Snake Venoms pp 159-212 | Cite as

Chemistry of Protein Toxins in Snake Venoms

  • E. Karlsson
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 52)

Abstract

The main function of snake venoms lies in the procuring of food and its digestion. The death of the prey is due to respiratory or circulatory failure caused by various neurotoxins, cardiotoxins, coagulation factors, and other substances acting alone or synergistically. The various enzymes injected into the prey start the digestion of the tissues. The venoms thus contain substances designed to affect vital processes, such as the function of nerves and muscles, the action of the heart, the circulation of the blood, and the permeability of membranes. Snake venoms and other toxic secretions contain a large number of pharmacologically highly active substances with a specific mode of action. Since such compounds are of great value in the investigation of important physiologic processes, the research on venoms is not the esoteric activity that one might think it to be considering the exotic origin of many venoms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharonov, A., Gurari, D., Fuchs, S.: Immunochemical characterization of Naja naja siamensis toxin and of a chemically modified toxin. Europ. J. Biochem. 45, 297–303 (1974)PubMedCrossRefGoogle Scholar
  2. Aleksiev, B., Tchorbanov, B.: Action on phosphatidylcholine of the toxic phospholipase A2 from the venom of Bulgarian viper (Vípera ammodytes ammodytes).Toxicon 14, 477–485 (1976)PubMedCrossRefGoogle Scholar
  3. Andersson, K.E., Jóhannsson, M.: Effects of viscotoxin on rabbit heart and aorta, and on frog skeletal muscle. Europ. J. Pharmacol. 23, 223–231 (1973)CrossRefGoogle Scholar
  4. Aoyagi, H., Yonezawa, H., Takahashi, N., Kato, T., Izumiya, N., Yang, C. C.: Synthesis of a peptide with cobrotoxin activity. Biochim. biophys. Acta (Amst.) 263, 823–826 (1972)Google Scholar
  5. Arnberg, H., Eaker, D., Fryklund, L., Karlsson, E.: Amino acid sequence of oxiana α, the main neurotoxin of the venom of Naja naja oxiana.Biochim. biophys. Acta (Amst.) 359, 222–232 (1974)Google Scholar
  6. Arnberg, H., Eaker, D., Karlsson, E.: Amino acid sequences of the cobra venom neurotoxins siamensis 3, naja 3, naja 4, and naja 3 P. (unpublished) (1977)Google Scholar
  7. Banks, B.E.C., Miledi, R., Shipolini, R.A.: The primary sequences and neuromuscular effects of three neurotoxic polypeptides from the venom of Dendroaspis viridis.Europ. J. Biochem. 45, 457–468 (1974)PubMedCrossRefGoogle Scholar
  8. Bechis, G., Rietschoten, J. Van, Granier, C., Jover, E., Rochat, H., Miranda, F.: On the characterization of two long toxins from Dendroaspis viridis.Bull. Inst. Pasteur Lille 74, 35–39 (1976)Google Scholar
  9. Bieber, A.L., Tu, T., Tu, A. T.: Studies of an acidic cardiotoxin isolated from the venom of Mojave rattlesnake (Crotalus scutulatus).Biochim. biophys. Acta (Amst.) 400, 178–188 (1975)Google Scholar
  10. Bock, R.M., Ling, N.S.: Devices for gradient elution in chromatography. Anal. Chem. 26, 1543–1546 (1954)CrossRefGoogle Scholar
  11. Bon, C., Changeux, J.P.: Ceruleotoxin: an acidic neurotoxin from the venom of Bungarus caeruleus which blocks the response to a cholinergic agonist without binding to the cholinergic receptor site. FEBS Letters 59, 212–216 (1975)PubMedCrossRefGoogle Scholar
  12. Bonilla, C. A.: Hypotensin—A hypotensive peptide isolated from Crotalus atrox venom: Purification, amino acid composition and terminal amino acid residues. FEBS Letters 68, 297–302 (1976)PubMedCrossRefGoogle Scholar
  13. Bonilla, C. A., Fiero, M. K.: Comparative biochemistry and pharmacology of salivary gland secretions. II. Chromatographic separation of the basic proteins from some North American rattlesnake venoms. J. Chromatog. 56, 253–263 (1971)CrossRefGoogle Scholar
  14. Bonilla, C. A., Rammel, O.J.: Comparative biochemistry and pharmacology of salivary gland secretions. III. Chromatographic isolation of a myocardial depressor protein (MDP) from the venom of Crotalus atrox.J. Chromatog. 124, 303–314 (1976)CrossRefGoogle Scholar
  15. Boquet, P.: Venins de serpents (1ère partie). Physio-pathologie de l’envenimation et propriétés biologiques des venins. Toxicon 2, 5–41 (1964)CrossRefGoogle Scholar
  16. Boquet, P.: Venins de serpents (2ème partie). Constitution chimique des venins de serpents et immunité antivenimeuse. Toxicon 3, 243–279 (1966)PubMedCrossRefGoogle Scholar
  17. Boquet, P., Poilleux, G., Dumarey, C., Izard, Y., Ronsseray, A.M.: An attempt to classify the toxic proteins of Elapidae and Hydrophidae venoms. Toxicon 11, 333–340 (1973)PubMedCrossRefGoogle Scholar
  18. Botes, D.P.: Snake venom toxins. The amino acid sequences of toxins α and β from Naja nivea venom and the disulfide bonds of toxin a. J. biol. Chem. 246, 7383–7391 (1971)PubMedGoogle Scholar
  19. Botes, D. P.: Snake venom toxins. The amino acid sequences of toxins b and d from Naja melanoleuca venom. J. biol. Chem. 247, 2866–2871 (1972)PubMedGoogle Scholar
  20. Botes, D.P.: Snake venom toxins. The reactivity of the disulphide bonds of Naja nivea toxina. Biochim. biophys. Acta (Amst.) 359, 242–247 (1974)Google Scholar
  21. Botes, D.P., Strydom, D. J.: A neurotoxin, toxin a, from Egyptian cobra (Naja haje haje) venom. J. biol. Chem. 244, 4147–4157 (1969)PubMedGoogle Scholar
  22. Botes, D. P., Strydom, D.J., Anderson, C. G., Christensen, P. A.: Snake venom toxins. Purification and properties of three toxins from Naja nivea (Linnaeus) (Cape cobra) venom and the amino acid sequence of toxin δ.J. biol. Chem. 246, 3132–3139 (1971)PubMedGoogle Scholar
