization of 3H–reserpine in rat brain: Correlation with distribution of monoaminergic neurons. Neurosci. Letters 6, 287–291 (1977b).

    Article  Google Scholar 

  • Richards, J.G., Tranzer, J.P.: The ultrastructural localization of amine storage sites in the central nervous system with the aid of a specific marker, 5–hydroxydopamine. Brain Res. 17, 463–469 (1970).

    Article  PubMed  Google Scholar 

  • Richards, J.G., Tranzer, J.P.: Ultrastructural evidence for the localization of an indolealkylamine in supra–ependymal nerves from combined cytochemistry and pharmacology. Experientia 30, 287–289 (1974).

    Article  PubMed  Google Scholar 

  • Richards, J.G., Tranzer, J.P.: The localization of amine storage sites in the adrenergic cell body. A study of the superior cervical ganglion by fine structural cytochemistry. J. Ultrastruct. Res. 53, 204–216 (1975).

    Article  PubMed  Google Scholar 

  • Richards, J.G., Lorez, H.P., Tranzer, J.P.: Indolealkylamine nerve terminals in cerebral ventricles: identification by electron microscopy and fluorescence histochemistry. Brain Res. 57, 277–288 (1973).

    Article  PubMed  Google Scholar 

  • Schwab, M., Agid, Y., Glowinski, J., Thoenen, H.: Retrograde axonal transport of 125j. tetanus toxin as a tool for tracing fibre connections in the central nervous system: connections of the rostral part of the neostriatum. Brain Res. 126, 211–224 (1977).

    Article  PubMed  Google Scholar 

  • Stitzel, R.E.: The biological fate of reserpine. Pharmacol. Rev. 28, 179–205 (1977).

    Google Scholar 

  • Thoenen, H., Stoeckel, K.: Ortho–and retrograde transport: importance for the function of adrenergic neurons. Clin. Exp. Pharmacol. Physiol. Suppl. 2, 1–7 (1975).

    Google Scholar 

  • Thoenen, H., Tranzer, J.P.: Functional importance of subcellular distribution of false adrenergic transmitters. Prog. Brain Res. 34, 223–236 (1971).

    Google Scholar 

  • Tranzer, J.P., Richards, J.G.: Ultrastructural cytochemistry of biogenic amines in nervous tissue: Methodological improvements. J. Histochem. Cytochem. 24, 1178–1193 (1976).

    Article  PubMed  Google Scholar 

  • Wood, J.G., Barrnett, R.J.: Histochemical demonstration of norepinephrine at a fine structural level. J. Histochem. Cytochem. 12, 197–209 (1964).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Richards, J.G. (1978). Cytochemistry and Autoradiography in the Search for Transmitter-Specific Neuronal Pathways. In: Coupland, R.E., Forssmann, W.G. (eds) Peripheral Neuroendocrine Interaction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66954-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66954-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08779-3

  • Online ISBN: 978-3-642-66954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics