Synergetics pp 241-246 | Cite as

Biological Control through Long Range Coherence

  • H. Fröhlich
Part of the Springer Series in Synergetics book series (SSSYN, volume 2)


The analysis of the molecular structure of biological giant molecules has led to the result that systematic spacial order is absent in biological systems. It was often concluded then that no physical order exists in these materials. Modern physics, however, knows another type of order which may be termed dynamic order. In thermal equilibrium this type of order is dominant in superconductors and in superfluid helium. Thus X-ray analysis exhibits a spacial correlation between helium atoms similar to that in other fluids. Yet the dynamic order imposes conditions which lead to vanishing entropy as the temperature approaches zero in spite of this apparent disorder.


Helium Atom Collective Mode Dynamic Order Superfluid Helium Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Fröhlich: in Theoretical Physics and Biology, ed. by M. Marois (North Holland, Amsterdam 1969) p. 13Google Scholar
  2. 2.
    H. Fröhlich: Int. J. Quant. Chem. 2, 641 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    H. Fröhlich: Phys. Lett. 39A, 153 (1972)ADSGoogle Scholar
  4. 4.
    H. Fröhlich: in Synergetics, ed. by H. Haken (Teubner 1973) p. 241Google Scholar
  5. 5.
    H. Fröhlich: Proc. Nat. Acad. Sci. USA 72, 4211 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    H. Fröhlich: Phys. Lett. 51A, 21 (1975)ADSGoogle Scholar
  7. 7.
    H. Fröhlich: Rivista del Nuovo Cimento (in print)Google Scholar
  8. 8.
    N.D. Devyatkov et al.: Sov. Phys. USPEKHI (Translation) 16, 568–579 (1974)ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Webb, A.D. Booth: Nature 222, 1199 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Berteaud, M. Dardalhon, N. Rebeyrotte, D. Averbeck: C.R. Acad. Sci. Paris t281, Serie D, 843 (1975)Google Scholar
  11. 11.
    N. Kollias, W.R. Melander: Phys. Lett. 57A, 102 (1976)ADSGoogle Scholar
  12. 12.
    S.J. Webb, M.E. Stoneham: Phys. Lett.Google Scholar
  13. 13.
    D. Bhaumik, K. Bhaumik, B. Dutta-Roy: Phys. Lett. 59A, 77 (1976)ADSGoogle Scholar
  14. 14.
    D.E. Koshland, K.E. Neet: Ann. Rev. Biochem. 37, 359 (1968)CrossRefGoogle Scholar
  15. 15.
    W.R. Adey, S.M. Bawin (eds.), Neurosciences Res. Prog. Bull. 15 No. 1 (1977)Google Scholar
  16. 16.
    R. Elul: Neurosciences Res. Prog. Bull. 12, 97–101 (1974)Google Scholar
  17. 17.
    B.M. Sayers, H.A. Beagley, W.R. Henshall: Nature 247, 481 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    H. von Specht, Z. Sr. Kevanishvili: Nature 260, 461 (1976)CrossRefGoogle Scholar
  19. 19.
    S. Takashima, A. Minakato: in Digest of Literature on Dielectrics, ed. by A. Vaughan (in print)Google Scholar
  20. 20.
    H.J. Fröhlich: Collective Phen. 1, 101 (1973)Google Scholar
  21. 21.
    H. Fröhlich: Nature 228, 1093 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    H. Fröhlich: Biosystems (in print)Google Scholar
  23. 23.
    M.A. Livshits: Biofizika 17, 694 (1972). This author uses magnitudes which are not compelling and hence draws wrong conclusionsGoogle Scholar
  24. 24.
    D.E. Green: Ann. N.Y. Acad. Sci. 227, 6 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    H.T. Witt, E. Schlodder, P. Graeber: FEBS Letters 69, 272 (1976)CrossRefGoogle Scholar
  26. 26.
    B.W. Holland: J. Theor. Biol. 35, 395 (1972)CrossRefGoogle Scholar
  27. 27.
    S.J. Webb, M.E. Stoneham: Phys. Lett. A (in print)Google Scholar
  28. 28.
    S.J. Webb: personal communicationGoogle Scholar
  29. 29.
    F. Fröhlich: in Cooperative Phenomena, ed. by H. Haken, M. Wagner (Springer, Berlin, Heidelberg, New York 1973) p. XLGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • H. Fröhlich

There are no affiliations available

Personalised recommendations