  23. Brazjl, O. V.: Neurotoxins from the South American rattle snake venom. J. Formosan med. Ass. 71, 394–400 (1972)Google Scholar
  24. Brazil, O.V., Excell, B. J.: Action of crotoxin and crotactin from the venom of Crotalus durissus terriflcus (South American rattlesnake) on the frog neuromuscular junction. J. Physiol. (Lond.) 212, 34–35 P (1971)Google Scholar
  25. Brazil, O. V., Excell, B. J., Sanatana, S. de Sa.: The importance of phospholipase A in the action of the crotoxin complex at the frog neuromuscular junction. J. Physiol. (Lond.) 234, 63–64 P (1973)Google Scholar
  26. Breithaupt, H.: Enzymatic characteristics of Crotalus phospholipase A2 and the crotoxin complex. Toxicon 14, 221–233 (1976 a)PubMedCrossRefGoogle Scholar
  27. Breithaupt, H.: Neurotoxic and myotoxic effects of Crotalus phospholipase A and its complex with crotapotin. Naunyn-Schmiedebergs Arch. Pharmacol. 292, 271–278 (1976 b)PubMedCrossRefGoogle Scholar
  28. Breithaupt, H., Omori-Satoh, T., Lang, J.: Isolation and characterization of three phospholipases A from the crotoxin complex. Biochim. biophys. Acta (Amst.) 403, 355–369 (1975)Google Scholar
  29. Breithaupt, H., Rübsamen, K., Habermann, E.: Biochemistry and pharmacology of the crotoxin complex. Biochemical analysis of crotapotin and the basic phospholipase A. Europ. J. Biochem. 49, 333–345 (1974)PubMedCrossRefGoogle Scholar
  30. Breithaupt, H., Rübsamen, K., Walsch, P., Habermann, E.: In vitro and in vivo interactions between phospholipase A and a novel potentiator isolated from so-called crotoxin complex. Naunyn-Schmiedebergs Arch. Pharmak. 269, 403–404 (1971)Google Scholar
  31. Broadley, D.G.: A review of the African cobras of the genus Naja (Serpentes: Elapinae).Arnoldia 3, 1–14 (1968)Google Scholar
  32. Brunton, T.L., Fayrer, J.: On the nature and physiological action of the poison of Naja tripudiam and other Indian venomous snakes. Part I. Proc. roy. Soc. [B] 21, 358–374 (1873).CrossRefGoogle Scholar
  33. Brunton, T.L., Fayrer, J.: On the nature and physiological action of the poison of Naja tripudiam and other Indian venomous snakes. Part II. Proc. roy. Soc. [B] 22, 68–133 (1874)CrossRefGoogle Scholar
  34. Bukolova-Orlova, T.G., Permyakov, E. A., Burstein, E.A., Yukelson, L. Ya.: Reinterpretation of luminiscence properties of neurotoxins from the venom of Middle-Asian cobra Naja oxiana eichw. Biochim. biophys. Acta (Amst.) 439, 426–431 (1976)Google Scholar
  35. Carlsson, F.H.H.: Snake venom toxins. The primary structure of two novel cytotoxin homologues from the venom of forest cobra (Naja melanoleuca).Biochem. Biophys. Res. Commun. 59, 269–276 (1974)PubMedCrossRefGoogle Scholar
  36. Carlsson, F.H.H.: Snake venom toxins. The primary structure of protein S4C11 a neurotoxin homologue from the venom of forest cobra (Naja melanoleuca).Biochim. biophys. Acta (Amst.) 400, 310–321 (1975)Google Scholar
  37. Carlsson, F.H.H., Joubert, F.J.: Snake venom toxins. The isolation and purification of three cytotoxin homologues from the venom of the forest cobra (Naja melanoleuca) and the complete amino acid sequence of toxin VII l. Biochim. biophys. Acta (Amst.) 336, 453–469 (1974)Google Scholar
  38. Chang, C.C., Chen, T. F., Lee, C. Y.: Studies of the presynaptic effect of β-bungarotoxin on neuromuscular transmission. J. Pharmacol, exp. Ther. 184, 339–345 (1973)Google Scholar
  39. Chang, C. C., Lee, C. Y.: Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action. Arch. int. Pharmacodyn. 144, 241–257 (1963)PubMedGoogle Scholar
  40. Chang, C.C., Lee, J.D., Eaker, D., Fohlman, J.: The presynaptic neuromuscular blocking action of taipoxin. A comparison with β-bungarotoxin and crotoxin. Toxicon 15, 571–576 (1977)PubMedCrossRefGoogle Scholar
  41. Chang, C.C., Yang, C.C.: Immunochemical studies on the tryptophan-modified cobrotoxin. Biochim. biophys. Acta (Amst.) 295, 595–604 (1973)Google Scholar
  42. Chang, C. C., Yang, C. C., Hamaguchi, K., Nakai, K., Hayashi, K.: Studies on the status of tyrosyl residues in cobrotoxin. Biochim. biophys. Acta (Amst.) 236, 164–173 (1971 b)Google Scholar
  43. Chang, C. C., Yang, C. C., Nakai, K., Hayashi, K.: Studies on the status of free amino and carboxyl groups in cobrotoxin. Biochim. biophys. Acta (Amst.) 251, 334–344 (1971 a)Google Scholar
  44. Changeux, J.P., Kasai, M., Lee, C.Y.: Use of a snake venom toxin to characterize the cholinergic receptor protein of Torpedo electric tissue. Proc. nat. Acad. Sci. (Wash.) 67, 1241–1247 (1970)CrossRefGoogle Scholar
  45. Chen, I. L., Lee, C. Y.: Ultrastructural changes in the motor nerve terminals caused by β-bungarotoxin. Virchows Arch. Abt. B. Zellpath. 6, 318–325 (1970)Google Scholar
  46. Cheymol, J., Bourillet, F., Roch-Arveiller, M.: Venins et toxines de serpents. Effets neuromusculaire. Actualités pharmacol. 25, 179–240 (1972)PubMedGoogle Scholar
  47. Cheymol, J., Goncalves, J. M., Bourillet, F., Roch-Arveiller, M.: Action neuromusculaire comparée de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus.I. Sur préparations neuromusculaire in situ. Toxicon 9, 279–286 (1971a).PubMedCrossRefGoogle Scholar
  48. Cheymol, J., Goncalves, J. M., Bourillet, F., Roch-Arveiller, M.: Action neuromusculaire comparée de la crotamine et du venin de Crotalus durissus terrificus var. crotaminicus.II. Sur préparations isolées. Toxicon 9, 287–289 (1971 b)PubMedCrossRefGoogle Scholar
