Advertisement

The Effect of Chemicals on Hepatic Heme Biosynthesis

Differences in Response to Porphyrin-Inducing Chemicals Between Chick Embryo Liver Cells, the 17-Day-Old Chick Embryo and Other Species
  • Gerald S. Marks
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)

Abstract

The administration of Sedormid (2-isopropylpent-4-enoylurea) to rabbits resulted in an experimental porphyria (Schmid and Schwartz, 1952) and the liver which was shown to be the major site of the metabolic disturbance contained large amounts of uro-, copro-, and proto-porphyrin. Sedormid (Fig. 1 a) has a structure closely similar to the barbiturate group of drugs (Fig. 1 b). Investigation of the relationship between structure and porphyrin inducing activity revealed the following requirements for activity: an allyl group together with either a cyclic ureide (as in the barbiturates), a ureide (as in Sedormid), or an acid amide [as in allylisopropylacetamide (AIA, Fig. 1 c)].

Keywords

Chick Embryo Ethyl Benzoate Acute Intermittent Porphyria Acute Porphyria Hepatic Porphyria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbritti, G., De Matteis, F.: Decreased levels of cytochrome P-450 and catalase in hepatic porphyria caused by substituted acetamides and barbiturates. Importance of the allyl group in the molecule of the active drugs. Chem. biol. Interact. 4, 281–286 (1971)CrossRefGoogle Scholar
  2. Atsmon, A.: Personal communication (1975)Google Scholar
  3. Atsmon, A., Blum, I.: Treatment of acute porphyria variegata with propranolol. Lancet 1970 I,196–197CrossRefGoogle Scholar
  4. Blum, I., Schoenfeld, N., Atsmon, A.: The effect of DL-propranolol on δ-aminolevulinic acid synthetase activity and urinary excretion of porphyrins in allylisopropylacetamide-induced experimental porphyria. Biochim. biophys. Acta (Amst.) 320, 242–248 (1973)Google Scholar
  5. Brodie, B.B., Cosmides, G.J., Rail, D.P.: Toxicology and the biomedical sciences. Science 148, 1547–1554 (1965)PubMedCrossRefGoogle Scholar
  6. Cowger, M.L., Labbe, R.F.: Contraindications of biological oxidation inhibitors in the treatment of porphyria. Lancet 1965 I, 88–89CrossRefGoogle Scholar
  7. Creighton, J.M., Marks, G.S.: Drug-induced porphyrin biosynthesis—I. The effect of porphyria-inducing drugs on N-demethylase activity of chick embryo liver. Biochem. Pharmacol. 18, 2040–2045 (1969)PubMedCrossRefGoogle Scholar
  8. Creighton, J.M., Marks, G.S.: Drug-induced porphyrin biosynthesis—VII. Species, sex, and developmental differences in the generation of experimental porphyria. Canad. J. Physiol. Pharmacol. 50, 485–489 (1972)CrossRefGoogle Scholar
  9. Dean, G.: A report on propanidid, an intravenous anaesthetic in Porphyria variegata. S. Afr. med. J. 43, 227–229 (1969)PubMedGoogle Scholar
  10. Dean, G.: The Porphyrins. 2nd ed., p. 132. Philadelphia — Montreal: J.B. Lippincott Co. 1971Google Scholar
  11. De Matteis, F.: Drugs and porphyria, S. Afr. J. Lab. clin. Med. 17, 126–133 (1971)Google Scholar
  12. De Matteis, F.: Disturbances of liver porphyrin metabolism caused by drugs. Pharmacol. Rev. 19, 523–557 (1967)PubMedGoogle Scholar
