Advertisement

Opiate Receptors and Their Endogenous Ligands (Endorphins)

  • A. Goldstein
  • B. M. Cox
Chapter
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 6)

Abstract

Opiate drugs produce many effects. The majority of these actions result from the activation of specific receptors that share many common characteristics, including stereospecificity and sensitivity to antagonism by appropriately substituted opiates such as naloxone. Other actions of opiates do not necessarily show stereospecificity or sensitivity to antagonism by naloxone (e.g., activation of Cholinesterase (Gero and Capetola, 1976), histamine release (Feldberg and Pator, 1951), or lethality (Dingledine and Goldstein, 1973)) and may not be exerted by all drugs with opioid properties. This review is specifically concerned with high affinity stereospecific opiate receptors at which naloxone exerts a blocking action, and with endogenous substances that can interact with these receptors to produce typical opiate effects in intact animals and/or isolated tissue preparations.

Keywords

Myenteric Plexus Opiate Receptor Endogenous Opioid Peptide Opiate Agonist Opiate Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abood, L.G., Hoss, W.: Stereospecific morphine adsorption to phosphatidyl serine and other membraneous components of brain. Eur. J. Pharmacol. 32, 66–75 (1975)PubMedGoogle Scholar
  2. Abood, L.G., Takeda, F.: Enhancement of stereospecific opiate binding to neural membranes by phosphatidyl serine. Eur. J. Pharmacol. 39, 71–77 (1976)PubMedGoogle Scholar
  3. Akil, H., Madden, J., Patrick, R.L., Barchas, J.D.: Stress-induced increase in endogenous opiate peptides: Concurrent analgesia and its partial reversal by naloxone. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 63–70. Amsterdam: Elsevier-North Holland 1976aGoogle Scholar
  4. Akil, H., Mayer, D.J., Liebeskind, J.C.: Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191, 961–962 (1976b)PubMedGoogle Scholar
  5. Baran, A., Shuster, L., Eleftheriou, B.E., Bailey, D.W.: Opiate receptors in mice: Genetic differences. Life Sci. 17, 633–640 (1975)PubMedGoogle Scholar
  6. Beckett, A.H., Casy, A.F.: Synthetic analgesics: Stereochemical considerations. J. Pharm. Pharmacol. 6, 986–999 (1954)PubMedGoogle Scholar
  7. Beckett, A.H., Casy, A.F., Harper, N.J.: Analgesics and their antagonists: Some steric and chemical considerations. Part III. The influence of the basic group on the biological response. J. Pharm. Pharmacol. 6, 874–883 (1956)Google Scholar
  8. Belluzzi, J.D., Grant, N., Garsky, V., Sarantakis, D., Wise, C.D., Stein, L.: Analgesia induced in vivo by central administration of enkephalin in rat. Nature (London) 260, 625–626 (1976)Google Scholar
  9. Bentley, K.W., Lewis, J.W.: The relationship between structure and activity in the 6, 14-endoethenotetrahydrothebaine series of analgesics. In: Agonist and Antagonist Actions of Narcotic Analgesic Drugs (ed. H.W. Kosterlitz, H.O.J. Collier, J.E. Villareal), pp. 7–16. London: Macmillan 1973Google Scholar
  10. Bird, S.J., Atweh, S.F., Kuhar, M.J.: Microiontophoretic study of the effects of opiates on autoradiographically localized opiate receptors. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 199–204. Amsterdam: Elsevier-North Holland 1976Google Scholar
  11. Birdsall, N.J.M., Hulme, E.C., Bradbury, A.F., Smyth, D.G., Snell, C.R.: The binding of the C-fragment of lipotropin and methionine-enkephalin to brain opiate receptors. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 19–25. Amsterdam: Elsevier-North Holland 1976Google Scholar
  12. Bläsig, J., Herz, A.: Tolerance and dependence induced by morphine-like pituitary peptides in rats. Naunyn-Schmied. Arch. Pharmacol. 294, 297–300 (1976)Google Scholar
  13. Bleich, H.E., Cutnell, J.D., Day, A.R., Freer, R.J., Glasel, J.A., McKelvy, J.F.: Preliminary analysis of 1H and 13C spectral and relaxation behavior in methionine-enkephalin. Proc. Nat. Acad. Sci. USA 73, 2589–2593 (1976)PubMedGoogle Scholar
  14. Bloom, F., Segal, D., Ling, N., Guillemin, R.: Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness. Science 194, 630–632 (1976)PubMedGoogle Scholar
  15. Blosser, J., Abbott, J., Shain, W.: Sympathetic ganglion cell X neuroblastoma hybrids with opiate receptors. Biochem. Pharmacol. 25, 2395–2399 (1976)PubMedGoogle Scholar
  16. Bradbury, A.F., Feldberg, W.F., Smyth, D.G., Snell, C.R.: Lipotropin C-fragment: An endogenous peptide with potent analgesic activity. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 9–17. Amsterdam: Elsevier-North Holland 1976aGoogle Scholar
  17. Bradbury, A.F., Smyth, D.G., Snell, C.R.: Biosynthetic origin and receptor conformation of methionine enkephalin. Nature (London) 260, 165–166 (1976b)Google Scholar
  18. Bradbury, A.F., Smyth, D.G., Snell, C.R.: Prohormones of β-melanotropin (β-melanocyte-stimulating hormone, β-MSH) and corticotropin (adrenocorticotropic hormone, ACTH): structure and activation. In: Polypeptide Hormones: Molecular and Cellular Aspects. Ciba Foundation Symposium 41, pp. 61–75. Amsterdam: Elsevier-Excerpta Medica-North Holland 1976cGoogle Scholar
  19. Bradbury, A.F., Smyth, D.G., Snell, C.R.: Lipotropin: precursor to two biologically active peptides. Biochem. Biophys. Res. Commun. 69, 950–956 (1976d)PubMedGoogle Scholar
  20. Bradbury, A.F., Smyth, D.G., Snell, C.R., Birdsall, N.J.M., Hulme, E.C.: C fragment of lipotropin has a high affinity for brain opiate receptors. Nature 260, 793–795 (1976e)Google Scholar
  21. Braenden, O.J., Eddy, N.B., Halbach, H.: Synthetic substances with morphine-like effect. Relationship between chemical structure and analgesic action. Bull. W.H.O. 13, 937–998 (1955)PubMedGoogle Scholar
  22. Brandt, M., Fischer, K., Moroder, L., Wünsch, E., Hamprecht, B.: Enkephalin evokes biochemical correlates of opiate tolerance and dependence in neuroblastoma X glioma hybrid cells. FEBS Letters 68, 38–40 (1976a)PubMedGoogle Scholar
  23. Brandt, M., Gullis, R.J., Fischer, K., Buchen, C., Hamprecht, B., Moroder, L., Wünsch, E.: Enkephalin regulates the levels of cyclic nucleotides in neuroblastoma X glioma hybrid cells. Nature (London) 262, 311–313 (1976b)Google Scholar
  24. Büscher, H.H., Hill, R.C., Römer, D., Cardinaux, F., Closse, A., Hauser, D., Pless, J.: Evidence for analgesic activity of enkephalin in the mouse. Nature (London) 261, 423–425 (1976)Google Scholar
  25. Cairnie, A.B., Kosterlitz, H.W., Taylor, D.W.: Effect of morphine on some sympathetically innervated effectors. Brit. J. Pharmacol. 17, 539–551 (1961)PubMedGoogle Scholar