  49. Cheymol, J., Karlsson, E., Bourillet, F., Roch-Arveiller, M.: Activités biologiques des diverses fractions isolées du venin d’Hemachatus haemachates.Arch. int. Pharmacodyn. 208, 81–93 (1974)PubMedGoogle Scholar
  50. Chicheportiche, R., Rochat, C., Sampieri, F., Lazdunski, M.: Structure-function relationships of neurotoxins isolated from Naja haje venom. Physicochemical properties and identification of the active site. Biochemistry 11, 1681–1691 (1972)PubMedCrossRefGoogle Scholar
  51. Chicheportiche, R., Vincent, J. P., Kopeyan, C., Schweitz, H., Lazdunski, M.: Structure-function relationship in the binding of snake neurotoxins to the Torpedo membrane receptor. Biochemistry 14, 2081–2091 (1975)PubMedCrossRefGoogle Scholar
  52. Condrea, E.: Membrane-active polypeptides from snake venom: Cardiotoxins and haemocytotoxins. Experientia (Basel) 30, 121–129 (1974)CrossRefGoogle Scholar
  53. Cooper, D., Reich, E.: Neurotoxin from the venom of the cobra, Naja naja siamensis.Purification and radioactive labelling. J. biol. Chem. 247, 3008–3013 (1972)PubMedGoogle Scholar
  54. Cull-Candy, S. G., Fohlman, J., Gustavsson, D., Lüllman-Rauch, R., Theseleff, S.: The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience 1, 175–180 (1976)PubMedCrossRefGoogle Scholar
  55. Delori, P.J.: Isolement, purification et étude d’une phospholipase A2 toxique du venin de Vípera berus.Biochimie 53, 941–942 (1971)PubMedCrossRefGoogle Scholar
  56. Devi, A.: The protein and nonprotein constituents of snake venoms. In: Bucherl, W., Buckley, E., Deulofeu, V. (Eds.): Venomous Animals and Their Venoms, Vol. I, pp. 119–165. New York-London: Academic Press 1968Google Scholar
  57. Drenth, J., Enzing, C., Kalk, K., Vessies, J.: The three dimensional structure of pancreatic phospholipase A2. Abstracts 04-6-353, 10th Int. Congr. Biochemistry, Hamburg, Germany, July 25–31, 1976Google Scholar
  58. Eaker, D.: Structure and function of snake venom toxins. In: Walter, R., Meienhofer, J. (Eds.): Peptides: Chemistry, Structure and Biology. Proc. 4th American Peptide Symposium, pp. 17–30. Ann Arbor (Michigan): Ann Arbor-Science Publisher’s 1975Google Scholar
  59. Eaker, D., Porath, J.: The amino acid sequence of a neurotoxin from Naja nigricollis venom. 7 th Int. Congress Biochem., Tokyo 1967. Col. VIII-3, Abstracts III, p. 499. Tokyo: The Science Council of Japan 1967Google Scholar
  60. Edman, P.: Method for determination of the amino acid sequence in peptides. Acta Chem. Scand. 4, 283–293 (1950)CrossRefGoogle Scholar
  61. Ehrenpreis, S., Fishmann, M. M.: The interaction of quaternary ammonium compounds with chondroitin sulfate. Biochim. biophys. Acta (Amst.) 44, 577–585 (1960)CrossRefGoogle Scholar
  62. Eterovic, V.A., Hebert, M.S., Hanley, M.R., Bennett, E.L.: The lethality and spectroscopic properties of toxins from Bungarus multicinctus (Blyth) venom. Toxicon 13, 37–48 (1975)PubMedCrossRefGoogle Scholar
  63. Evenberg, A., Meyer, H., Gaastra, W., Verheij, H.M., Haasde G.H.: Amino acid sequence of phospholipase A2 from horse pancreas. J. biol. Chem. 252, 1189–1196 (1977).PubMedGoogle Scholar
  64. Fohlman, J., Eaker, D.: Isolation and characterization of a lethal myotoxic phospholipase A from the venom of the common sea snake Enhydrina schistosa causing myoglobinuria in mice. Toxicon 15, 385–393 (1977)PubMedCrossRefGoogle Scholar
  65. Fohlman, J., Eaker, D., Karlsson, E., Thesleff, S.: Taipoxin, an extremely potent presynaptic neurotoxin from the venom of the Australian snake taipan (Oxyuranus s. scutellatus).Isolation, characterization, quaternary structure and pharmacological properties. Europ. J. Biochem. 68, 457–469 (1976)PubMedCrossRefGoogle Scholar
  66. Fraenkel-Conrat, H., Jeng, T. W., Hendon, R. A.: New studies on crotoxin, the dual neurotoxin of Crotalus durissus terriflcus.Report at 10 th Int. Congr. Biochemistry, Hamburg, Germany, July 25–31, 1976Google Scholar
  67. Fryklund, L., Eaker, D.: Complete amino acid sequence of a nonneurotoxic hemolytic protein from the venom of Hemachatus haemachatus (African ringhals cobra). Biochemistry 12, 661–667 (1973)PubMedCrossRefGoogle Scholar
  68. Fryklund, L., Eaker, D.: The complete amino acid sequence of a cardiotoxin from the venom of Naja naja (Cambodian cobra). Biochemistry 14, 2860–2865 (1975 a)PubMedCrossRefGoogle Scholar
  69. Fryklund, L., Eaker, D.: The complete covalent structure of a cardiotoxin from the venom of Naja nigricollis (African black-necked spitting cobra). Biochemistry 14, 2865–2871 (1975 b)PubMedCrossRefGoogle Scholar
  70. Fryklund, L., Eaker, D., Karlsson, E.: Amino acid sequences of the two principal neurotoxins of Enhydrina schistosa venom. Biochemistry 11, 4633–4640 (1972)PubMedCrossRefGoogle Scholar
  71. Ghosh, B.N., Chaudhuri, D.K.: Venoms of Asiatic snakes. In: Bucherl, W., Buckley, E., Deulofeu, V. (Eds.): Venomous Animals and Their Venoms, Vol. I, pp. 577–610. New York-London: Academic Press 1968Google Scholar
  72. Gralen, N., Svedbeg, T.: The molecular weight of crotoxin. Biochem. J. 32, 1375–1377 (1938)PubMedGoogle Scholar
  73. Grishin, E.V., Sukhikh, A.P., Adamovich, T.B., Ovchinnikov, Yu. A., Yukelson, L. Ya.: The isolation and sequence determination of a cytotoxin from the venom of the Middle-Asian cobra Naja naja oxiana.FEBS Letters 48, 179–183 (1974b)PubMedCrossRefGoogle Scholar
  74. Grishin, E.V., Sukhikh, A.P., Lukyanchuk, N.N., Slobodyan, L.N., Lipkin, V.M., Ovchinnikov, Yu. A., Sorokin, V.M.: Amino acid sequence of neurotoxin II from Naja naja oxiana venom. FEBS Letters 36, 77–78 (1973)PubMedCrossRefGoogle Scholar