  13. De Matteis, F.: Drug interactions in experimental hepatic porphyria. A model for the exacerbation by drugs of human variegate porphyria. Enzyme 16, 266–275 (1973)PubMedGoogle Scholar
  14. De Matteis, F., Abbritti, G., Gibbs, A.H.: Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-l,4-dihydrocollidine. Biochem. J. 134, 717–727 (1973)PubMedGoogle Scholar
  15. Doss, M., Kaltepoth, B.: Porphyrin biosynthesis in liver cell cultures. S. Afr. J. Lab. clin. Med. 17, 73–75 (1971)Google Scholar
  16. Eales, L.: Acute porphyria: The precipitating and aggravating factors. S. Afr. J. Lab. clin. Med. 17, 120–125 (1971)Google Scholar
  17. Edwards, A.M., Elliott, W.H.: Induction of δ-aminolevulinic acid synthetase in isolated rat liver cell suspensions. Adenosine 3′:5′-monophosphate dependence of induction by drugs. J. biol. Chem. 249, 851–855 (1974)PubMedGoogle Scholar
  18. Edwards, A.M., Elliott, W.H.: Induction of 8-aminolevulinic acid synthetase in isolated rat liver cells by steroids. J. biol. Chem. 250, 2750–2755 (1975)PubMedGoogle Scholar
  19. Finkelstein, R.A.: Observations on mode of action of endotoxin in chick embryos. Proc. Soc. exp. Biol. (N.Y.) 115, 702–707 (1964)Google Scholar
  20. Fischer, P.W.F., Morgan, R.O., Krupa, V., Marks, G.S.: Drug-induced porphyrin biosynthesis—XV. Induction of porphyrin biosynthesis in chick embryo liver cells maintained in serum-free Waymouth medium. Biochem. Pharmacol. 25, 687–693 (1976)PubMedCrossRefGoogle Scholar
  21. Goldberg, A.: The effects of certain barbiturates on the porphyrin metabolism of rabbits. Biochem. J. 57, 55–61 (1954)PubMedGoogle Scholar
  22. Goldberg, A., Rimington, C.: Experimentally produced porphyria in animals. Proc. roy. Soc. B 143, 257–280 (1955)CrossRefGoogle Scholar
  23. Granick, S.: A test for detection of porphyria-inducing drugs. J. Amer. med. Ass. 190, 475 (1964)Google Scholar
  24. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  25. Granick, S., Kappas, A.: Steroid control of porphyrin and heme biosynthesis: A new biological function of steroid hormone metabolites. Proc. nat. Acad. Sci. (Wash.) 57, 1463–1467 (1967a)CrossRefGoogle Scholar
  26. Granick, S., Kappas, A.: Steroid induction of porphyrin synthesis in liver cell culture. I. Structural basis and possible physiological role in the control of heme formation. J. biol. Chem. 24, 4587–4593 (1967b)Google Scholar
  27. Granick, S., Sassa, S.: δ-Aminolevulinic acid synthetase and the control of heme and chlorophyll synthesis. In: Metabolic Regulation. Vogel H.J. (ed.), Vol. 5 of Metabolic Pathways, pp. 77–141. New York–London: Academic Press 1971Google Scholar
  28. Granick, S., Sinclair, P., Sassa, S., Grieninger, G.: Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J. biol. Chem. 250, 9215–9225 (1975)PubMedGoogle Scholar
  29. Gross, S.R., Hutton, J.J.: Induction of hepatic δ-aminolevulinic acid synthetase activity in strains of inbred mice. J. biol. Chem. 246, 606–614 (1971)PubMedGoogle Scholar
  30. Hansch, C.: Quantitative relationships between lipophilic character and drug metabolism. Drug Metab. Rev. 1, 1–14 (1972)CrossRefGoogle Scholar
  31. Hansch, C., Clayton, J.M.: Lipophilic character and biological activity of drugs II: The parabolic case. J. pharm. Sci. 62, 1–21 (1973)PubMedCrossRefGoogle Scholar