  26. Chang, J.-K., Fong, B.T.W., Pert, A., Pert, C.B.: Opiate receptor affinities and behavioral effects of enkephalin: Structure-activity relationship of ten synthetic peptide analogues. Life Sci. 18, 1473–1482 (1976)PubMedGoogle Scholar
  27. Cheung, A.L., Goldstein, A.: Failure of hypophysectomy to alter brain content of opioid peptides (endorphins). Life Sci. 19, 1005–1008 (1976)PubMedGoogle Scholar
  28. Cheung, A.L., Stavinoha, W.B., Goldstein, A.: Endorphins in brains of decapitated and microwave-killed mice. Life Sci., in press (1977)Google Scholar
  29. Cho, T.M., Cho, J.S., Loh, H.H.: A model system for opiate-receptor interactions: Mechanism of opiate-cerebroside sulfate interaction. Life Sci. 18, 231–244 (1976)PubMedGoogle Scholar
  30. Chretien, M., Benjannet, S., Dragon, N., Seidah, N.G., Lis, M.: Isolation of peptides with opiate activity from sheep and human pituitar-ies: relationship to beta-lipotropin. Biochem. Biophys. Res. Commun. 72, 472–478 (1976)PubMedGoogle Scholar
  31. Chretien, M., Seidah, N.G., Benjannet, S., Dragon, N., Routhier, R., Motomatsu, T., Lis, M.: Beta-LPH precursor model: recent developments in relation to morphine-like substances. Ann. N.Y. Acad. Sci., in press (1977)Google Scholar
  32. Clay, G.A., Brougham, L.R.: Haloperidol binding to an opiate receptor site. Biochem. Pharmacol. 24, 1363–1367 (1975)PubMedGoogle Scholar
  33. Clouet, D.H., Ratner, M.: The incorporation of H3-glycine into enkephalins in the brains of morphine treated rats. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 71–78. Amsterdam: Elsevier-North Holland 1976Google Scholar
  34. Collier, H.O.J.: Pharmacological mechanisms of drug dependence. In: Pharmacology and the Future of Man (ed. G.H. Acheson), Vol. 1, pp. 65–76. Basel: Karger 1972Google Scholar
  35. Collier, H.O.J., Roy, A.C.: Morphine-like drugs inhibit the stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature (London) 248, 24–27 (1974)Google Scholar
  36. Cowan, A., Doxey, J.C., Metcalf, G.: A comparison of pharmacological effects produced by leucine-enkephalin, methionine-enkephalin, morphine and ketocyclazocine. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 95–102. Amsterdam: Elsevier-North Holland 1976Google Scholar
  37. Cowie, A.B., Kosterlitz, H.W., Watt, A.J.: Mode of action of morphinelike drugs on autonomic neuro-effectors. Nature (London) 220, 1040–1042 (1968)Google Scholar
  38. Cox, B.M., Gentleman, S., Su, T.-P., Goldstein, A.: Further characterization of morphine-like peptides (endorphins) from pituitary. Brain Res. 115, 285–296 (1976a)PubMedGoogle Scholar
  39. Cox, B.M., Goldstein, A., Li, C.H.: Opioid activity of a peptide, β-lipotropin-(61–91), derived from β-lipotropin. Proc. Nat. Acad. Sci. USA 73, 1821–1823 (1976b)PubMedGoogle Scholar
  40. Cox, B.M., Opheim, K.E., Goldstein, A.: Photoaffinity labeling of opiate receptors. In: Tissue Responses to Addictive Drugs (eds. D.H. Ford, D.H. Clouet), pp. 373–389. New York: Spectrum 1976cGoogle Scholar
  41. Cox, B.M., Opheim, K.E., Teschemacher, H., Goldstein, A.: A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci. 16, 1777–1782 (1975)PubMedGoogle Scholar
  42. Cox, B.M., Weinstock, M.: The effect of analgesic drugs on the release of acetylcholine from electrically stimulated guinea-pig ileum. Brit. J. Pharmacol. 27, 81–92 (1966)PubMedGoogle Scholar
  43. Creese, I., Feinberg, A.P., Snyder, S.H.: Butyrophenone influences on the opiate receptor. Eur. J. Pharmacol. 36, 231–235 (1976)PubMedGoogle Scholar
  44. Creese, I., Snyder, S.H.: Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J. Pharmacol. Exp. Ther. 194, 205–219 (1975)PubMedGoogle Scholar
  45. Davis, M.E., Akera, T., Brody, T.M.: Saturable binding of morphine to rat brain-stem slices and the effect of chronic treatment. Res. Commun. Chem. Pathol. Pharm. 12, 409–418 (1975)Google Scholar
  46. Davis, V.E., Walsh, M.J.: Alcohol, amines, and alkaloids: Possible biochemical basis to alcohol addition. Science 141, 1005–1007 (1970)Google Scholar
  47. Day, A.R., Lujan, M., Dewey, W.L., Harris, L.S., Radding, J.A., Freer, R.J.: Structure-activity relationships of enkephalins in the stimulated guinea-pig ileum. Res. Commun. Chem. Pathol. Pharm. 14, 597–603 (1976)Google Scholar
  48. Degraw, J.I., Engstrom, J.S.: The synthesis of 14C and 3H-lebeled N-(2-p-azidophenylethyl)-norlevorphanol. J. Label. Cpds. 11, 233–239 (1975)Google Scholar
  49. Delia Bella, D.: Structural features associated with narcotics and narcotic antagonists. Neuropharmacology 14, 941–949 (1975)Google Scholar
  50. Dessy, C., Herlant, M., Chretien, M.: Histologie. Detection par immunofluorescence des cellules synthétisant la lipotropine. C. R. Acad. Sci. (Paris) Ser. D. 276, 335–338 (1973)Google Scholar
  51. Dewey, W.L., Chau-Pham, T.T., Day, A., Lujan, M., Harris, L.S., Freer, R.J.: The effects of enkephalins on the isolated guinea-pig ileum stereospecific binding of dihydromorphine and antinociception in mice. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 103–110. Amsterdam: Elsevier-North Holland 1976Google Scholar
  52. Dingledine, R., Goldstein, A.: Lethality of the morphinan isomers levorphanol and dextrorphan. Brit. J. Pharmacol. 48, 718–720 (1973)Google Scholar
  53. Dingledine, R., Goldstein, A.: Effect of synaptic transmission blockade on morphine action in the guinea-pig myenteric plexus. J. Pharmacol. Exp. Ther. 196, 97–106 (1976)PubMedGoogle Scholar
  54. Dingledine, R., Goldstein, A., Kendig, J.: Effects of narcotic opiates and serotonin on the electrical behavior of neurons in the guinea-pig myenteric plexus. Life Sci. 14, 2299–2309 (1974)PubMedGoogle Scholar
  55. Ehrenpreis, S., Greenberg, J., Comarty, J.E.: Mechanism of development of tolerance to injected morphine by guinea-pig ileum. Life Sci. 17, 49–54 (1975)PubMedGoogle Scholar
  56. Elde, R., Hokfelt, T., Johansson, O., Terenius, L.: Immunohistochemical studies using antibodies to leucine-enkephalin: Initial observations on the nervous system of the rat. Neuroscience 1, 349–351 (1976)PubMedGoogle Scholar
  57. El-Sobky, A., Dostrovsky, J.O., Wall, P.D.: Lack of effect of naloxone on pain perception in humans. Nature (London) 263, 783–784 (1976)Google Scholar
  58. Feldberg, W., Paton, W.D.M.: Release of histamine from skin and muscle in the cat by opium alkaloids and other histamine liberators. J. Physiol. 114, 490–509 (1951)PubMedGoogle Scholar
  59. Frederickson, R.C.A., Nickander, R., Smithwick, E.L., Shuman, R., Nor-ris, F.H.: Pharmacological activity of met-enkephalin and analogues in vitro and in vivo — depression of single neuronal activity in specified brain regions. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 239–246. Amsterdam: Elsevier-North Holland 1976aGoogle Scholar