  75. Grishin, E.V., Sukhikh, A.P., Slobodyan, L. N., Ovchinnikov, Yu.A., Sorokin, V. M.: Amino acid sequence of neurotoxin I from Naja naja oxiana venom. FEBS Letters 45, 118–121 (1974 a)PubMedCrossRefGoogle Scholar
  76. Haas, G.H. de, Postema, N.H., Nieuwenhausen, W., Deenen, L.L.M. de: Purification and properties of phospholipase A from porcine pancreas. Biochim. biophys. Acta (Amst.) 159, 103–117 (1968)Google Scholar
  77. Haas, G.H. de, Sloboom, A.J., Bonsen, P.P.M., Deenen, L.L.M. Van, Maroux, S., Puigserver, A., Desnuelle, P.: Studies on phospholipase A and its zymogen from porcine pancreas. I. The complete amino acid sequence. Biochim. biophys. Acta (Amst.) 221, 31–53 (1970)Google Scholar
  78. Halpert, J., Eaker, D.: Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). J. biol. Chem. 250, 6990–6997 (1975)PubMedGoogle Scholar
  79. Halpert, J., Eaker, D.: Isolation and the amino acid sequence of a neurotoxic phospholipase A from the venom of the Australian tiger snake Notechis scutatus scutatus.J. biol. Chem. 251, 7343–7347 (1976)PubMedGoogle Scholar
  80. Halpert, J., Eaker, D., Karlsson, E.: The role of phospholipase activity in the action of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). FEBS Letters 61, 72–76 (1976)PubMedCrossRefGoogle Scholar
  81. Harris, J. B., Johnson, M. A., Karlsson, E.: Pathological responses of rat skeletal muscle to a single subcutaneous injection of a toxin isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus.Clin. exp. Pharmacol. Physiol. 2, 383–404 (1975)CrossRefGoogle Scholar
  82. Harris, J. B., Karlsson, E., Thesleff, S.: Effects of an isolated toxin from Australian tiger snake (Notechis scutatus scutatus) venom at the mammalian neuromuscular junction. Brit. J. Pharmacol. 47, 141–146 (1973)Google Scholar
  83. Hasson, A.: Interaction of quaternary ammonium bases with a purified acid polysaccharide and other macromolecules from the electric organ of electric eel. Biochim. biophys. Acta (Amst.) 56, 275–292 (1962)CrossRefGoogle Scholar
  84. Hayashi, K., Takechi, M., Sasaki, T.: Amino acid sequence of cytotoxin I from the venom of the Indian cobra (Naja naja).Biochem. Biophys. Res. Commun. 45, 1357–1362 (1971)PubMedCrossRefGoogle Scholar
  85. Hayashi, K., Takechi, M., Sasaki, T., Lee, C.Y.: Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra.Biochem. Biophys. Res. Commun. 64, 360–366 (1975)PubMedCrossRefGoogle Scholar
  86. Hendon, R.A.: Preliminary studies on the neurotoxin in the venom of Crotalus scutulatus (Mojave rattlesnake). Toxicon 13, 477–482 (1975)PubMedCrossRefGoogle Scholar
  87. Hendon, R.A., Fraenkel-Conrat, H.: Biological role of the two components of crotoxin. Proc. natl. Acad. Sci. (Wash.) 68, 1560–1563 (1971)CrossRefGoogle Scholar
  88. Hendon, R.A., Fraenkel-Conrat, H.: The role of complex formation in the neurotoxicity of crotoxin components A and B. Toxicon 14, 283–289 (1976)PubMedCrossRefGoogle Scholar
  89. Hofsten, B. von, Kley, H. van, Eaker, D.: An extracellular enzyme from a strain of Arthrobacter. Biochim. biophys. Acta (Amst.) 110, 585–598 (1965)Google Scholar
  90. Hori, H., Tamiya, N.: Preparation and activity of guanidinated or acetylated erabutoxins. Biochem. J. 153, 217–222 (1976)PubMedGoogle Scholar
  91. Horst, J., Hendon, R.A., Fraenkel-Conrat, H.: The active components of crotoxin. Biochem. Biophys. Res. Commun. 46, 1042–1047 (1972)PubMedCrossRefGoogle Scholar
  92. Howard, B. D.: Effects of β-bungarotoxin on mitochondrial respiration are caused by associated phospholipase A activity. Biochem. Biophys. Res. Commun. 67, 58–65 (1975)PubMedCrossRefGoogle Scholar
  93. Huang, J. S., Liu, S. S., Ling, K. H., Chang, C.C., Yang, C.C.: Iodination of cobrotoxin. Toxicon 11, 39–45 (1973)PubMedCrossRefGoogle Scholar
  94. Jeng, T.W., Fraenkel-Conrat, H.: Activation of crotoxin B by volvatoxin A 2. Biochem. Biophys. Res. Commun. 70, 1324–1329 (1976)PubMedCrossRefGoogle Scholar
  95. Jiménez Porras, J. M.: Pharmacology of peptides and proteins in snake venoms. Ann. Rev. Pharmacol. 8, 299–318 (1968)PubMedCrossRefGoogle Scholar
  96. Jiménez Porras, J. M.: Biochemistry of snake venoms (a review). Clin. Toxicol. 3, 389–431 (1970)PubMedCrossRefGoogle Scholar
  97. Joubert, F.J.: Snake venom toxins. The amino acid sequences of two toxins from Ophiophagus hannah (King cobra) venom. Biochim. biophys. Acta (Amst.) 317, 85–98 (1973)Google Scholar
  98. Joubert, F.J.: Snake venom toxins. The amino acid sequences of three toxins (CM-10, CM-12, and CM-14) from Naja haje annulifera (Egyptian cobra) venom. Hoppe Seylers Z. physiol. Chem. 356, 53–72 (1975 a)CrossRefGoogle Scholar
  99. Joubert, F.J.: Najamelanoleuca (Forest cobra) venom. The amino acid sequence of phospholipase A, fractions DE-I and DE-II. Biochim. biophys. Acta (Amst.) 379, 345–359 (1975b)Google Scholar
  100. Joubert, F. J.: Naja melanoleuca (Forest cobra) venom. The amino acid sequence of phospholipase A, fraction DE-III. Biochim. biophys. Acta (Amst.) 379, 329–344 (1975 c)Google Scholar
  101. Joubert, F.J.: Hemachatus haemachatus (Ringhals) venom. Purification, some properties and amino acid sequence of phospholipase A (Fraction DE-I). Europ. J. Biochem. 52, 539–554 (1975 d)PubMedCrossRefGoogle Scholar
  102. Kaiser, E., Michl, H.: Die Biochemie der tierischen Gifte. Wien: Franz Deuticke 1958Google Scholar