  32. Hansch, C., Dunn, W.J.: Linear relationship between lipophilic character and biological activity of drugs. J. pharm. Sci. 61, 1–19 (1972)PubMedCrossRefGoogle Scholar
  33. Hansch, C., Steward, A.R., Anderson, S.M., Bentley, D.: The parabolic dependence of drug action upon lipophilic character as revealed by a study of hypnotics. J. med. Chem. 11, 1–11 (1968)PubMedCrossRefGoogle Scholar
  34. Hayashi, N., Kurashima, Y., Kikuchi, G.: Mechanism of allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in liver mitochondria. V. Mechanism of regulation by hemin of the level of δ-aminolevulinate synthetase in rat liver mitochondria. Arch. Biochem. Biophys. 148, 10–21 (1972).PubMedCrossRefGoogle Scholar
  35. Heymann, E., Krisch, K., Buch, H., Buzello, W.: Inhibition of phenacetin- and acetanilide-induced methemoglobinemia in the rat by the carboxylesterase inhibitor bis-[p-nitrophenyl] phosphate. Biochem. Pharmacol. 18, 801 -811 (1969)PubMedCrossRefGoogle Scholar
  36. Hirsch, G.H., Bubbar, G.L., Marks, G.S.: Studies of the relationship between chemical structure and porphyria-inducing activity—III. Biochem. Pharmacol. 16, 1455–1462 (1967)PubMedCrossRefGoogle Scholar
  37. Hirsch, G.H., Gillis, J.D., Marks, G.S.: Studies of the relationship between chemical structure and porphyria-inducing activity—II. Biochem. Pharmacol. 15, 1006–1008 (1966)CrossRefGoogle Scholar
  38. Hutton, J.J., Gross, S.R.: Chemical induction of hepatic porphyria in inbred strains of mice. Arch. Biochem. Biophys. 141, 284–292 (1970)PubMedCrossRefGoogle Scholar
  39. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961)PubMedCrossRefGoogle Scholar
  40. Kappas, A., Granick, S.: Steroid induction of porphyrin synthesis in liver cell culture II. The effects of heme, uridine diphosphate glucuronic acid, and inhibitors of nucleic acid and protein synthesis on the induction process. J. biol. Chem. 243, 346–351 (1968)PubMedGoogle Scholar
  41. Kappas, A., Song, C.S., Levere, R.D., Sachson, R.A., Granick, S.: The induction of δ-aminolevulinic acid synthetase in vivo in chick embryo liver by natural steroids. Proc. nat. Acad. Sci. (Wash.) 61, 509–513 (1968)CrossRefGoogle Scholar
  42. Koskelo, P., Eisalo, A., Toivonen, I.: Urinary excretion of porphyrin precursors and coproporphyrin in healthy females on oral contraceptives. Brit. med. J. 1966 I, 652–654CrossRefGoogle Scholar
  43. Krisch, K.: Carboxylic ester hydrolases. In: The Enzymes 3rd ed., Vol. 5, edit, by P.D. Boyer, pp. 43–69. New York — London: Academic Press 1972Google Scholar
  44. Krupa, V., Blattei, R.A., Marks, G.S.: Drug-induced porphyrin biosynthesis—IX. Levels of 14C-allylisopropylacetamide, 14C-propylisopropylacetamide and metabolite(s) in the livers of chick embryos and mice. Enzyme 16, 276–285 (1973)PubMedGoogle Scholar
  45. Krupa, V., Creighton, J.C., Freeman, M., Marks, G.S.: Drug-induced porphyrin biosynthesis—XII. Levels of cytochrome P-450 in chick embryo liver following administration of allylisopropylacetamide and propylisopropylacetamide. Canad. J. Physiol. Pharmacol. 52, 891–895 (1974)CrossRefGoogle Scholar
  46. Leo, A., Hansch, C., Elkins, D.: Partition coefficients and their uses. Chem. Rev. 71, 525–616 (1971)CrossRefGoogle Scholar