  60. Frederickson, R.C.A., Schirmer, E.W., Grinnan, E.L., Harreil, C.E., Hewes, C.R.: Human endorphin: Comparison with porcine endorphin, enkephalin and normorphine. Life Sci. 19, 1181–1190 (1976b)PubMedGoogle Scholar
  61. Garbay-Jaureguiberry, C., Roques, B.P., Oberlin, R., Anteunis, M., Lala, A.K.: Preferential conformation of the endogenous opiate-like pentapeptide met-enkephalin in DMS0-D6 solution determined by high field 1H NMR. Biochem. Biophys. Res. Commun. 71, 558–565 (1976)PubMedGoogle Scholar
  62. Garcin, F., Coyle, J.T.: Ontogenetic development of [3H] naloxone binding and endogenous morphine-like factor in rat brain. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 267–273. Amsterdam: Elsevier-North Holland 1976Google Scholar
  63. Gentleman, S., Ross, M., Lowney, L.I., Cox, B.M., Goldstein, A.: Pituitary endorphins. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 27–34. Amsterdam: Elsevier-North Holland 1976Google Scholar
  64. Gero, A., Capetola, R.J.: Exploration of drug action on a morphine receptor by methods of enzyme kinetics. J. Theor. Biol. 61, 129–142 (1976)PubMedGoogle Scholar
  65. Gintzler, A.R., Levy, A., Spector, S.: Antibodies as a means of isolating and characterizing biologically active substances: Presence of a non-peptide, morphine-like compound in the central nervous system. Proc. Nat. Acad. Sci. USA 73, 2132–2136 (1976)PubMedGoogle Scholar
  66. Gispen, W.H., Buitelaar, J., Wiegant, V.M., Terenius, L., De Wied, D.: Interaction between ACTH fragments, brain opiate receptors and morphine-induced analgesia. Eur. J. Pharmacol. 39, 393–397 (1976)PubMedGoogle Scholar
  67. Gispen, W.H., Wiegant, V.M.: Opiate antagonists suppress ACTH1–24-induced excessive grooming in the rat. Neurosci. Ltrs. 2, 159–164 (1976)Google Scholar
  68. Goldstein, A.: Are opiate tolerance and dependence reversible: Implications for the treatment of heroin addiction. In: Biological and Behavioral Approaches to Drug Dependence (eds. H.D. Cappell, A.E. LeBlanc), pp. 27–41. Proceedings of the International Symposia on Alcohol and Drug Problems, Toronto, 23–25 October 1973. Ontario: Addiction Research Foundation 1975Google Scholar
  69. Goldstein, A.: Opiate receptors. Life Sci. 14, 615–623 (1974)Google Scholar
  70. Goldstein, A.: Opioid peptides (endorphins) in pituitary and brain. Science 193, 1081–1086 (1976)PubMedGoogle Scholar
  71. Goldstein, A., Cox, B.M.: Substances in human urine that inhibit stereo-specific opiate binding. Fed. Proc, in press (1977)Google Scholar
  72. Goldstein, A., Cox, B.M., Gentleman, S., Lowney, L.I., Cheung, A.L.: Pituitary and brain opioid peptides (endorphins). Ann. N.Y. Acad. Sci., in press (1977a)Google Scholar
  73. Goldstein, A., Cox, B.M., Klee, W.A., Nirenberg, M.: Endorphin from pituitary inhibits cyclic AMP formation in homogenates of neuroblastoma X glioma hybrid cells. Nature (London) 265, 362–363 (1977b)Google Scholar
  74. Goldstein, A., Goldstein, J.S., Cox, B.M.: A synthetic peptide with morphine-like pharmacologic action. Life Sci. 17, 1643–1654 (1975)PubMedGoogle Scholar
  75. Goldstein, A., Hilgard, E.R.: Failure of the opiate antagonist naloxone to modify hypnotic analgesia. Proc. Nat. Acad. Sci. USA 72, 2041–2043 (1975)PubMedGoogle Scholar
  76. Goldstein, A., Lowney, L.I., Pal, B.K.: Stereospecific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc. Nat. Acad. Sci. USA 68, 1742–1747 (1971)PubMedGoogle Scholar
  77. Goldstein, A., Pryor, G.T., Otis, L.S., Larsen, F.: On the role of endogenous opioid peptides: Failure of naloxone to influence shock escape threshold in the rat. Life Sci. 18, 599–604 (1976)PubMedGoogle Scholar
  78. Goldstein, A., Schulz, R.: Morphine-tolerant longitudinal muscle strip from guinea-pig ileum. Brit. J. Pharmacol. 48, 655–666 (1973)Google Scholar
  79. Goldstein, D.B., Goldstein, A.: Possible role of enzyme inhibition and repression in drug tolerance and addition. Biochem. Pharmacol. 8, 48 (1961)Google Scholar
  80. Gráf, L.: (Title to be obtained.) Ann. N.Y. Acad. Sci., in press (1977)Google Scholar
  81. Gráf, L., Barát, E., Patthy, A.: Isolation of a COOH-terminal β-lipotropin fragment (residues 61–91) with morphine-like analgesic activity from porcine pituitary glands. Acta Biochim. Biophys. Acad. Sci. Hung. 11, 121–122 (1976a)PubMedGoogle Scholar
  82. Gráf, L., Kenessey, A.: Specific cleavage of a single peptide bond (residues 77–78) in β-lipotropin by a pituitary endopeptidase. FEBS Letters 69, 255–260 (1976)PubMedGoogle Scholar
  83. Gráf, L., Székely, J.I., Rónai, A.Z., Dunat-Kovács, Z., Bajusz, S.: Comparative study on analgesic effect of Met5-enkephalin and related lipotropin fragments. Nature (London) 263, 240–241 (1976b)Google Scholar
  84. Grevert, P., Goldstein, A.: Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects. Proc. Nat. Acad. Sci. USA, in press (1977a)Google Scholar
  85. Grevert, P., Goldstein, A.: Some effects of naloxone on behavior in the mouse. Psychopharmacolgia (Berlin), in press (1977b)Google Scholar
  86. Guillemin, R., Ling, N., Burgus, R.: Endorphines, peptides, d’origine hypothalamique et neurohypophysaire à activité morphinomimétique. Isolement et structure moléculaire de 1’α-endorphine. C. R. Acad. Sci. (Paris) Ser. D. 282, 783–785 (1976)Google Scholar
  87. Gullis, R.J., Buchen, C., Moroder, L., Wünsch, E., Hamprecht, B.: Opi-ate-like effects of enkephalins on neuroblastoma X glioma hybrids. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 143–151. Amsterdam: Elsevier-North Holland 1976Google Scholar
  88. Gullis, R.J., Traber, J., Hamprecht, B.: Morphine elevates levels of cyclic GMP in a neuroblastoma X glioma hybrid cell line. Nature (London) 256, 57–59 (1975)Google Scholar
  89. Gyang, E.A., Kosterlitz, H.W., Lees, G.M.: The inhibition of autonomic neuroeffector transmission by morphine-like drugs and its use as a screening test for narcotic analgesic drugs. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmakol, 248, 231–246 (1964)Google Scholar
  90. Haigier, H.J.: Morphine: ability to block neuronal activity evoked by a nociceptive stimulus. Life Sci. 19, 841–858 (1976)Google Scholar
  91. Hambrook, J.M., Morgan, B.A., Ranee, M.J., Smith, C.F.C.: Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature (London) 262, 782–783 (1976)Google Scholar
  92. Harris, J., Kazmierowski, D.: Morphine tolerance and naloxone receptor binding. Life Sci. 16, 1831–1836 (1975)PubMedGoogle Scholar
