Hepatic Porphyrias

Caused by 2-Allyl-2-isopropylacetamide, 3,5-Diethoxycarbonyl-1,4-dihydrocollidine, Griseofulvin and Related Compounds
  • F. De Matteis
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)


The liver is an important site of synthesis of heme, which is then utilized as the prosthetic groups for the various hepatic cytochromes and hemoproteins (see chapter by Tait for a detailed coverage of these aspects). Under normal conditions the intermediates of the pathway (the porphyrins and their precursors 5-aminolevulinate and porphobilinogen) accumulate or are excreted only in very small amounts. This indicates clearly that the biosynthetic pathway is very efficiently regulated to provide the amount of heme required for the turnover of the various hemoproteins of the liver cell with little waste of the intermediates. There are conditions, however, in which the control mechanism breaks down and far more porphyrin and earlier precursors are synthesized than are turned into heme, so that they accumulate and are excreted in excess. These conditions are known as porphyrias. The hepatic porphyrias, where the liver is the site of the metabolic abnormality, should therefore be regarded as disorders of the regulation of liver heme biosynthesis.


Green Pigment Heme Synthesis Heme Degradation Acute Porphyria Hepatic Porphyria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbritti, G., De Matteis, F.: Decreased levels of cytochrome P-450 and catalase in hepatic porphyria caused by substituted acetamides and barbiturates. Importance of the allyl group in the molecule of the active drugs. Chem. biol. Interact. 4, 281–286 (1971)Google Scholar
  2. Abbritti, G., De Matteis, F.: Effect of 3,5-diethoxycarbonyl-l,4-dihydrocollidine on degradation of liver heme. Enzyme 16, 196–202 (1973)PubMedGoogle Scholar
  3. Abou-El-Makarem, M.M., Bock, K.W.: UDP-glucuronyl transferase in perfused rat liver and in microsomes. Europ. J. Biochem. 62, 411–416 (1976)PubMedGoogle Scholar
  4. Badawy, A.A.-B., Evans, M.: The effects of chemical porphyrogens and drugs on the activity of rat liver tryptophan pyrrolase. Biochem. J. 136, 885–892 (1973a)PubMedGoogle Scholar
  5. Badawy, A.A.-B., Evans, M.: The effects of chronic phenobarbitone administration and subsequent withdrawal on the activity of rat liver tryptophan pyrrolase and their resemblance to those of ethanol. Biochem. J. 135, 555–557 (1973b)PubMedGoogle Scholar
  6. Badawy, A.A.-B., Evans, M.: Regulation of rat liver tryptophan pyrrolase activity. Biochem. J. 150, 511–520 (1975)PubMedGoogle Scholar
  7. Baird, M.B., Samis, H.V., Massie, H.R., Zimmerman, J.A., Sfeir, G.A.: Evidence for altered hepatic catalase molecules in allylisopropylacetamide-treated mice. Biochem. Pharmacol. 25, 1101–1105 (1976)PubMedGoogle Scholar
  8. Bissell, D.M., Hammaker, L.E.: Cytochrome P-450 heme and the regulation of 8-aminolevulinic acid synthetase in the liver. Arch. Biochem. Biophys. 176, 103–112 (1976)PubMedGoogle Scholar
  9. Bock, K.W., Weiner, R., Frohling, W.: Regulation of 8-aminolevulinic acid synthetase by drugs and steroids in isolated perfused rat liver. Enzyme 16, 295–301 (1973)PubMedGoogle Scholar
  10. Burnham, B.F., Lascelles, J.: Control of porphyrin biosynthesis through a negative-feedback mechanism. Biochem. J. 87, 462–472 (1963)PubMedGoogle Scholar
  11. Correia, M.A., Meyer, U.A.: Apo-cytochrome P-450: Reconstitution of functional cytochrome with hemin in vitro. Proc. nat Acad. Sci. (Wash.) 72, 400–404 (1975)PubMedGoogle Scholar