  103. Kamenskaya, M. A., Thesleff, S.: The neuromuscular blocking action of an isolated toxin from the elapid (Oxyuranus scutellatus).Acta physiol. scand. 90, 716–724 (1974)PubMedCrossRefGoogle Scholar
  104. Karlsson, E.: Chemistry of some potent animal toxins. Experientia (Basel) 29, 1319–1327 (1973)CrossRefGoogle Scholar
  105. Karlsson, E., Arnberg, H., Eaker, D.: Isolation of the principal neurotoxins of two Naja naja subspecies. Europ. J. Biochem. 21, 1–16 (1971)PubMedCrossRefGoogle Scholar
  106. Karlsson, E., Eaker, D.: Isolation of the principal neurotoxins of Naja naja subspecies from the Asian mainland. Toxicon 10, 217–225 (1972a)PubMedCrossRefGoogle Scholar
  107. Karlsson, E., Eaker, D.: Chemical modifications of the postsynaptic Naja naja neurotoxins. J. Formosan med. Ass. 71, 358–371 (1972b)Google Scholar
  108. Karlsson, E., Eaker, D., Drevin, H.: Modification of the invariant tryptophan of two Naja naja neurotoxins. Biochim. biophys. Acta (Amst.) 328, 510–519 (1973)Google Scholar
  109. Karlsson, E., Eaker, D., Fryklund, L., Kadin, S.: Chromatographic separation of Enhydrina schistosa (common sea snake) venom and the characterization of two principal neurotoxins. Biochemistry 11, 4628–4633 (1972a)PubMedCrossRefGoogle Scholar
  110. Karlsson, E., Eaker, D., Ponterius, G.: Modification of amino groups in Naja naja neurotoxins and the preparation of radioactive derivatives. Biochim. biophys. Acta (Amst.) 257, 235–248 (1972 c)Google Scholar
  111. Karlsson, E., Eaker, D., Porath, J.: Purification of a neurotoxin from the venom of Naja nigricollis.Biochim. biophys. Acta (Amst.) 127, 505–520 (1966)Google Scholar
  112. Karlsson, E., Eaker, D., Ryden, L.: Purification of a presynaptic neurotoxin from the venom of the Australian tiger snake Notechis scutatus scutatus.Toxicon 10, 405–413 (1972d)PubMedCrossRefGoogle Scholar
  113. Karlsson, E., Fohlman, J., Groth, M.: Purification of the acetylcholine receptor from the electric organ of Torpedo marmorata.Bull. Inst. Pasteur Lille 74, 11–22 (1976)Google Scholar
  114. Karlsson, E., Heilbronn, E., Widlund, L.: Isolation of the nicotinic acetylcholine receptor by bio-specific chromatography on insolubilized Naja naja neurotoxin. FEBS Letters 28, 107–111 (1972 b)PubMedCrossRefGoogle Scholar
  115. Karlsson, E., Sundelin, J.: Nitration of tyrosine in three cobra neurotoxins. Toxicon 14, 295–306 (1976)PubMedCrossRefGoogle Scholar
  116. Kelly, R. B., Brown, III, F.R.: Biochemical and physiological properties of a purified snake venom neurotoxin which acts presynaptically. J. Neurobiol. 5, 135–150 (1974)PubMedCrossRefGoogle Scholar
  117. Keung, W.M., Leung, W.W., Kong, Y.C.: Studies of the status of disulfide linkages and tyrosine residues in cardiotoxin. Biochem. Biophys. Res. Commun. 66, 383–392 (1975 b)PubMedCrossRefGoogle Scholar
  118. Keung, W.M., Yip, T.T., Kong, Y.C.: The chemistry and biological effects of cardiotoxin from the Chinese cobra (N. naja Linn.) on hormonal responses in isolated cell systems. Toxicon 13, 239–251 (1975 a)PubMedCrossRefGoogle Scholar
  119. Klett, R.P., Fulpius, B.W., Cooper, D., Smith, M., Reich, E., Possani, L.D.: The acetylcholine receptor. Purification and characterization of a macromolecule isolated from Electrophorus electricus.J. biol. Chem. 248, 6841–6853 (1973)PubMedGoogle Scholar
  120. Klibansky, C., London, Y., Frenkel, A., Vries, A. de: Enhancing action of synthetic and natural basic polypeptides on erythrocyte-ghost phospholipid hydrolysis by phospholipase A. Biochim. biophys. Acta (Amst.) 150, 15–23 (1968)CrossRefGoogle Scholar
  121. Laure, C. J.: Die Primärstruktur des Crotamins. Hoppe Seylers Z. physiol. Chem. 356, 213–215 (1975)PubMedCrossRefGoogle Scholar
  122. Lee, C. Y.: Elapid neurotoxins and their mode of action. Clin. Toxicol. 3, 457–472 (1970)PubMedCrossRefGoogle Scholar
  123. Lee, C.Y.: Mode of action of cobra venom and its purified toxins. In: Simpson, L.L. (Ed.): Neuropoisons: Their Pathophysiological Actions, Vol. I, pp. 21–70. New York: Plenum Press 1971Google Scholar
  124. Lee, C.Y.: Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann. Rev. Pharmacol. 12, 265–286 (1972)PubMedCrossRefGoogle Scholar
  125. Lee, C.Y., Chang, C.C., Chen, Y.M.: Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. J. Formosan med. Ass. 71, 344–349 (1972 a)Google Scholar
  126. Lee, C.Y., Chang, C.C., Chiu, T.H., Chiu, P.J.S., Tseng, T.C., Lee, S.Y.: Pharmacological properties of cardiotoxin isolated from Formosan cobra venom. Naunyn Schmiedebergs Arch. Pharmak. 259, 360–374 (1968)Google Scholar
  127. Lee, C.Y., Chang, S.L., Kau, S.T., Luh, S.H.: Chromatographic separation of the venom of Bun-garus multicinctus and characterization of its components. J. Chromatog. 72, 71–82 (1972 b)CrossRefGoogle Scholar
  128. Lee, C.Y., Chen, Y.M., Karlsson, E.: Postsynaptic and musculotropic effects of notexin, a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake). Toxicon 14, 493–494 (1976 a)PubMedCrossRefGoogle Scholar
  129. Lee, C.Y., Chen, Y.M., Mebs, D.: Chromatographic separation of the venom of Bungarus caeruleus and pharmacological characterization of its components. Toxicon 14, 451–457 (1976 b)PubMedCrossRefGoogle Scholar
  130. Lee, C. Y., Huang, M. C., Bonilla, C. A.: Mode of action of purified basic proteins from three rattlesnake venoms on neuromuscular junctions of the chick biventer cervicis muscle. In: Kaiser, E. (Ed.): Animal and Plant Toxins, pp. 173–178. München: Wilhelm Goldmann Verlag 1972 cGoogle Scholar
  131. Lester, H.: Dissertation, Rockefeller University, New York 1971Google Scholar