  93. Harris, R.A., Loh, H.H., Way, E.L.: Alterations in the efficacy of naloxone induced by stress, cyclic adenosine monophosphate, and morphine tolerance. Eur. J. Pharmacol. 39, 1–10 (1976a)PubMedGoogle Scholar
  94. Harris, R.A., Yamamoto, H., Loh, H.H., Way, G.L.: Alterations in brain calcium localization during the development of morphine tolerance and dependence. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 361–368. Amsterdam: Elsevier-North Holland 1976bGoogle Scholar
  95. Haycock, V.K., Rees, J.M.H.: The effect of morphine pretreatment on the sensitivity of mouse and guinea-pig ileum to acetylcholine and to morphine. In: Agonist and Antagonist Actions of Analgesic Drugs (eds. H.W. Kosterlitz, H.O.J. Collier, J.E. Villareal), pp. 235–239. London: Macmillan 1973Google Scholar
  96. Henderson, G., Hughes, J., Kosterlitz, H.W.: A new example of a morphine-sensitive neuro-effector junction: adrenergic transmission in the mouse vas deferens. Brit. J. Pharmacol. 46, 764–766 (1972)Google Scholar
  97. Herz, A., Albus, K., Metys, J., Schubert, P., Teschemacher, H.: On the central sites for the antinociceptive actions of morphine and fentanyl. Neuropharmacology 9, 539–551 (1970)PubMedGoogle Scholar
  98. Hiller, J.M., Pearson, J., Simon, E.J.: Distribution of stereospecific binding of the potent narcotic analgesic etorphine in the human brain: Predominance in the limbic system. Res. Commun. Chem. Pathol. Pharm. 6, 1052–1062 (1973)Google Scholar
  99. Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence for noradrenergic central inhibition. J. Pharm. Exp. Ther. 184, 553 (1973)Google Scholar
  100. Höllt, V., Dum, J., Bläsig, J., Schubert, P., Herz, A.: Comparison of in vivo and in vitro parameters of opiate receptor binding in naive and tolerant dependent rodents. Life Sci. 16, 1823–1828 (1975)PubMedGoogle Scholar
  101. Höllt, V., Herz, A.: In vivo receptor occupation by opiates and its correlation with antinociception in the mouse. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 345–352. Amsterdam: Elsevier-North Holland 1976Google Scholar
  102. Holtz, P., Stock, K., Westermann, E.: Pharmakologie des Tetrahydro-papaverolins und seine Entstehung aus Dopamin, Naunyn-Schmied. Arch. Exp. Path. Pharmakol. 248, 387–405 (1964)Google Scholar
  103. Horn, A.S., Rodgers, J.R.: Structural and conformational relationships between the enkephalins and the opiates. Nature (London) 260, 795–797 (1976)Google Scholar
  104. Hughes, J.: Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 88, 295–308 (1975a)PubMedGoogle Scholar
  105. Hughes, J.: Search for the endogenous ligand of the opiate receptor. In: Opiate Receptor Mechanisms (eds. S.H. Snyder, S. Matthysse), pp. 55–58. Boston: Neurosciences Research Program Bulletin 1975bGoogle Scholar
  106. Hughes, J., Kosterlitz, H.W., Leslie, F.M.: Effect of morphine on adrenergic transmission in the mouse vas deferens. Assessment of agonist and antagonist potencies of narcotic analgesics. Brit. J. Pharmacol. 11, 371–381 (1975a)Google Scholar
  107. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.A., Morgan, B.A., Morris, H.R.: Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature (London) 258, 577–579 (1975b)Google Scholar
  108. Hughes, J., Smith, T., Morgan, B., Fothergill, L.: Purification and properties of enkephalin — the possible endogenous ligand for the morphine receptor. Life Sci. 16, 1753–1758 (1975c)PubMedGoogle Scholar
  109. Hutchinson, M., Kosterlitz, H.W., Leslie, F.M., Waterfield, A.A.: Assessment in the guinea-pig ileum and mouse vas deferens of ben-zomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Brit. J. Pharmacol. 55, 541–546 (1975)Google Scholar
  110. Iwatsubo, K., Clouet, D.H.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol. Biochem. Pharmacol. 24, 1499–1503 (1975)PubMedGoogle Scholar
  111. Jacob, J.J., Tremblay, E.C., Colombel, M.C.: Facilitation de réactions nociceptives par la naloxone chez la souris et chez le rat. Psycho-pharmacologia 37, 217–223 (1974)Google Scholar
  112. Jacquet, Y.F., Marks, N.: The C-fragment of β-lipotropin: An endogenous neuroleptic or antipsychotogen? Science 194, 632–634 (1976)PubMedGoogle Scholar
  113. Jacquet, Y., Marks, N., Li, C.H.: Behavioral and biochemical properties of “opioid” peptides. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 411–414. Amsterdam: Elsevier-North Holland 1976Google Scholar
  114. Jones, C.R., Gibbons, W.A., Garsky, V.: Proton magnetic resonance studies of conformation and flexibility of enkephalin peptides. Nature (London) 262, 779–782 (1976)Google Scholar
  115. Kirby, G.W.: Biosynthesis of the morphine alkaloids. Science 153, 170–173 (1967)Google Scholar
  116. Klee, W.A., Lampert, A., Nirenberg, M.: Dual regulation of adenylate cyclase by endogenous opiate peptides. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 153–159. Amsterdam: Elsevier-North Holland 1976Google Scholar
  117. Klee, W.A., Nirenberg, M.: A neuroblastoma X glioma hybrid cell line with morphine receptors. Proc. Nat. Acad. Sci, USA 71, 3474–3477 (1974)Google Scholar
  118. Klee, W.A., Sharma, S.K., Nirenberg, M.: Opiate receptors as regulators of adenylate cyclase. Life Sci. 16, 1869–1874 (1975)PubMedGoogle Scholar
  119. Klee, W.A., Streaty, R.A.: Narcotic receptor sites in morphine-dependent rats. Nature (London) 248, 61–63 (1974)Google Scholar
  120. Knowles, J.R.: Photogenerated reagents for biological receptor-site labelling. Accts. Chem. Res. 5, 155–160 (1972)Google Scholar
  121. Kosterlitz, H.W., Lord, J.A.H., Watt, A.J.: Morphine receptor in the myenteric plexus of the guinea-pig ileum. In: Agonist and Antagonist Actions of Opiate Drugs (eds. H.W. Kosterlitz, H.O.J. Collier, J.E. Villareal), pp. 45–61. London: Macmillan 1973Google Scholar
  122. Kosterlitz, H.W., Lydon, R.W., Watt, A.J.: The effects of adrenaline, noradrenaline, and isoprenaline on inhibitory α- and β-adrenoceptors in the longitudinal muscle of the guinea-pig ileum. Brit. J. Pharmacol. 39, 398–413 (1970)Google Scholar
  123. Kosterlitz, H.W., Robinson, J.: Inhibition of the peristaltic reflex of the isolated guinea-pig ileum. J. Physiol. London 136, 249–262 (1957)PubMedGoogle Scholar
  124. Kosterlitz, H.W., Waterfield, A.A.: In-vitro models in the study of structure-activity relationship of narcotic analgesics. Ann. Rev. Pharmacol. 15, 29–47 (1975)PubMedGoogle Scholar
  125. Kosterlitz, H.W., Watt, A.J.: Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br. J. Pharmac. Chemother. 33, 266–276 (1968)Google Scholar
  126. Kuhar, M.J., Pert, C.B., Snyder, S.H.: Regional distribution of opiate receptor binding in monkey and human brain. Nature (London) 245, 447–451 (1973)Google Scholar