  12. Creighton, J.M., Racz, W.J., Tyrrell, D.L.J., Schneck, D.W., Marks, G.S.: Drug-induced porphyrin biosynthesis, S. Afr. J. Lab. clin. Med. 17, 79–81 (1971)Google Scholar
  13. Del Favero, A., Gamulin, S., Gray, C.H., Norman, M.R.: Ribosome function in livers of Porphyrie mice. Biochem. J. 150, 573–576 (1975)PubMedGoogle Scholar
  14. De Matteis, F.: Hypercholesterolemia and liver enlargement in experimental hepatic porphyria. Biochem. J. 98, 23C–25C (1966)PubMedGoogle Scholar
  15. De Matteis, F.: Toxic hepatic porphyrias. Semin. Hematol. 5, 409–423 (1968)PubMedGoogle Scholar
  16. De Matteis, F.: Rapid loss of cytochrome P-450 and heme caused in the liver microsomes by the porphyrogenic agent 2-allyl-2-isopropylacetamide. Febs Lett. 6, 343–345 (1970)PubMedGoogle Scholar
  17. De Matteis, F.: Loss of heme in rat liver caused by the porphyrogenic agent 2-allyl-2-iso-propylacetamide. Biochem. J. 124, 767–777 (1971a)PubMedGoogle Scholar
  18. De Matteis, F.: Drugs and porphyria. S. Afr. J. Lab. clin. Med. 17, 126–133 (1971b)Google Scholar
  19. De Matteis, F.: Drug-induced destruction of cytochrome P-450. Drug Metab. Dispos. 1, 267–272 (1973a)PubMedGoogle Scholar
  20. De Matteis, F.: Drug interactions in experimental hepatic porphyria. A model for the exacerbation by drugs of human variegate porphyria. Enzyme 16, 266–275 (1973b)PubMedGoogle Scholar
  21. De Matteis, F.: The effect of drugs on 5-aminolaevulinate synthetase and other enzymes in the pathway of liver heme biosynthesis. In: Enzyme Induction. Parke, D.V. (ed.), pp. 185–205. London — New York: Plenum Press 1975Google Scholar
  22. De Matteis, F., Abbritti, G., Gibbs, A.H.: Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-l,4-dihydrocollidine. Studies in rats and mice. Biochem. J. 134, 717–727 (1973)Google Scholar
  23. De Matteis, F., Gibbs, A.: Stimulation of liver 5-aminolevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Biochem. J. 126, 1149–1160 (1972)Google Scholar
  24. De Matteis, F., Gibbs, A.H.: Stimulation of the pathway of porphyrin synthesis in the liver of rats and mice by griseofulvin, 3,5-diethoxycarbonyl-l,4-dihydrocollidine and related drugs: evidence for two basically different mechanisms. Biochem. J. 146, 285–287 (1975)PubMedGoogle Scholar
  25. De Matteis, F., Gibbs, A.H.: Inhibition of heme synthesis caused by cobalt in rat liver. Evidence for two different sites of action. Biochem. J. 162, 213–216 (1977)PubMedGoogle Scholar
  26. De Matteis, F., Rimington, C.: Disturbances of porphyrin metabolism caused by griseofulvin in mice. Brit. J. Derm. 75, 91–104 (1963)Google Scholar
  27. Doss, M.: Über die Porphyrinsynthese in der Leberzellkultur unter der Einwirkung von Pharmaka und Steroiden. Z. klin. Chem. u. klin. Biochem. 2, 133–147 (1969)Google Scholar
  28. Druyan, R., Kelly, A.: The effect of exogenous δ-aminolaevulinate on rat liver heme and cytochromes. Biochem. J. 129, 1095–1099 (1972)PubMedGoogle Scholar
  29. Gayathri, A.K., Rao, M.R.S., Padmanaban, G.: Studies on the induction of δ-aminolevulinic acid synthetase in mouse liver. Arch. Biochem. Biophys. 155, 299–306 (1973)PubMedGoogle Scholar
  30. Gelboin, H.V., Wortham, J.S., Wilson, R.G.: 3-Methylcholanthrene and phenobarbital. Stimulation of rat liver RNA polymerase. Nature (Lond.) 214, 281–283 (1967)PubMedGoogle Scholar
  31. Ginsburg, A.D., Dowdle, E.B.: Biochemical changes in dicarbethoxv dihydrocollidine-induced porphyria in the rat. S. Afr. J. Lab. clin. Med. 9, 206–211 (1963)Google Scholar
  32. Goldberg, A., Rimington, C.: Experimentally produced porphyria in animals. Proc. roy. Soc. B 143, 257–280 (1955)Google Scholar