  47. Marks, G.S.: Unpublished observations (1975)Google Scholar
  48. Marks, G.S., Hunter, E.G., Terner, U.K., Schneck, D.: Studies of the relationship between chemical structure and porphyria-inducing activity. Biochem. Pharmacol. 14, 1077–1084 (1965)PubMedCrossRefGoogle Scholar
  49. Marks, G.S., Krupa, V., Murphy, F., Taub, H., Blattei, R.A.: Mechanisms of drug-induced porphyrin biosynthesis. Ann. N.Y. Acad. Sci. 244, 472–480 (1975)PubMedCrossRefGoogle Scholar
  50. Marks, G.S., Krupa, V., Roomi, M.W.: Drug-induced porphyrin biosynthesis—VIII. Investigation of the importance of an allyl group for activity in substituted acetamides. Canad. J. Physiol. Pharmacol. 51, 863–868 (1973)CrossRefGoogle Scholar
  51. Meyer, U.A., Strand, L.J., Doss, M., Rees, A.C., Marver, H.S.: Intermittent acute porphyria-demonstration of a genetic defect in porphobilinogen metabolism. New Engl. J. Med. 286, 1277–1282 (1972)PubMedCrossRefGoogle Scholar
  52. Moore, M.R., Battistini, V., Beattie, A.D., Goldberg, A.: The effects of certain barbiturates on the hepatic porphyrin metabolism of rats. Biochem. Pharmacol. 19, 751–757 (1970)PubMedCrossRefGoogle Scholar
  53. Morgan, R.O., Fischer, P.W.F., Marks, G.S.: Unpublished observations (1976)Google Scholar
  54. Morgan, R.O., Fischer, P.W.F., Stephens, J.K., Marks, G.S.: Thyroid hormone enhancement of drug-induced porphyrin biosynthesis in chick embryo liver cells maintained in serum-free Waymouth medium. Biochem. Pharmacol. 25, 2609–2612 (1976)PubMedGoogle Scholar
  55. Murphy, F.R., Krupa, V., Marks, G.S.: Drug-induced porphyrin biosynthesis—XIII. Role of lipophilicity in determining porphyrin-inducing activity of aliphatic amides after blockade of their hydrolysis by bis-[p-nitrophenyl] phosphate. Biochem. Pharmacol. 24, 883–889 (1975)PubMedCrossRefGoogle Scholar
  56. Murphy, F.R., Krupa, V., Marks, G.S.: Drug-induced porphyrin biosynthesis—XIV. Role of lipophilicity in determining porphyrin-inducing activity of esters and amides following blockade of their hydrolysis by bis-[p-nitrophenyl) phosphate. Biochem. Pharmacol. 25, 1351–1354 (1976)PubMedCrossRefGoogle Scholar
  57. Murthy, V.V., Woods, J.S.: Solubilization and partial purification of mitochondrial δ-aminolevulinate synthase from fetal rat liver. Biochim. biophys. Acta (Amst.) 350, 240–246 (1974)Google Scholar
  58. Nebert, D.W., Gelboin, H.V.: The role of ribonucleic acid and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell cultures: The independence of transcription and translation. J. biol. Chem. 245, 160–168 (1970)PubMedGoogle Scholar
  59. Ohashi, A., Kikuchi, G.: Mechanism of allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in liver mitochondria. VI. Multiple molecular forms of δ-aminolevulinate synthetase in the cytosol and mitochondria of induced cock liver. Arch. Biochem. Biophys. 153, 34–46 (1972)CrossRefGoogle Scholar
  60. Peterkofsky, B., Tomkins, G.M.: Evidence for the steroid-induced accumulation of tyrosine aminotransferase messenger RNA in the absence of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 60, 222–228 (1968)CrossRefGoogle Scholar
  61. Poland, A., Glover, E.: 2,3,7,8-Tetrachlorodibenzo-p-dioxin: A potent inducer of δ-aminolevulinic acid synthetase. Science 179, 476–477 (1973a)PubMedCrossRefGoogle Scholar