  132. Leung, W.W., Keung, W.M., Kong, Y.C.: The cytolytic effect of cobra cardiotoxin on Ehrlich ascites tumor cells and its inhibition by Ca2+. Naunyn Schmiedebergs Arch. Pharmacol. 292, 193–198 (1976)PubMedCrossRefGoogle Scholar
  133. Li, C.H., Fraenkel-Conrat, H.: Electrophoresis of crotoxin. J. Amer. chem. Soc. 64, 1586–1588 (1942)CrossRefGoogle Scholar
  134. Libelius, R.: Binding of 3H-labelled cobra neurotoxin to cholinergic receptors in fast and slow mammalian muscles. J. Neural. Trans. 35, 137–149 (1974)CrossRefGoogle Scholar
  135. Lin, J.Y., Jeng, T.W., Chen, C.C., Shi, G.Y., Tung, T.C.: Isolation of a new cardiotoxic protein from the edible mushroom, Volvariella volvacea.Nature (Lond.) New Biol. 246, 524–525 (1973)CrossRefGoogle Scholar
  136. Liu, C.S., Blackwell, R.Q.: Hydrophitoxin b from Hydrophis cyanocinctus venom. Toxicon 12, 543–546 (1974)PubMedCrossRefGoogle Scholar
  137. Louw, A. I.: Snake venom toxins. The purification and properties of five non-neurotoxic polypeptides from Naja mossambica mossambica venom. Biochim. biophys. Acta (Amst.) 336, 470 – 480 (1974 a)Google Scholar
  138. Louw, A.I.: Snake venom toxins. The amino acid sequences of three cytotoxin homologues from Naja mossambica mossambica venom. Biochim. biophys. Acta (Amst.) 336, 481–495 (1974 b)Google Scholar
  139. Louw, A.I.: Snake venom toxins. The complete amino acid sequence of cytotoxin V114 from the venom of Naja naja mossambica.Biochem. Biophys. Res. Commun. 58, 1022–1029 (1974 c)PubMedCrossRefGoogle Scholar
  140. Low, B.W., Preston, H.S., Sato, A., Rosen, L.S., Searl, J.E., Rudko, A.D., Richardson, J.S.: Three dimensional structure of erabutoxin b neurotoxic protein: Inhibitor of acetylcholine receptor. Proc. nat. Acad. Sci. (Wash.) 73, 2991–2994 (1976)CrossRefGoogle Scholar
  141. Maeda, N., Takagi, K., Tamiya, N., Chen, Y.M., Lee, C.Y.: The isolation of an easily reversible post-synaptic toxin from the venom of a sea snake, Laticauda semifasciata.Biochem. J. 141, 383–387 (1974)PubMedGoogle Scholar
  142. Maeda, N., Tamiya, N.: The primary structure of the toxin Laticauda semifasciata III, a weak and reversibly acting neurotoxin from the venom of a sea snake, Laticauda semifasciata.Biochem. J. 141, 389–400 (1974)PubMedGoogle Scholar
  143. Maeda, N., Tamiya, N.: Isolation, properties and amino acid sequences of three neurotoxins from the venom of a sea snake, Aipysyrus laevis.Biochem. J. 153, 79–87 (1976)PubMedGoogle Scholar
  144. Maeda, N., Tamiya, N.: Correction of partial amino acid sequence of erabutoxins. Biochem. J. 167, 289–291 (1977)PubMedGoogle Scholar
  145. Master, R. W.P., Rao, S.S.: Identification of enzymes and toxins in venoms of Indian cobra and Russell’s viper after starch gel electrophoresis. J. biol. Chem. 236, 1986–1990 (1961)PubMedGoogle Scholar
  146. Mebs, D.: Chemistry of animal venoms, poisons, and toxins. Experientia (Basel) 29, 1328–1334 (1973)CrossRefGoogle Scholar
  147. Mebs, D., Narita, K., Iwanaga, S., Samejima, Y., Lee, C.Y.: Purification, properties and amino acid sequence of α-bungarotoxin from the venom of Bungarus multicinctus.Hoppe Seylers Z. physiol. Chem. 353, 243–262 (1972)PubMedCrossRefGoogle Scholar
  148. Meldrum, B. S.: The actions of snake venoms on nerve and muscle. The pharmacology of phospholipase A and of polypeptide toxins. Pharmacol. Rev. 17, 393–445 (1965)PubMedGoogle Scholar
  149. Menez, A., Boquet, P., Fromageot, P., Tamiya, N.: On the role of tyrosyl and tryptophanyl residues in the conformation of two snake neurotoxins. Bull. Inst. Pasteur Lille 74, 57–64 (1976)Google Scholar
  150. Menez, A., Morgat, J.L., Fromageot, P., Ronsseray, A.M., Boquet, P., Changeux, J.P.: Tritium labelling of the α-neurotoxin of Naja nigricollis.FEBS Letters 17, 333–335 (1971)PubMedCrossRefGoogle Scholar
  151. Miledi, R., Molinoff, P., Potter, L.T.: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature (Lond.) New Biol. 229, 554–557 (1971)CrossRefGoogle Scholar
  152. Mollay, C., Kreil, G.: Enhancement of bee venom phospholipase A2 activity by melittin, direct lytic factor from cobra venom and polymyxin B. FEBS Letters 46, 141–144 (1974)PubMedCrossRefGoogle Scholar
  153. Moore, S., Spackman, D.H., Stein, W.H.: Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 30, 1185–1190 (1958)Google Scholar
  154. Moroz, C., Vries, A. de, Sela, M.: Isolation and characterization of a neurotoxin from Vipera palestinae venom. Biochim. biophys. Acta (Amst.) 124, 136–146 (1966)Google Scholar
  155. Nakai, K., Sasaki, T., Hayashi, K.: Amino acid sequence of toxin A from the venom of the Indian cobra (Naja naja).Biochem. Biophys. Res. Commun. 44, 893–897 (1971)PubMedCrossRefGoogle Scholar
  156. Narita, K., Lee, C.Y.: The amino acid sequence of cardiotoxin from Formosan cobra (Naja naja atra).Biochem. Biophys. Res. Commun. 41, 339–343 (1970)PubMedCrossRefGoogle Scholar
  157. Narita, K., Mebs, D., Iwanaga, S., Samejima, Y., Lee, C.Y.: Primary structure of α-bungarotoxin from Bungarus multicinctus venom. J. Formosan med. Ass. 71, 336–343 (1972)Google Scholar
  158. North, A. C.T.: Amino acid sequence and the genetic code. Nature (Lond.) New Biol. 239, 76–77 (1972)Google Scholar
  159. Obidairo, T.K., Tampitag, S., Eaker, D.: Isolation and determination of the amino acid sequence of a toxic basic phospholipase A from the venom of Naja nigricollis.(unpublished) (1976)Google Scholar