  33. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones, and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  34. Granick, S., Sassa, S.: δ-aminolevulinic acid synthetase and the control of heme and chlorophyll synthesis. Metab. Regulation 5, 77–141 (1971)Google Scholar
  35. Granick, S., Sinclair, P., Sassa, S., Grieninger, G.: Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J. biol. Chem. 250, 9215–9225 (1975)PubMedGoogle Scholar
  36. Granick, S., Urata, G.: Increase in activity of δ-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-l,4-dihydrocollidine. J. biol. Chem. 238, 821–827 (1963)PubMedGoogle Scholar
  37. Haeger-Aronsen, B.: Porphyria induced in the rabbit by diethyl-1,4-dihydro-2,4,6-trimethyl-pyridine-3,5-dicarboxylate. II. Catalase activity and concentration of green porphyrins in the liver and a comparison with apronal-induced porphyria. Acta Pharmacol. (Kbh.) 19, 156–164 (1962)Google Scholar
  38. Irving, E.A., Elliott, W.H.: A sensitive radiochemical assay method for δ-aminolevulinic acid synthetase. J. biol. Chem. 244, 60–67 (1969)PubMedGoogle Scholar
  39. Jacob, S.T., Scharf, M.B., Vessel, E.S.: Role of RNA in Induction of hepatic microsomal mixed function oxidases. Proc. nat. Acad. Sci. (Wash.) 71, 704–707 (1974)PubMedGoogle Scholar
  40. Jones, M.S., Jones, O.T.G.: The structural organization of heme synthesis in rat liver mitochondria. Biochem. J. 113, 507–514 (1969)PubMedGoogle Scholar
  41. Kaplan, B.H.: δ-Aminolevulinic acid synthetase from the particulate fraction of liver of Porphyrie rats. Biochim. biophys. Acta (Amst.) 235, 381–388 (1971)PubMedGoogle Scholar
  42. Kato, R., Vassanelli, P., Frontino, G., Chiesara, E.: Variation in the activity of liver microsomal drug-metabolizing enzymes in rats in relation to the age. Biochem. Pharmacol. 13, 1037–1051 (1964)PubMedGoogle Scholar
  43. Kaufman, L., Swanson, A.L., Marver, H.S.: Chemically induced porphyria: Prevention by prior treatment with phenobarbital. Science 170, 320–322 (1970)PubMedGoogle Scholar
  44. Kawamata, F., Sakurai, T., Higashi, T.: Biosynthesis of liver catalase in rats treated with allyl-isopropylacetylcarbamide. J. Biochem. (Japan) 78, 969–974 (1975a)Google Scholar
  45. Kawamata, F., Sakurai, T., Higashi, T.: Biosynthesis of liver catalase in rats treated with allyl-isopropylacetylcarbamide. J. Biochem. (Japan) 78, 975–980 (1975b)Google Scholar
  46. Labbe, R.F., Hanawa, Y., Lottsfeldt, F.I.: Heme and fatty acid biosynthesis in experimental porphyria. Arch. Biochem. Biophys. 92, 373–374 (1961)PubMedGoogle Scholar
  47. Landaw, S.A., Callahan, E.W. Jr., Schmid, R.: Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J. clin. Invest. 49, 914–925 (1970)PubMedGoogle Scholar
  48. Lazarów, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. IV. Biochemical pathway of catalase synthesis. J. Cell Biol. 59, 491–506 (1973)PubMedGoogle Scholar
  49. Levin, W., Jacobson, M., Sernatinger, E., Kuntzman, R.: Breakdown of cytochrome P-450 heme by secobarbital and other allyl-containing barbiturates. Drug Metab. Dispos. 1, 275–284 (1973)PubMedGoogle Scholar
  50. Liem, H.H., Muller-Eberhard, U.: Effect of allylisopropylacetamide on the conversion of heme (Ferriprotoporphyrin IX) to bilirubin in rat liver perfusion in vitro. In: Porphyrins in Human Diseases. Doss, M. (ed.), pp. 80–85. Basel: S. Karger 1976Google Scholar
  51. Lockhead, A.C., Dagg, J.H., Goldberg, A.: Experimental griseofulvin porphyria in adult and foetal mice. Brit. J. Derm. 79, 96–102, (1967)Google Scholar