  62. Poland, A., Glover, E.: Chlorinated dibenzo-p-dioxins: Potent inducers of δ-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. II. A study of the structure-activity relationship. Molec. Pharmacol. 9, 736–747 (1973b)Google Scholar
  63. Racz, W.J., Marks, G.S.: Drug-induced porphyrin biosynthesis—II. Simple procedure for screening drugs for porphyria-inducing activity. Biochem. Pharmacol. 18, 2009–2018 (1969)PubMedCrossRefGoogle Scholar
  64. Racz, W.J., Marks, G.S.: Drug-induced porphyrin biosynthesis—IV. Investigation of the differences in response of isolated liver cells and the liver of the intact chick embryo to porphyria-inducing drugs. Biochem. Pharmacol. 21, 143–151 (1972)PubMedCrossRefGoogle Scholar
  65. Racz, W.J. Moffat, J.A.: Drug metabolism in cell culture—I. Importance of steric factors for activity in porphyrin-inducing drugs. Biochem. Pharmacol. 23, 215–221 (1974)PubMedCrossRefGoogle Scholar
  66. Rifkind, A.B., Gillette, P.N. Song, C.S., Kappas, A.: Induction of hepatic δ-aminolevulinic acid synthetase by oral contraceptive steroids. J. clin. Endocr. 30, 330–335 (1970)PubMedCrossRefGoogle Scholar
  67. Rifkind, A.B., Gillette, P.N., Song, C.S., Kappas, A.: Drug stimulation of δ-aminolevulinic acid synthetase and cytochrome P-450 in vivo in chick embryo liver. J. Pharmacol, exp. Ther. 185, 214–225 (1973)Google Scholar
  68. Sassa, S., Granick, S.: Induction of δ-aminolevulinic acid synthetase in chick embryo liver cells in culture. Proc. nat. Acad. Sci. (Wash.) 67, 517–522 (1970)CrossRefGoogle Scholar
  69. Schlesinger, F.G., Gastel (van), C.: Possible aggravation of abdominal symptoms by tolbutamide in a patient with diabetes and hepatic porphyria. Acta med. scand. 169, 433–435 (1961)PubMedCrossRefGoogle Scholar
  70. Schmid, R., Schwartz, S.: Experimental porphyria III. Hepatic type produced by Sedormid. Proc. Soc. exp. Biol. (N.Y.) 81, 685–689 (1952)Google Scholar
  71. Schneck, D.W., Marks, G.S.: The inhibition of drug-induced porphyria by hemin. Pharmacologist 11, 285 (1969)Google Scholar
  72. Schneck, D.W., Racz, W.J., Hirsch, G.H., Bubbar, G.L., Marks, G.S.: Studies of the relationship between chemical structure and porphyria-inducing activity—IV. Investigations in a cell culture system. Biochem. Pharmacol. 17, 1385–1399 (1968)PubMedCrossRefGoogle Scholar
  73. Sinclair, P.R., Granick, S.: Uroporphyrin formation induced by chlorinated hydrocarbons (lindane, polychlorinated biphenyls, tetrachlorodibenzo-p-dioxin). Requirements for endogenous iron, protein synthesis and drug-metabolizing activity. Biochem. biophys. Res. Commun. 61, 124–133 (1974)PubMedCrossRefGoogle Scholar
  74. Song, C.S., Bonkowsky, H.L., Tschudy, D.P.: Salicylamide metabolism in acute intermittent porphyria. Clin. Pharmacol. Ther. 15, 431–435 (1974)PubMedGoogle Scholar
  75. Song, C.S., Singer, J.W., Levere, R.D., Harris, D.F., Kappas, A.: Developmental and gestational influences on drug induction of 5-aminolevulinic acid (ALA) synthetase in rat liver. J. Lab. clin. Med. 72, 1019–1020 (1968)Google Scholar