  127. Lal, H., Miksic, S., Smith, N.: Naloxone antagonism of conditioned hyperthermia: An evidence for release of endogenous opioid. Life Sci. 18, 971–976 (1976)PubMedGoogle Scholar
  128. Lamotte, C., Pert, C.B., Snyder, S.H.: Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res. 112, 407–412 (1976)PubMedGoogle Scholar
  129. Lampert, A., Nirenberg, M., Klee, W.: Tolerance and dependence evoked by an endogenous opiate peptide. Proc. Nat. Acad. Sci. USA 73, 3165–3167 (1976)PubMedGoogle Scholar
  130. Lazarus, L.H., Ling, N., Guillemin, R.: β-lipotropin as a prohormone for the morphinomimetic peptides endorphins and enkephalins. Proc. Nat. Acad. Sci. USA 73, 2156–2159 (1976)PubMedGoogle Scholar
  131. Lee, C.Y., Akera, T., Stolman, S., Brody, T.M.: Saturable binding of dihydromorphine and naloxone to rat brain tissue in vitro. J. Pharmacol. Exp. Ther. 194, 583–592 (1975)PubMedGoogle Scholar
  132. Lees, G.M., Kosterlitz, H.W., Waterfield, A.A.: Characteristics of morphine-sensitive release of neuro-transmitter substances. In: Agonist and Antagonist Actions of Analgesic Drugs (eds. H.W. Kosterlitz, H.O.J. Collier, J.E. Villareal), pp. 142–152. London: Macmillan 1973Google Scholar
  133. Li, C.H., Barnafi, L., Chretien, M., Chung, D.: Isolation and aminoacid sequence of β-LPH from sheep pituitary glands. Nature (London) 208, 1093–1094 (1965)Google Scholar
  134. Li, C.H., Chung, D.: Primary structure of human β-lipotropin. Nature (London) 260, 622–624 (1976a)Google Scholar
  135. Li, C.H., Chung, D.: Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc. Nat. Acad. Sci. USA 73, 1145–1148 (1976b)PubMedGoogle Scholar
  136. Li, C.H., Chung, D., Doneen, B.A.: Isolation, characterization and opiate activity of β-endorphin from human pituitary glands. Biochem. Biophys. Res. Commun. 72, 1542–1547 (1976a)PubMedGoogle Scholar
  137. Li, C.H., Lemaire, S., Yamashiro, D., Doneen, B.A.: The synthesis and opiate activity of β-endorphin. Biochem. Biophys. Res. Commun. 71, 19–25 (1976b)PubMedGoogle Scholar
  138. Ling, N., Burgus, R., Guillemin, R.: Isolation, primary structure, and synthesis of α-endorphin and γ-endorphin, two peptides of hypothalamic-hypophysial origin with morphinomimetic activity. Proc. Nat. Acad. Sci. USA 73, 3942–3946 (1976)PubMedGoogle Scholar
  139. Ling, N., Guillemin, R.: Morphinomimetic activity of synthetic fragments of ß-lipotropin and analogs. Proc. Nat. Acad. Sci. USA 73, 3308–3310 (1976)PubMedGoogle Scholar
  140. Loh, H.H., Cho, T.M., Wu, Y.C.: Stereospecific binding of narcotic to acidic lipids. Fed. Proc. 34, 815 (1975)Google Scholar
  141. Loh, H.H., Cho, T.M., Wu, Y.C., Way, E.L.: Stereospecific binding of narcotics to brain cerebrosides. Life Sci. 14, 2231–2234 (1974)PubMedGoogle Scholar
  142. Loh, H.H., Tseng, L.F., Wei, E., Li, C.H.: β-endorphin is a potent analgesic agent. Proc. Nat. Acad. Sci. USA 73, 2895–2898 (1976)PubMedGoogle Scholar
  143. Lord, J.A.H., Waterfield, A.A., Hughes, J., Kosterlitz, H.W.: Multiple opiate receptors. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 275–280. Amsterdam: Elsevier-North Holland 1976Google Scholar
  144. Lowney, L.I., Schulz, K., Lowery, P.J., Goldstein, A.: Partial purification of an opiate receptor from mouse brain. Science 183, 749–753 (1974)PubMedGoogle Scholar
  145. Martin, W.R., Eades, C.G., Thompson, J.A., Huppier, R.E., Gilbert, P.E.: The effects of morphine and nalorphine-like drugs in the non-dependent and morphine-dependent spinal dog. J. Pharmacol. Exp. Ther. 197, 517–532 (1976)PubMedGoogle Scholar
  146. May, E.L., Sargent, L.J.: Morphine and its modifications. In: Analgetics (ed. G. de Stevens), pp. 123–175. New York: Academic Press 1965Google Scholar
  147. Medzihradsky, F.: Stereospecific binding of etorphine in isolated neural cells and in retina determined by a sensitive microassay. Brain Res. 108, 212–219 (1976)PubMedGoogle Scholar
  148. Merali, Z., Singhai, R.L., Hrdina, P.D., Ling, G.M.: Changes in brain cyclic AMP metabolism and acetylcholine and dopamine during narcotic dependence and withdrawal. Life Sci. 16, 1889–1894 (1975)PubMedGoogle Scholar
  149. Minneman, K.P., Iversen, L.L.: Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 137–142. Amsterdam: Elsevier-North Holland 1976aGoogle Scholar
  150. Minneman, K.P., Iversen, L.L.: Enkephalin and opiate narcotics increase cyclic GMP accumulation in slices of rat neostriatum. Nature (London) 262, 313–314 (1976b)Google Scholar
  151. Morgan, B.A., Smith, C.F.C., Waterfield, A.A., Hughes, J., Kosterlitz, H.W.: Structure-activity relationships of methionine-enkephalin. J. Pharm. Pharmacol. 28, 660–661 (1976)PubMedGoogle Scholar
  152. Mulé, S.J., Casella, G., Clouet, D.H.: The specificity of binding of the narcotic agonist etorphine in synaptic membranes of rat brain in vivo. Psychopharmacologia 44, 125–129 (1975)PubMedGoogle Scholar
  153. North, R.A.: Effects of morphine on myenteric plexus neurones. Neuropharmacology 15, 719–721 (1976)PubMedGoogle Scholar
  154. North, R.A., Tonini, M.: Hyperpolarization by morphine of myenteric neurones. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 205–212. Amsterdam: Elsevier-North Holland 1976Google Scholar
  155. North-Root, H., Martin, Jr., D.W., Toliver, A.P.: Evidence for a stereo-specific opiate receptor in neuroblastoma cells in culture. Proc. West. Pharmacol. Soc. 16, 77 (1973)Google Scholar
  156. Nueten, J.M. Van, Janssen, P.A.J., Fontaine, J.: Naloxone reverses inhibitory effects of fatigue and of compounds not related to narcotic analgesics in the guinea-pig ileum. Arch. Int. Pharmacodyn. 220, 349–350 (1976)PubMedGoogle Scholar
  157. Pal, B.K., Lowney, L.I., Goldstein, A.: Further studies on the stereo-specific binding of levorphanol by a membrane fraction from mouse brain. In: Agonist and Antagonist Actions of Narcotic Analgesic Drugs (eds. H.W. Kosterlitz, H.O.J. Collier, J.E. Villareal), pp. 62–69. London: Macmillan 1973Google Scholar
  158. Pasternak, G.W., Goodman, R., Snyder, S.H.: An endogenous morphine-like factor in mammalian brain. Life Sci. 16, 1765–1769 (1975a)PubMedGoogle Scholar
  159. Pasternak, G.W., Simantov, R., Snyder, S.H.: Characterization of an endogenous morphine-like factor (enkephalin) in mammalian brain. Mol. Pharmacol. 12, 504–513 (1976)PubMedGoogle Scholar
  160. Pasternak, G.W., Snowman, A.M., Snyder, S.H.: Selective enhancement of [3H] opiate agonist binding by divalent cations. Mol. Pharmacol. 11, 735–744 (1975b)PubMedGoogle Scholar
  161. Pasternak, G.W., Snyder, S.H.: Opiate receptor binding: Effects of enzymatic treatments. Mol. Pharmacol. 10, 183–193 (1974)PubMedGoogle Scholar