  52. Maines, M.D., Janousek, V., Tomio, J.M., Kappas, A.: Cobalt inhibition of synthesis and induction of 8-aminolevulinate synthase in liver. Proc. nat. Acad. Sci. (Wash.) 73, 1499–1503 (1976)PubMedGoogle Scholar
  53. Maines, M.D., Kappas, A.: Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J. biol. Chem. 250, 4171–4177 (1975)PubMedGoogle Scholar
  54. Marks, G.S., Hunter, E.G. Terner, U.K., Schneck, D.: Studies of the relationship between chemical structure and porphyria-inducing activity. Biochem. Pharmacol. 14, 1077–1084 (1965)PubMedGoogle Scholar
  55. Marks, G.S., Krupa, V., Creighton, J.C., Roomi, M.W.: Investigation of the role of an allyl group in substituted acetamides in porphyrin-inducing activity. Hoppe-Seylers Z. physiol. Chem. 354, 856–857 (1973)Google Scholar
  56. Marver, H.S.: The role of heme in the synthesis and repression of microsomal protein. In: Microsomes and Drug Oxidation. Gillette, J.R., Conney, A.H., Cosmides, G.J., Estabrook, R.W., Fouts, J.R., Mannering, G.J. (eds.), pp. 495–511. New York: Academic Press 1969Google Scholar
  57. Marver, H.S., Collins, A., Tschudy, D.P., Rechcigl, M.: δ-Aminolevulinic acid synthetase. II. Induction in rat liver. J. biol. Chem. 241, 4323–4329 (1966)PubMedGoogle Scholar
  58. Maxwell, J.D., Meyer, U.A.: Effect of lead on hepatic δ-aminolaevulinic acid synthetase activity in the rat: A model for drug sensitivity in intermittent acute porphyria. Europ. J. clin. Invest. 6, 373–379 (1976a)PubMedGoogle Scholar
  59. Maxwell, J.D., Meyer, U.A.: Drug sensitivity in hereditary hepatic porphyria. In: Proceedings of the International Porphyrin Meeting, Freiburg, May 1–4, 1975. Doss, M. (ed.), pp. 1–9. Basel: S. Karger 1976bGoogle Scholar
  60. McKay, R., Druyan, R., Getz, G.S., Rabinowitz, M.: Intramitochondrial localization of δ-aminolaevulate synthetase and ferrochelatase in rat liver. Biochem. J. 114, 455–461 (1969)PubMedGoogle Scholar
  61. Meyer, U.A., Schmid, R.: The porphyrias. In: The Metabolic Basis of Inherited Disease, Stanburg, J.B., Wyngaarden, J.B., Frederickson, D.S. (eds.), 4th ed. Chapter 50. New York: McGraw-Hill 1977Google Scholar
  62. Moses, H.L., Speisberg, T.C., Korinek, J., Chytil, F.: Porphyria-inducing drugs: Comparative effects on nuclear ribonucleic acid polymerases in rat liver. Molec. Pharmacol. 12, 731–737 (1976)Google Scholar
  63. Murphy, F.R., Krupa, V., Marks, G.S.: Drug-induced porphyrin synthesis. XIII. Role of lipophilicity in determining porphyrin-inducing activity of aliphatic amides after blockade of their hydrolysis by bis-[p-nitrophenyl]phosphate. Biochem. Pharmacol. 24, 883–889 (1975)PubMedGoogle Scholar
  64. Nakao, K., Wada, O., Takaku, F., Sassa, S., Yano, Y., Urata, G.: The origin of the increased protoporphyrin in erythrocytes of mice with experimentally induced porphyria. J. Lab. clin. Med. 70, 923–932 (1967)PubMedGoogle Scholar
  65. Nawata, H., Kato, K.: Ribonucleic acid synthesis in porphyric rat liver induced by 3,5-dicarbethoxy-l,4-dihydrocollidine. Biochem. J. 136, 209–215 (1973)PubMedGoogle Scholar
  66. Onisawa, J., Labbe, R.F.: Effects of diethyl-l,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylate on the metabolism of porphyrins and iron. J. biol. Chem. 238, 724–727 (1963)PubMedGoogle Scholar
  67. Padmanaban, G., Satyanarayana Rao, M.R., Malathi, K.: A model for the regulation of δ-aminolaevulinate synthetase induction in rat liver. Biochem. J. 134, 847–857 (1973)PubMedGoogle Scholar
  68. Patton, G.M., Beattie, D.S.: Studies on hepatic 8-aminolevulinic acid synthetase. J. biol. Chem. 248, 4467–4474 (1973)PubMedGoogle Scholar