  160. Ohta, M., Hayashi, K.: Localization of the five disulfide bridges in toxin B from the venom of the Indian cobra (Naja naja).Biochem. Biophys. Res. Commun. 55, 431–438 (1973)CrossRefGoogle Scholar
  161. Ohta, M., Hayashi, K.: Chemical modification of the tryptophan residue in toxin B from the venom of the Indian cobra. Biochem. Biophys. Res. Commun. 57, 973–979 (1974 a)CrossRefGoogle Scholar
  162. Ohta, M., Hayashi, K.: Chemical modification of the tyrosine residue in toxin B from the venom of the Indian cobra Naja naja.Biochem. Biophys. Res. Commun. 56, 981–987 (1974 b)CrossRefGoogle Scholar
  163. Pattabhiraman, T.R., Russell, F.E.: Isolation and purification of the toxic fraction of Mojave rattlesnake venom. Toxicon 13, 291–294 (1975)PubMedCrossRefGoogle Scholar
  164. Peterson, E. A., Sober, H.A.: Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J. Amer. chem. Soc. 78, 751–755 (1956)CrossRefGoogle Scholar
  165. Porath, J., Flodin, P.: Gel filtration: A method for desalting and group separation. Nature (Lond.) 183, 1657–1659 (1959)CrossRefGoogle Scholar
  166. Ragotzi, V.: Über die Wirkung des Giftes der Naja tripudiam.Arch. path. Anat. Physiol. 122 201–234 (1890)CrossRefGoogle Scholar
  167. Raymond, M.L., Tu, A.T.: Role of tyrosine in sea snake neurotoxin. Biochim. biophys. Acta (Amst.) 285, 498–502 (1972)Google Scholar
  168. Reid, H. A.: Myoglobinuria and sea-snake poisoning. Brit. med. J. 1, 1284–1289 (1961)PubMedCrossRefGoogle Scholar
  169. Rochat, H., Gregoire, J., Martin-Moutot, N., Menashe, M., Kopeyan, C., Miranda, F.: Purification of animal neurotoxins: Isolation and characterization of three neurotoxins from the venom of Naja nigricollis mossambica Peters. FEBS Letters 42, 335–339 (1974)PubMedCrossRefGoogle Scholar
  170. Rodríguez, O. G., Scannone, H.R.: Fractionation of Crotalus durissus cumanensis venom by gel filtration. Toxicon 14, 400–403 (1976)PubMedCrossRefGoogle Scholar
  171. Rübsamen, K., Breithaupt, H., Habermann, E.: Biochemistry and pharmacology of the crotoxin complex. I. Subfractionation and recombination of the crotoxin complex. Naunyn Schmiedebergs Arch. Parmak. 270, 274–288 (1971)CrossRefGoogle Scholar
  172. Samejima, Y., Iwanaga, S., Suzuki, T.: Complete amino acid sequence of phospholipase A2-II isolated from Agkistrodon halys blomhoffii venom. FEBS Letters 47, 348–351 (1974)CrossRefGoogle Scholar
  173. Samuelsson, G.: Mistletoe toxins. Systematic Zoology 22, 566–569 (1973)CrossRefGoogle Scholar
  174. Sato, S., Tamiya, N.: Iodination of erabutoxin b: Diiodohistidine formation. J. Biochem. (Tokyo) 68, 867–872 (1970)Google Scholar
  175. Sato, S., Tamiya, N.: The amino acid sequences of erabutoxins, neurotoxic proteins of sea-snake (Laticauda semifasciata) venom. Biochem. J. 122, 453–461 (1971)PubMedGoogle Scholar
  176. Sen, I., Grantham, P. A., Cooper, J. R.: Mechanism of action of β-bungarotoxin on synaptosomal preparations. Proc. nat. Acad. Sci. 73, 2664–2668 (1976)PubMedCrossRefGoogle Scholar
  177. Seto, A., Sato, S., Tamiya, N.: The properties and modification of tryptophan in sea snake toxin, erabutoxin b. Biochim. biophys. Acta (Amst.) 214, 483–489 (1970)Google Scholar
  178. Shipolini, R.A., Bailey, G.S., Banks, B.E.C.: The separation of a neurotoxin from the venom of Naja melanoleuca and the primary sequence determination. Eur op. J. Biochem. 42, 203–211 (1974)CrossRefGoogle Scholar
  179. Shipolini, R.A., Banks, B.E.C.: The amino acid sequence of a polypeptide from the venom of Dendroaspis viridis.Europ. J. Biochem. 49, 399–405 (1974)PubMedCrossRefGoogle Scholar
  180. Sket, D., Gubensek, F., Adamic, S., Lebez, D.: Action of a partially purified basic protein fraction from Vípera ammodytes venom. Toxicon 11, 47–53 (1973)PubMedCrossRefGoogle Scholar
  181. Slotta, K.: Chemistry and biochemistry of snake venoms. Fortschr. Chem. org. Naturst. 12, 406 – 465 (1955)Google Scholar
  182. Slotta, K. H., Fraenkel-Conrat, H. L.: Schlangengifte. III. Mitteil.: Reinigung und Krystallisation des Klapperschlangengiftes. Ber. dtsch. chem. Ges. 71, 1076–1081 (1938)CrossRefGoogle Scholar
  183. Sober, H.A., Peterson, E.A.: Chromatography of proteins on cellulose ion-exchangers. J. Amer, chem. Soc. 76, 1711–1712 (1954)CrossRefGoogle Scholar
  184. Spackman, D. H., Stein, W. H., Moore, S.: Automatic recording apparatus for use in chromatography of amino acids. Fed. Proc. 15, 358 (1956)Google Scholar
  185. Spackman, D. H., Stein, W. H., Moore, S.: Automatic recording apparatus for use in chromatography of amino acids. Anal. Chem. 30, 1190–1206 (1958)CrossRefGoogle Scholar
  186. Strong, P. N., Goerke, J., Oberg, S.G., Kelly, R.B.: β-bungarotoxin, a pre-synaptic toxin with enzymatic activity. Proc. nat. Acad. Sci. (Wash.) 73, 178–182 (1976)CrossRefGoogle Scholar
  187. Strydom, D.J.: Snake venom toxins. The amino acid sequences of two toxins from Dendroaspis polylepis polylepis (Black mamba) venom. J. biol. Chem. 247, 4029–4042 (1972)PubMedGoogle Scholar
  188. Strydom, D.J.: Studies on the toxins of Dendroaspis polylepis (Black mamba) venom. Dissertation, University of South Africa, Pretoria, 1973Google Scholar
  189. Strydom, A.J.C., Botes, D.P.: Snake venom toxins. Purification, properties, and complete amino acid sequence of two toxins from ringhals (Hemachatus haemachates) venom. J. biol. Chem. 246, 1341–1349 (1971)PubMedGoogle Scholar
  190. Su, C., Chang, C.C., Lee, C.Y.: Pharmacological properties of the neurotoxin of cobra venom. In: Russell, F.E., Saunders, P.R. (Eds.): Animal Toxins, pp. 259–267. Oxford-New York: Pergamon 1967Google Scholar