  162. Pasternak, G.W., Snyder, S.H.: Identification of novel high affinity opiate receptor binding in rat brain. Nature (London) 253, 563–565 (1975a)Google Scholar
  163. Pasternak, G.W., Snyder, S.H.: Opiate receptor binding: Enzymatic treatments that discriminate between agonist and antagonist interactions. Mol. Pharmacol. 11, 478–484 (1975b)Google Scholar
  164. Pasternak, G.W., Wilson, H.A., Snyder, S.H.: Differential effects of protein-modifying reagents on receptor binding of opiate agonists and antagonists. Mol. Pharmacol. 11, 340–351 (1975c)PubMedGoogle Scholar
  165. Paton, W.D.M.: The action of morphine and related substances on contraction and on acetylcholine output of coaxially stimulated guinea-pig ileum. Brit. J. Pharmacol. 12, 119–127 (1957)PubMedGoogle Scholar
  166. Paton, W.D.M.: Cholinergic transmission and acetylcholine output. Can. J. Biochem. Pharmacol. 41, 2637–2653 (1963)Google Scholar
  167. Pert, A.: Behavioral pharmacology of D-alanine2-methionine-enkephalin amide and other long-acting opiate peptides. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 87–94. Amsterdam: Elsevier-North Holland 1976Google Scholar
  168. Pert, A., Yaksh, T.: Sites of morphine induced analgesia in the primate brain: relation to pain pathways. Brain Res. 80, 135–140 (1974)PubMedGoogle Scholar
  169. Pert, C.B., Aposhian, D., Snyder, S.H.: Phylogenetic distribution of opiate receptor binding. Brain Res. 75, 356–361 (1974a)PubMedGoogle Scholar
  170. Pert, C.B., Bowie, D.L., Fong, B.T.W., Chang, J.-K: Synthetic analogues of met-enkephalin which resist enzymatic destruction. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 79–86. Amsterdam: Elsevier-North Holland 1976aGoogle Scholar
  171. Pert, C.B., Kuhar, M.J., Snyder, S.H.: Opiate receptor: Autoradiographic localization in rat brain. Proc. Nat. Acad. Sci. USA 73, 3729–3733 (1976b)PubMedGoogle Scholar
  172. Pert, C.B., Pasternak, G.W., Snyder, S.H.: Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182, 1359–1361 (1973)PubMedGoogle Scholar
  173. Pert, C.B., Pert, A., Chang, J.-K., Fong, B.T.W.: [D-Ala2]-met-enkepha-linamide: A potent, long-lasting synthetic pentapeptide analgesic. Science 194, 330–332 (1976c)PubMedGoogle Scholar
  174. Pert, C.B., Pert, A., Tallman, J.F.: Isolation of a novel endogenous opiate analgesic from human blood. Proc. Nat. Acad. Sci. USA 73, 2226–2230 (1976d)PubMedGoogle Scholar
  175. Pert, C.B., Snowman, A.M., Snyder, S.H.: Localization of opiate receptor binding in synaptic membranes of rat brain. Brain Res. 70, 184–188 (1974b)PubMedGoogle Scholar
  176. Pert, C.B., Snyder, S.H.: Opiate receptor: Demonstration in nervous tissue. Science 179, 1011–1014 (1973a)PubMedGoogle Scholar
  177. Pert, C.B., Snyder, S.H.: Properties of opiate-receptor binding in rat brain. Proc. Nat. Acad. Sci. USA 70, 2243–2247 (1973b)PubMedGoogle Scholar
  178. Pert, C.B., Snyder, S.H.: Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol. Pharmacol. 10, 868–879 (1974)Google Scholar
  179. Pert, C.B., Snyder, S.H.: Identification of opiate receptor binding in intact animals. Life Sci. 16, 1623–1634 (1975)PubMedGoogle Scholar
  180. Pert, C.B., Snyder, S.H.: Opiate receptor binding-enhancement by opiate administration in vivo. Biochem. Pharmacol, 25, 847–853 (1976)PubMedGoogle Scholar
  181. Pert, C.B., Snyder, S.H., May, E.L.: Opiate receptor interactions of benzomorphans in rat brain homogenates. J. Pharmacol. Exp. Ther. 196, 316–322 (1975)Google Scholar
  182. Petersen, G.R., Fisher, P.H., Loh, H.H., Burkhalter, A.: Rotation cultures from different regions of embryonic chick brain II. Presence of stereospecific opiate binding and responses to narcotics. Neurobiology 4, 222–230 (1974)Google Scholar
  183. Plotnikoff, N.P., Kastin, A.J., Coy, D.H., Christensen, C.W., Schally, A.V., Spirtes, M.A.: Neuropharmacological actions of enkephalin after systemic administration. Life Sci. 19, 1283–1288 (1976)PubMedGoogle Scholar
  184. Pomeranz, B., Cheng, R., Law, P.: Acupuncture reduces electrophysiological and behavioral responses to noxious stimuli: Pituitary is implicated. Exp. Neurol., in press (1977)Google Scholar
  185. Pomeranz, B., Chiu, D.: Naloxone blockade of acupuncture analgesia: Endorphin implicated. Life Sci. 19, 1757–1762 (1976)PubMedGoogle Scholar
  186. Portoghese, P.S.: A new concept on the mode of interaction of narcotic analgesics with receptors. J. Med. Chem. 8, 609–616 (1965)PubMedGoogle Scholar
  187. Portoghese, P.S.: Stereochemical factors and receptor interactions associated with narcotic analgesics. J. Pharm. Sci. 55, 865–887 (1966)PubMedGoogle Scholar
  188. Puig, M.M., Gascon, P., Craviso, G.L., Musacchio, J.M.: Endogenous opiate receptor ligand: Electrically induced release in the guinea-pig ileum. Science 195, 419–420 (1977)PubMedGoogle Scholar
  189. Puri, S.K., Cochin, J., Volicer, L.: Effects of morphine sulfate on adenylate cyclase and phosphodiesterase activities in rat corpus striatum. Life Sci. 16, 759–768 (1975)PubMedGoogle Scholar
  190. Queen, G., Pinsky, C., Labella, F.: Subcellular localization of endor-phine activity in bovine pituitary and brain. Biochem. Biophys. Res. Commun. 72, 1021–1027 (1976)PubMedGoogle Scholar
  191. Racagni, G., Zsilla, G., Guidotti, A., Costa, E.: Accumulation of CGMP in striatum of rats injected with narcotic analgesics — antagonism by naltrexone. J. Pharm. Pharmacol. 28, 258–260 (1976)PubMedGoogle Scholar
  192. Radouco-Thomas, C., Garcin, F., Mack, G., Radouco-Thomas, S.: Comparative in vitvo and in vivo studies between morphine and met-enkephalin. Effects on naive, acute pretreated and dependent animals. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 111–119. Amsterdam: Elsevier-North Holland 1976Google Scholar
  193. Rang, H.P.: Stimulant actions of volatile anaesthetics on smooth muscle. Brit. J. Pharmacol. 22, 356–365 (1964)PubMedGoogle Scholar
  194. Ronai, A.Z., Székely, J.I., Graf, L., Dunai-Kovacs, Z., Bajusz, S.: Morphine-like analgesic effect of a pituitary hormone, β-lipotropin. Life Sci. 19, 733–738 (1976)PubMedGoogle Scholar
  195. Roques, B.P., Garbay-Jaureguiberry, C., Oberlin, R., Anteunis, M., Lala, A.K.: Conformation of Met5-enkephalin determined by high field PMR spectroscopy. Nature (London) 262, 778–779 (1976)Google Scholar
  196. Ross, D.H., Lynn, Jr., S.C., Cardenas, H.L.: Selective control of calcium levels by naloxone. Life Sci. 18, 789–796 (1976)PubMedGoogle Scholar
  197. Ross, M., Dingledine, R., Cox, B.M., Goldstein, A.: Distribution of endorphins (peptides with morphine-like pharmacological activity) in pituitary. Brain Res., in press (1977)Google Scholar
