Oxytocinergic Extrahypothalamic Neurosecretory System of the Vertebrates and Memory Processes

  • G. Sterba
Conference paper

Abstract

The term “oxytocinergic” as used in this paper refers to peptidergic neurons that synthesize oxytocin-type neurohormones, as oxytocin itself, or vasopressin, or vasotocin, as well as other nonapeptides. The specific transport organelles of the oxytocinergic neurons, the elementary vesicles or neurosecretory vesicles, are termed “neurohphysin vesicles.”

Keywords

Arginine Vasopressin Monoamine Oxytocin Tempol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bargmann, W., Lindner, E., Andres, K.H.: Über Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am Zwischenlappen der Katzenhypophyse. Z. Zellforsch. 77, 282–298 (1967)PubMedCrossRefGoogle Scholar
  2. Barry, J.: Essai de classification, et technique de Golgi, des diverses categories de neurones du noyau paraventriculaire chez la souris. C. R. Soc. Biol. (Paris) 169, 978 (1975)Google Scholar
  3. Cross, B.A.: The neurosecretory impulse. In: Neurosecretion — The Final Neuroendocrine Pathway. Knowles, F., Vollroth, L. (eds.). Berlin-Heidelberg-New York: Springer-Verlag 1974, pp. 115–128Google Scholar
  4. Gersch, M.: Prinzipien neurohormonaler und neurohumoraler Steuerung physiologischer Prozesse bei wirbellosen Tieren und Versuch einer ersten komplexen Charakterisierung. Wiss. Beiträge der Friedrich-Schiller-Univ. Jena 1975, pp. 1–151Google Scholar
  5. Knowles, F.: Twenty years of neurosecretion. In: Neurosecretion — The Final Neuroendocrine Pathway. Knowles, F., Vollrath, L. (eds.). Berlin-Heidelberg-New York: Springer-Verlag 1974, pp. 3–11Google Scholar
  6. Koizumi, K., Yamashita, H.: Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J. Physiol. (Lond.) 221, 683–705 (1972)Google Scholar
  7. Matthies, H.: The biochemical basis of learning and memory. Life Sci. 15, 2017–2031 (1975)CrossRefGoogle Scholar
  8. Scharrer, B.: New trends in invertebrate neurosecretion. In: Neurosecretion — The Final Neuroendocrine Pathway. Knowles, F., Vollrath, L. (eds.). Berlin-Heidelberg-New York: Springer-Verlag 1974aGoogle Scholar
  9. Scharrer, B.: The spectrum of neuroendocrine communication. In: Recent Studies of Hypothalamic Function. Basle: Karger 1974b, pp. 8–16Google Scholar
  10. Scharrer, B., Wurzelmann, S.: Observation on synaptoid vesicles in insect neurons. Zool. Jb. Physiol. 78, 387–396 (1974)Google Scholar
  11. Sterba, G.: Ascending neurosecretory pathways of the peptidergic type. In: Neurosecretion — The Final Neuroendocrine Pathway. Knowles, F., Vollrath, L. (eds.). Berlin-Heidelberg-New York: Springer-Verlag 1974a, pp. 38–47Google Scholar
  12. Sterba, G.: Das oxytocinerge neurosekretorische System der Wirbeltiere. Beitrag zu einem erweiterten Konzept. Zool. Jb. Physiol. 78, 409–423 (1974b)Google Scholar
  13. Wied, D. De, Bohus, H.M., Lande, S., Witter, A.: Dissociation of the behavioral and endocrine effects of lysine vasopressin by tryptic digestion. Br. J. Pharmacol. 45, 118–122 (1972)PubMedGoogle Scholar
  14. Wied, D. De, Bohus, B., Van Wimersma Greidanus, T.B.: Memory deficit in rats with hereditary diabetes insipidus. Brain Res. 85, 152–167 (1975)CrossRefGoogle Scholar
  15. Wimersma Greidanus, T.B. Van, Wied, D. De: The physiology of the neurohypophysial system and its relation to memory processes, 1976 (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • G. Sterba
    • 1
  1. 1.Department of Cell Biology and Regulation, Section of BiosciencesKarl Marx UniversityLeipzigGDR

Personalised recommendations