  191. Takahashi, K.: The reaction of phenylglyoxal with arginine residues in proteins. J. biol. Chem. 243, 6171–6179 (1968)PubMedGoogle Scholar
  192. Takechi, M., Hayashi, K., Sasaki, T.: The amino acid sequence of cytotoxin II from the venom of the Indian cobra (Naja naja).Mol. Pharmacol. 8, 446–451 (1972)PubMedGoogle Scholar
  193. Tamiya, N.: Erabutoxins a, b, and c in sea snake Laticauda semifasciata venom. Toxicon 11, 95 – 97 (1973)PubMedCrossRefGoogle Scholar
  194. Tamiya, N., Abe, H.: The isolation, properties, and amino acid sequence of erabutoxin c, a minor neurotoxic component of the venom of a sea snake Laticauda semifasciata.Biochem. J. 130, 547–555 (1972)PubMedGoogle Scholar
  195. Tamiya, N., Arai, H.: Studies on sea-snake venoms. Crystallization of erabutoxins a and b from Laticauda semifasciata venom. Biochem. J. 99, 624–630 (1966)PubMedGoogle Scholar
  196. Tazieff-Depierre, F., Czajka, M., Lowagie, C.: Action pharmacologique des fractions pures de venin de Naja nigricollis et liberation de calcium dans les muscles striés. C.R. Acad. Sci. [D] (Paris) 268, 2511–2514 (1969)Google Scholar
  197. Tazieff-Depierre, F., Pierre, J.: Action curarisante de la toxine a de Naja nigricollis.C.R. Acad. Sci. [D] (Paris) 263, 1785–1788 (1966)Google Scholar
  198. Tsernoglou, D., Petsko, G.A.: The crystal structure of a post-synaptic neurotoxin from sea snake at 2.2 Å resolution. FEBS Letters 68, 1–4 (1976)PubMedCrossRefGoogle Scholar
  199. Tsetlin, V.I., Mikhaleva, I.I., Myagkova, M. A., Senyavina, L.B., Arseniev, A.S., Ivanov, V.T., Ovchinnikov, Yü. A.: Synthetic and conformational studies of the neurotoxins and cytotoxins of snake venom. In: Walter, R., Meienhofer, J. (Eds.): Peptides: Chemistry, Structure, and Biology. Proc. 4th American Peptide Symposium, pp. 935–941. Ann Arbor (Michigan): Ann Arbor Science Publ. 1975Google Scholar
  200. Tu, A. T.: Neurotoxins of animal venoms: snakes. Ann. Rev. Biochem. 42, 235–258 (1973)PubMedCrossRefGoogle Scholar
  201. Tu, A. T., Lin, T. S., Bieber, A.L.: Purification and chemical characterization of the major neurotoxin from the venom of Pelamis platurus.Biochemistry 14, 3408–3413 (1975)PubMedCrossRefGoogle Scholar
  202. Uthe, J.F., Magee, W.L.: Phospholipase A2: Action on purified phospholipids as affected by deoxycholate and divalent cations. Canad. J. Biochem. 49, 776–784 (1971)CrossRefGoogle Scholar
  203. Viljoen, C.C., Botes, D.P.: Snake venom toxins. The purification and amino acid sequence of toxin FVII from Dendroaspis angusticeps venom. J. biol. Chem. 248, 4915–4919 (1973)PubMedGoogle Scholar
  204. Viljoen, C.C., Botes, D.P.: Snake venom toxins. The purification and amino acid sequence of toxin Ta2 from Dendroaspis angusticeps venom. J. biol. Chem. 249, 366–372 (1974)PubMedGoogle Scholar
  205. Vincent, J.P., Schweitz, H., Chicheportiche, R., Fosset, M., Baierna, M., Lenoir, M. C., Lazdunski, M.: Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry 15, 3171–3175 (1976)PubMedCrossRefGoogle Scholar
  206. Vogt, W., Patzer, P., Lege, L., Oldings, H.D., Wille, G.: Synergism between phospholipase A and various peptides and SH-reagents in causing haemolysis. Naunyn Schmiedebergs Arch. Pharmak. 265, 442–454 (1970)CrossRefGoogle Scholar
  207. Volwerk, J.J., Pieterson, W.A., Haas, G.H. de: Histidine at the active site of phospholipase A2. Biochemistry 13, 1446–1454 (1974)PubMedCrossRefGoogle Scholar
  208. Wahlström, A.: Purification and characterization of phospholipase A from the venom of Naja nigricollis.Toxicon 9, 45–56 (1971)PubMedCrossRefGoogle Scholar
  209. Wang, C.L., Liu, C.S., Hung, Y.O., Blackwell, R.Q.: Amino acid sequence of pelamitoxin a, the main neurotoxin of the sea snake Pelamis platurus.Toxicon 14, 459–466 (1976)PubMedCrossRefGoogle Scholar
  210. Weber, M., Changeux, J.P.: Binding of Naja nigricollis (3H)α-toxin to membrane fragments from Electrophorus and Torpedo electric organs. I. Binding of the tritiated α-neurotoxin in the absence of effector. Mol. Pharmacol. 10, 1–14 (1974)PubMedGoogle Scholar
  211. Wernicke, J.F., Oberjat, T., Howard, B.D.: The mechanism of action of β-bungarotoxin. J. Neurochem. 22, 781–788 (1974)PubMedCrossRefGoogle Scholar
  212. Wolfenden, R.N.: On the nature and action of the venom of poisonous snakes. I. The venom of the Indian cobra (Naja tripudians).J. Physiol. (Lond.) 7, 327–356 (1886)Google Scholar
  213. Yang, C. C.: Crystallization and properties of cobrotoxin from Formosan cobra venom. J. biol. Chem. 240, 1616–1618 (1965)PubMedGoogle Scholar
  214. Yang, C. C.: The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim. biophys. Acta (Amst.) 133, 346–355 (1966)Google Scholar
  215. Yang, C.C.: Chemistry and evolution of toxins in snake venoms. Toxicon 12, 1–43 (1974)PubMedCrossRefGoogle Scholar
  216. Yang, C.C., Yang, H.J., Chiu, R.H.C.: The position of disulfide bonds in cobrotoxin. Biochim. biophys. Acta (Amst.) 214, 355–363 (1970)Google Scholar
  217. Yang, C.C., Yang, H. J., Huang, J.S.: The amino acid sequence of cobrotoxin. Biochim. biophys. Acta (Amst.) 188, 65–77 (1969)Google Scholar
  218. Yang, C.C., Chang, C.C., Liou, I.F.: Studies on the status of arginine residues in cobrotoxin. Biochim. biophys. Acta (Amst.) 365, 1–14 (1974)Google Scholar
  219. Zlotkin, E.: Chemistry of animal venoms. Experientia (Basel) 29, 1453–1466 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1979

Authors and Affiliations

  • E. Karlsson

There are no affiliations available

Personalised recommendations