  76. Stich, W., Decker, P.: Studies on the mechanism of porphyrin biosynthesis with the aid of inhibitors. In: Ciba Foundation Symposium on Porphyrin Biosynthesis and Metabolism. Wolstenholme, G.E.W. Miller and Miller, E.C.P. (eds.), pp. 254–260. London: J. and A. Churchill 1955Google Scholar
  77. Strand, L.J., Manning, J., Marver, H.S.: The induction of δ-aminolevulinic acid synthetase in cultured liver cells. The effects of end product and inhibitors of heme synthesis. J. biol. Chem. 247, 2820–2827 (1972)PubMedGoogle Scholar
  78. Strik, J.J.T.W.A.: Chemical porphyria in Japanese quail (Coturnix c. Japonka). Enzyme 16, 211–223 (1973)PubMedGoogle Scholar
  79. Strik, J.J.T.W.A., Wit, J.G.: Hepatic porphyria in birds and mammals. TNO-nieuws 27, 604–610 (1972)Google Scholar
  80. Strittmatter, C.F., Umberger, F.T.: Oxidative enzyme components of avian liver microsomes. Changes during embryonic development and the effects of phenobarbital administration. Biochim. biophys. Acta (Amst.) 180, 18–27 (1969)CrossRefGoogle Scholar
  81. Talman, E.L., Labbe, R.F., Aldrich, R.A.: Porphyrin metabolism. IV. Molecular structure of acetamide derivatives affecting porphyrin metabolism. Arch. Biochem. Biophys. 66, 289–300 (1957)CrossRefGoogle Scholar
  82. Taub, H.: Drug-induced porphyrin biosynthesis. Effects of lipophilicity and hepatic metabolism on the porphyria-inducing activity of sedative-hypnotic drugs. M. Sc. Thesis, Queen’s University, Kingston, Canada (1973)Google Scholar
  83. Taub, H., Krupa, V., Marks, G.S.: Drug-induced porphyrin biosynthesis—XI. Effect of SKF 525-A on the activity of porphyrin-inducing drugs in chick embryos, chickens and rats. Biochem. Pharmacol. 25, 511–516 (1976)PubMedCrossRefGoogle Scholar
  84. Taub, H., Marks, G.S.: Drug-induced porphyrin biosynthesis—X. Potentiation of propanidid-induced elevation of δ-aminolevulinic acid synthetase and porphyrins in chick embryo liver by the carboxylesterase inhibitor bis-[p-nitrophenyl] phosphate. Canad. J. Physiol. Pharmacol. 51, 700–704 (1973)CrossRefGoogle Scholar
  85. Tomita, Y., Ohashi, A., Kikuchi, G.: Induction of δ-aminolevulinate synthetase in organ culture of chick embryo liver by allylisopropylacetamide and 3,5-dicarbethoxy-l,4-dihydro-collidine. J. Biochem. 75, 1007–1015 (1974)Google Scholar
  86. Tyrrell, D.L.J., Marks, G.S.: Drug-induced porphyrin biosynthesis—V. Effect of protohemin on the transcriptional and post-transcriptional phases of 8-aminolevulinic acid synthetase induction. Biochem. Pharmacol. 21, 2077–2093 (1972)PubMedCrossRefGoogle Scholar
  87. Vos, J.G., Botterweg, P.F., Strik, J.J.T.W.A., Koeman, J.H.: Experimental studies with HCB in birds. TNO-news, 27, 599–603 (1972)Google Scholar
  88. Watson, C.J.: Pursuit of the purple. J. Amer. med. Ass. 197, 1074–1080 (1966)CrossRefGoogle Scholar
  89. Watson, C.J.: Private communication (1974)Google Scholar
  90. Woods, J.S., Dixon, R.L.: Neonatal differences in the induction of hepatic aminolevulinic acid synthetase. Biochem. Pharmacol. 19, 1951–1954 (1970a)PubMedCrossRefGoogle Scholar
  91. Woods, J.S., Dixon, R.L.: Perinatal differences in delta-aminolevulinic acid synthetase activity. Life Sci. 9, 711–719 (1970b)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Gerald S. Marks

There are no affiliations available

Personalised recommendations