  69. Piper, W.N., Bousquet, W.F.: Phenobarbital and methylcholanthrene stimulation of rat liver chromatin template activity. Biochem. biophys. Res. Commun. 33, 602–609 (1968)PubMedGoogle Scholar
  70. Powell, K.A., Cox, R., McConville, M., Charles, H.P.: Mutations effecting porphyrin biosynthesis in Escherichia coli. Enzymes 16, 65–73 (1973)Google Scholar
  71. Price, V.E., Sterling, W.R., Tarantola, V.A., Hartley, R.W. Jr., Rechcigl, M. Jr.: The kinetics of catalase synthesis and destruction in vivo. J. biol. Chem. 237, 3468–3475 (1962)PubMedGoogle Scholar
  72. Racz, W.J., Marks, G.S.: Drug-induced porphyrin biosynthesis II. Simple procedure for screening drugs for porphyria-inducing activity. Biochem. Pharmacol. 18, 2009–2018 (1969)PubMedGoogle Scholar
  73. Racz, W.J., Marks, G.S.: Drug-induced porphyrin biosynthesis. IV. Investigation of the differences in response of isolated liver cells and the liver of the intact chick embryo to porphyria-inducing drugs. Biochem. Pharmacol. 21, 143–151 (1972)PubMedGoogle Scholar
  74. Rajamanickam, C., Satyanarayana Rao, R., Padmanaban, G.: On the sequence of reactions leading to cytochrome P-450 synthesis. Effect of drugs. J. biol. Chem. 250, 2305–2310 (1975)Google Scholar
  75. Rein, H., Maricic, S., Jänig, G.-R., Vuk-Pavlovic, S., Benko, B., Ristau, O., Ruckpaul, K.: Heme accessibility in cytochrome P-450 from rabbit liver. A proton magnetic relaxation study by stereochemical probes. Biochim. biophys. Acta (Amst.) 446, 325–330 (1976)Google Scholar
  76. Rothwell, J.D., Lacroix, S., Sweeney, G.D.: Evidence against a regulatory role for hemeoxygenase in hepatic synthesis. Biochim biophys. Acta (Amst.) 304, 871–874 (1973)Google Scholar
  77. Sardana, M.K., Rajamanickam, C., Padmanaban, G.: Differential role of heme in the synthesis of mitochondrial and microsomal hemoproteins. In: Porphyrins in Human Diseases. Doss, M. (ed.), pp. 62–70. Basel: S. Karger 1976Google Scholar
  78. Sardana, M.K., Satyanarayana Rao, M.R., Padmanaban, G.: Effect of allylisopropylacetamide on nuclear ribonucleic acid synthesis in rat liver. Biochem. J. 147, 185–186 (1975)PubMedGoogle Scholar
  79. Sassa, S., Granick, S.: Induction of δ-aminolevulinic acid synthetase in chick embryo liver cells in culture. Proc. nat. Acad. Sci. (Wash.) 67, 517–522 (1970)Google Scholar
  80. Satyanarayana Rao, M.R., Malathi, K., Padmanaban, G.: The relationship between δ-aminolaevulinate synthetase induction and the concentrations of cytochrome P-450 and catalase in rat liver. Biochem. J. 127, 553–559 (1972)Google Scholar
  81. Schimke, R.T., Sweeney, E.W., Berlin, CM.: The role of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J. biol. Chem. 240, 322–331 (1965)PubMedGoogle Scholar
  82. Schmid, R., Figen, J.F., Schwartz, S.: Experimental porphyria. IV. Studies of liver catalase and other heme enzymes in Sedormid porphyria. J. biol. Chem. 217, 263–274 (1955)PubMedGoogle Scholar
  83. Schmid, R., McDonagh, A.F.: The enzymatic formation of bilirubin. Ann. N.Y. Acad. Sci. 244, 533–552 (1975)PubMedGoogle Scholar
  84. Scholnick, P.L., Hammaker, L.E., Marver, H.S.: Soluble δ-aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition. J. biol. Chem. 247, 4132–4137 (1972)PubMedGoogle Scholar
  85. Scott, J.J.: The metabolism of δ-aminolaevulic acid. In: Ciba Foundation Symposium on Porphyrin Biosynthesis and Metabolism. Wolstenholme, G.E.W., Millar, E.C.P. (eds.), pp. 43–58. London: J. and A. Churchill 1955Google Scholar