  198. Ross, M., Su, T.-P., Cox, B.M., Goldstein, A.: Brain endorphins. In: Opiates and Endogenous Peptides (ed. H.W. Kosterlitz), pp. 35–40. Amsterdam: Elsevier-North Holland 1976Google Scholar
  199. Schaumann, O., Giovanni, M., Jochum, K.: Morphinähnlich wirkende Analgetika und Darmmotorik. I. Spasmolyse und Peristaltik. Naunyn-Schmied. Arch. Path. Pharmakol. 215, 460–468 (1952)Google Scholar
  200. Schulz, R., Goldstein, A.: Morphine tolerance and supersensitivity to 5-hydroxytryptamine in the myenteric plexus of the guinea-pig. Nature (London) 244, 168–170 (1973)Google Scholar
  201. Schulz, R., Goldstein, A.: Irreversible alteration of opiate receptor function by a photoaffinity labelling reagent. Life Sci. 16, 1843–1848 (1975)PubMedGoogle Scholar
  202. Schulz, R., Herz, A.: Dependence liability of enkephalin in the myenteric plexus of the guinea-pig. Eur. J. Pharmacol. 39, 429–432 (1976a)Google Scholar
  203. Schulz, R., Herz, A.: Aspects of opiate dependence in the myenteric plexus of the guinea-pig. Life Sci. 19, 1117–1128 (1976b)PubMedGoogle Scholar
  204. Schwyzer, R.: (Title to be obtained.) Ann. N.Y. Acad. Sci., in press (1977)Google Scholar
  205. Seidah, N.G., Lis, M., Gianoulakis, C., Schiller, P., Chretien, M.: Fragment of sheep beta-lipotropin with morphine-like activity. The Lancet 1, 1017 (1976)Google Scholar
  206. Sharma, S.K.: Modulation of adenylate cyclase activity by narcotics in neuroblastoma X glioma hybrid cells. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 257–260. Amsterdam: Elsevier-North Holland 1976Google Scholar
  207. Sharma, S.K., Klee, W.A., Nirenberg, M.: Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Nat. Acad. Sci. USA 72, 3092–3096 (1975a)PubMedGoogle Scholar
  208. Sharma, S.K., Nirenberg, M., Klee, W.A.: Morphine receptors as regulators of adenylate cyclase activity. Proc. Nat. Acad. Sci. USA 72, 590–594 (1975b)PubMedGoogle Scholar
  209. Shoham, S., Weinstock, M.: The role of supersensitivity to acetylcholine in the production of tolerance to morphine in stimulated guinea-pig ileum. Brit. J. Pharmacol. 52, 597–603 (1974)Google Scholar
  210. Shuster, L.: Repression and de-repression of enzyme synthesis and a possible explanation of some aspects of drug action. Nature (London) 189, 314–315 (1961)Google Scholar
  211. Simantov, R., Goodman, R., Aposhian, D., Snyder, S.H.: Phylogenetic distribution of a morphine-like peptide ‘enkephalin’. Brain Res. 111, 204–211 (1976a)PubMedGoogle Scholar
  212. Simantov, R., Kuhar, M.J., Pasternak, G.W., Snyder, S.H.: The regional distribution of a morphine-like factor enkephalin in monkey brain. Brain Res. 106, 189–197 (1976b)PubMedGoogle Scholar
  213. Simantov, R., Snowman, A.M., Snyder, S.H.: A morphine-like factor ‘enkephalin’ in rat brain: subcellular localization. Brain Res. 107, 650–657 (1976c)PubMedGoogle Scholar
  214. Simantov, R., Snyder, S.H.: Morphine-like peptides, leucine enkephalin and methionine enkephalin: Interactions with the opiate receptor. Mol. Pharmacol. 12, 987–998 (1976a)PubMedGoogle Scholar
  215. Simantov, R., Snyder, S.H.: Morphine-like peptides in mammalian brain: Isolation, structure elucidation, and interactions with the opiate receptor. Proc. Nat. Acad. Sci. USA 73, 2515–2519 (1976b)PubMedGoogle Scholar
  216. Simantov, R., Snyder, S.H.: Brain-pituitary opiate mechanisms: Pituitary opiate receptor binding, radioimmunoassays for methionine enkephalin and leucine enkephalin, and 3H-enkephalin interactions with the opiate receptor. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 41–48. Amsterdam: Elsevier-North Holland 1976cGoogle Scholar
  217. Simantov, R., Snyder, S.H.: Isolation and structure identification of a morphin-like peptide “enkephalin” in bovine brain. Life Sci. 18, 781–788 (1976d)PubMedGoogle Scholar
  218. Simon, E.J., Groth, J.: Kinetics of opiate receptor inactivation by sulfhydryl reagents: evidence for conformational change in presence of sodium ions. Proc. Nat. Acad. Sci. USA 72, 2404–2407 (1975)PubMedGoogle Scholar
  219. Simon, E.J., Hiller, J.M., Edelman, I.: Stereospecific binding of the potent narcotic analgesic [3H]etorpine to rat-brain homogenate. Proc. Nat. Acad. Sci. USA 70, 1947–1949 (1973)PubMedGoogle Scholar
  220. Simon, E.J., Hiller, J.M., Edelman, I.: Solubilization of a stereospecific opiate-macromolecular complex from rat brain. Science 190, 389–390 (1975a)PubMedGoogle Scholar
  221. Simon, E.J., Hiller, J.M., Edelman, I., Groth, J., Stahl, K.D.: Opiate receptors and their interactions with agonists and antagonists. Life Sci. 16, 1795–1800 (1975b)PubMedGoogle Scholar
  222. Simon, E.J., Hiller, J.M., Groth, J., Edelman, L.: Further properties of stereospecific opiate binding sites in rat brain: On the nature of the sodium effect. J. Pharmacol. Exp. Ther. 192, 531–537 (1975c)PubMedGoogle Scholar
  223. Smith, A.P., Loh, H.H.: The sub-cellular localization of stereo-specific opiate binding in mouse brain. Res. Commun. Chem. Pathol. Pharm. 15, 205–219 (1976)Google Scholar
  224. Smith, T.W., Hughes, J., Kosterlitz, H.W., Sosa, R.P.: Enkephalins: Isolation, distribution and function. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 57–62. Amsterdam: Elsevier-North Holland 1976Google Scholar
  225. Snyder, S.H., Pasternak, G.W., Pert, C.B.: Opiate receptor mechanisms. In: Handbook of Psychopharmacology (eds. L.L. Iverson, S.D. Iverson, S.H. Snyder), Vol. V, pp. 329–360. New York: Plenum 1975Google Scholar
  226. Stephenson, R.: A modification of receptor theory. Brit. J. Pharmacol. 11, 379–393 (1956)PubMedGoogle Scholar
  227. Szerb, J.C.: The effect of morphine on the adrenergic nerves of the isolated guinea-pig jejunum. Brit. J. Pharmacol. 16, 23–31 (1961)PubMedGoogle Scholar
  228. Takagi, H., Doi, T., Akaike, A.: Microinjection of morphine into the medial part of the bulbar reticular formation in rabbit and rat: Inhibitory effects on lamina V cells of spinal dorsal horn and behavioral analgesia. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 191–198. Amsterdam: Elsevier-North Holland 1976Google Scholar
  229. Tell, G.P., Pasternak, G.W., Cuatrecasas, P.: Brain and caudate nucleus adenylate cyclase: Effects of dopamine, GTP, E prostaglandins and morphine. FEBS Letters 51, 242–245 (1975)Google Scholar
  230. Terenius, L.: Stereospecific uptake of narcotic analgesics by a subcellular fraction of the guinea-pig ileum. Upsal. J. Med. Sci. 78, 150–152 (1973a)Google Scholar
  231. Terenius, L.: Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 32, 317–320 (1973b)Google Scholar