  86. Sinclair, P.R., Granick, S.: Heme control on the synthesis of δ-aminolevulinic acid synthetase in cultured chick embryo liver cells. Ann. N.Y. Acad. Sci. 244, 509–518 (1975)PubMedGoogle Scholar
  87. Snyder, A., Schmid, R.: The conversion of hematin to bile pigment in the rat. J. Lab. clin. Med. 65, 817–824 (1965)PubMedGoogle Scholar
  88. Stich, W., Decker, P.: Studies on the mechanism of porphyrin biosynthesis with the aid of inhibitors. In: Ciba Foundation Symposium on Porphyrin Biosynthesis and Metabolism. Wolstenholme, G.E.W., Millar, E.C.P. (eds.), pp. 254–260. London: J. and A. Churchill 1955Google Scholar
  89. Strand, L.J., Manning, J., Marver, H.S.: The induction of 8-aminolevulinic acid synthetase in cultured liver cells. The effect of end product and inhibitors of heme synthesis. J. biol. Chem. 247, 2820–2827 (1972)PubMedGoogle Scholar
  90. Sweeney, G.D.: Hepatic catalase activity during states of altered heme synthesis. In: Proceedings of the International Porphyrin Meeting. Freiburg, May 1–4, 1975. Doss, M. (ed.), pp. 53–61. Basel: S. Karger 1976Google Scholar
  91. Sweeney, G.D., Janigan, D., Mayaman, D., Lai, H.: The experimental porphyrias. A group of distinctive metabolic lesions. S. Afr. J. Lab. clin. Med. 17, 68–72 (1971)Google Scholar
  92. Tomita, Y., Ohashi, A., Kikuchi, G.: Induction of δ-aminolevulinate synthetase in organ culture of chick embryo liver by allylisopropylacetamide and 3,5-dicarbethoxy-l,4-dihydro-collidine. J. Biochem. 75, 1007–1015 (1974)Google Scholar
  93. Tschudy, D.P., Bonkowsky, H.L.: Experimental porphyria. Fed. Proc. 31, 147–159 (1972)PubMedGoogle Scholar
  94. Tyrrell, D.L.J., Marks, G.S.: Drug-induced porphyrin biosynthesis. V. Effect of protohemin on the transcriptional and post-transcriptional phases of 8-aminolevulinic acid synthetase induction. Biochem. Pharmacol. 21, 2077–2093 (1972)PubMedGoogle Scholar
  95. Wada, O., Yano, Y., Urata, G., Nakao, K.: Behaviour of hepatic microsomal cytochromes after treatment of mice with drugs known to disturb porphyrin metabolism in liver. Biochem. Pharmacol. 17, 595–603 (1968)PubMedGoogle Scholar
  96. Waterfield, M.D., Del Favero, A., Gray, C.H.: Effect of l,4-dihydro-3,5-dicarbethoxycollidine on hepatic microsomal heme, cytochrome b5 and cytochrome P-450 in rabbits and mice. Biochim. biophys. Acta (Amst.) 184, 470–473 (1969)Google Scholar
  97. Wetterberg, L.: Report on an international survey of safe and unsafe drugs in acute intermittent porphyria. In: Proceedings of International Porphyrin Meeting–Porphyrins in Human Diseases. Doss, M., Nawrocki, P. (eds.), Vol. 2, pp. 191–202. Freiburg im Breisgau: Falk 1976Google Scholar
  98. Whiting, M.J., Elliott, W.H.: Purification and properties of solubilized mitochondrial δ-aminolevulinic acid synthetase and comparison with the cytosol enzyme. J. biol. Chem. 247, 6818–6826 (1972)PubMedGoogle Scholar
  99. Whiting, M.J., Granick, S.: δ-Aminolevulinic acid synthase from chick embryo liver mitochondria. II. Immunochemical correlation between synthesis and activity in induction and repression. J. biol. Chem. 251, 1347–1353 (1976)Google Scholar
  100. Woods, J.S., Dixon, R.L.: Studies of the perinatal differences in the activity of hepatic δ-aminolevulinic acid synthetase. Biochem. Pharmacol. 21, 1735–1744 (1972)PubMedGoogle Scholar
  101. Zuyderhoudt, F.M.J., Borst, P., Huijng, F.: Intramitochondrial localization of 5-aminolaevulinate synthase induced in rat liver with allylisopropylacetamide. Biochim. biophys. Acta (Amst.) 178, 408–411 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • F. De Matteis

There are no affiliations available

Personalised recommendations