  232. Terenius, L.: Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol. Toxicol. 33, 377–384 (1973c)Google Scholar
  233. Terenius, L.: Somatostatin and ACTH are peptides with partial antagonist-like selectivity for opiate receptors. Eur. J. Pharmacol. 38, 211–213 (1976)PubMedGoogle Scholar
  234. Terenius, L., Wahlström, A.: Morphine-like ligand for opiate receptors in mammalian brain. Acta Pharmacol. Toxicol. 35, 55–59 (1974)Google Scholar
  235. Terenius, L., Wahlström, A.: Morphine-like ligand for opiate receptors in human CSF. Life Sci. 16, 1759–1764 (1975)Google Scholar
  236. Terenius, L., Wahlström, A., Lindeherg, G., Karlsson, S., Ragnarsson, U.: Opiate receptor affinity of peptides related to leu-enkephalin. Biochem. Biophys. Res. Commun. 71, 175–179 (1976a)PubMedGoogle Scholar
  237. Terenius, L., Wahlström, A., Lindström, L., Widerlöv, E.: Increased CSF levels of endorphines in chronic psychosis. Neurosci. Ltrs. 3, 157–162 (1976b)Google Scholar
  238. Teschemacher, H., Bläsig, J., Kromer, W.: Porcine pituitary peptides with opiate-like activity: partial purification and effects in the rat after intraventricular injection. Naunyn-Schmied. Arch. Pharmakol. 294, 293–295 (1976)Google Scholar
  239. Teschemacher, H., Opheim, K.E., Cox, B.M., Goldstein, A.: A peptide-like substance from pituitary that acts like morphine. 1. Isolation. Life Sci. 16, 1771–1776 (1975)Google Scholar
  240. Traber, J., Fischer, K., Latzin, S., Hamprecht, B.: Morphine antagonizes the action of prostaglandin in neuroblastoma cells but not of prostaglandin and noradrenaline in glioma and glioma X fibroblast hybrid cells. FEBS Letters 49, 260–263 (1974)PubMedGoogle Scholar
  241. Traber, J., Fischer, K., Latzin, S., Hamprecht, B.: Morphine antagonises action of prostaglandin in neuroblastoma and neuroblastoma X glioma hybrid cells. Nature (London) 253, 120–122 (1975a)Google Scholar
  242. Traber, J., Gullis, R., Hamprecht, B.: Influence of opiates on the levels of adenosine 3′:5′-cyclic monophosphate in neuroblastoma X glioma hybrid cells. Life Sci. 16, 1863–1868 (1975b)PubMedGoogle Scholar
  243. Traber, J., Reiser, G., Fischer, K., Hamprecht, B.: Measurement of adenosine 3′:5′-cyclic monophosphate and membrane potential in neuroblastoma X glioma hybrid cells: opiates and adrenergic agonists cause effects opposite to those of prostaglandin E1. FEBS Letters 52, 327–332 (1975c)PubMedGoogle Scholar
  244. Trendelenburg, U.: The action of morphine on the superior cervical ganglion and on the nictitating membrane. Brit. J. Pharmacol. 12, 79–85 (1957)PubMedGoogle Scholar
  245. Tseng, L.-F., Loh, H.H., Li, C.H.: β-endorphin as a potent analgesic by intravenous injection. Nature (London) 263, 239–240 (1976a)Google Scholar
  246. Tseng, L.-F., Loh, H.H., Li, C.H.: 3-endorphin: Cross-tolerance to and cross-physical dependence on morphine. Proc. Nat. Acad. Sci. USA 73, 4187–4189 (1976b)PubMedGoogle Scholar
  247. Tulunay, F.C., Takemori, A.E.: Further studies on the alteration of analgesic receptor-antagonist interactions induced by morphine. J. Pharmacol. Exp. Ther. 190, 401–407 (1974)PubMedGoogle Scholar
  248. Ungar, G., Ungar, A.L., Malin, D.H.: Brain peptides with opiate antagonist activity. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 121–128. Amsterdam: Elsevier-North Holland 1976Google Scholar
  249. Van Inwegen, R.G., Strada, S.J., Robinson, G.A.: Effects of prostaglandins and morphine on brain adenylyl cyclase. Life Sci. 16, 1875–1876 (1975)PubMedGoogle Scholar
  250. Wahlström, A., Johansson, L., Terenius, L.: Characterization of endorphines (endogenous morphine-like factors) in human CSF and brain extracts. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 49–56. Amsterdam: Elsevier-North Holland 1976Google Scholar
  251. Waterfield, A.A., Hughes, J., Kosterlitz, H.W.: Cross tolerance between morphine and methionine-enkephalin. Nature (London) 260, 624–625 (1976)Google Scholar
  252. Waterfield, A.A., Kosterlitz, H.W.: Stereospecific increase by narcotic antagonists of evoked acetylcholine output in guinea-pig ileum. Life Sci. 16, 1787–1792 (1975)PubMedGoogle Scholar
  253. Wei, E., Loh, H.: Physical dependence on opiate-like peptides. Science 193, 1262–1263 (1976a)PubMedGoogle Scholar
  254. Wei, E., Loh, H.: Chronic, intracerebral infusion of morphine and peptides with osmotic minipumps, and the development of physical dependence. In: Opiates and Endogenous Opioid Peptides (ed. H.W. Kosterlitz), pp. 303–310. Amsterdam: Elsevier-North Holland 1976bGoogle Scholar
  255. Weissman, B.A., Gershon, H.: Specific antiserum to leu-enkephalin and its use in a radioimmunoassay. FEBS Letters 70, 245–248 (1976)PubMedGoogle Scholar
  256. Wilkening, D., Mishra, R.K., Makman, M.H.: Effects of morphine on dopamine-stimulated adenylate cyclase and on cyclic GMP formation in primate brain amygdaloid nucleus. Life Sci. 19, 1129–1138 (1976)PubMedGoogle Scholar
  257. Wilson, H.A., Pasternak, G.W., Snyder, S.H.: Differentiation of opiate agonist and antagonist receptor binding by protein modifying reagents. Nature (London) 253, 448–450 (1975a)Google Scholar
  258. Wilson, R.S., Rogers, M.E., Pert, C.B., Snyder, S.H.: Homologous N-Alkyl-norketobemidones. Correlation of receptor binding with analgesic potency. J. Med. Chem. 18, 240–242 (1975b)PubMedGoogle Scholar
  259. Winter, B.A., Goldstein, A.: A photochemical affinity-labelling reagent for the opiate receptor(s). Mol. Pharmacol. 8, 601–611 (1972)PubMedGoogle Scholar
  260. Wong, D.T., Horng, J.S.: Stereospecific interaction of opiate narcotics in binding of 3H-dihydromorphine to membranes of rat brain. Life Sci. 13, 1543–1556 (1973)PubMedGoogle Scholar
  261. Wu, Y.C., Cho, T.M., Loh, H.H., Way, E.L.: Binding of narcotics and narcotic antagonists to triphosphoinositide. Biochem. Pharmacol. 25, 1551–1553 (1976)PubMedGoogle Scholar
  262. Yaksh, T.L., Rudy, T.A.: Analgesia mediated by a direct spinal action of narcotics. Science 192, 1357–1358 (1976)PubMedGoogle Scholar
  263. Yaksh, T.L., Yeung, J.C., Rudy, T.A.: Systematic examination in rat of brain sites sensitive to direct application of morphine. Brain Res. 114, 83–103 (1976)PubMedGoogle Scholar
  264. Zieglgänsberger, W., Fry, J.P. Herz, A., Moroder, L., Wünsch, E.: Enkephalin-induced inhibition of cortical neurones and the lack of this effect in morphine tolerant/dependent rats. Brain Res. 115, 160–164 (1976)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1978

Authors and Affiliations

  • A. Goldstein
  • B. M. Cox

There are no affiliations available

Personalised recommendations