Advertisement

Induction of Hepatic Hemoproteins

  • K. W. Bock
  • H. Remmer
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)

Abstract

A multitude of studies have shown that enzyme levels in animal tissues can be altered by physiological, nutritional, and hormonal manipulations, as well as by the administration of various chemicals foreign to the body. In particular, the level of a hepatic hemoprotein, microsomal cytochrome P-450, is increased by the administration of a wide variety of lipid-soluble xenobiotics (e.g., drugs, insecticides, herbicides, and carcinogenic poly cyclic hydrocarbons). The induction of this cytochrome is the primary concern of this review. It is contrasted with increases in the levels of other hepatic hemoproteins, such as tryptophan pyrrolase, microsomal cytochrome b5, mitochondrial cytochromes, and catalase.

Keywords

Liver Microsome Microsomal Cytochrome Aryl Hydrocarbon Hydroxylase Hypolipidemic Drug Liver Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reviews

  1. Brodie, B.B., Gillette, J.R. (eds.): Concepts in Biochemical Pharmacology, Handbook of Experimental Pharmacology, Vol. 28, Part 2. Berlin — Heidelberg — New York: Springer 1971Google Scholar
  2. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967)PubMedGoogle Scholar
  3. Conney, A.H., Burns, J.J.: Metabolic interactions among environmental chemicals and drugs. Science 178, 576–586 (1972)PubMedCrossRefGoogle Scholar
  4. Gillette, J.R.: Biochemistry of drug oxydation and reduction by enzymes in hepatic endoplasmic reticulum. Advanc. Pharmacol. 4, 219–261 (1966)CrossRefGoogle Scholar
  5. Havel, R.J., Kane, J.P.: Drugs and lipid metabolism. Ann. Rev. Pharmacol. 13, 287–308 (1973)PubMedCrossRefGoogle Scholar
  6. Kuntzman, R.: Drug and enzyme induction. Ann. Rev. Pharmacol. 9, 21–36 (1969)PubMedCrossRefGoogle Scholar
  7. Remmer, H.: Induction of drug metabolizing enzyme system in the liver. Europ. J. clin. Pharmacol. 5, 116–136 (1972)CrossRefGoogle Scholar
  8. Schimke, R.T., Doyle, D.: Control of enzyme levels in animal tissues. Ann. Rev. Biochem. 39, 929–976 (1970)PubMedCrossRefGoogle Scholar
  9. Schulte-Hermann, R.: Induction of liver growth by xenobiotic compounds and other stimuli. Critical Reviews in Toxicology 3, 97–158 (1974)PubMedCrossRefGoogle Scholar

References

  1. Ackermann, E., Heinrich, I.: Die Aktivität der N- und O-Demethylase in der Leber des Menschen. Biochem. Pharmacol. 19, 327–342 (1970)Google Scholar
  2. Alexanderson, E., Price Evans, D.A., Sjöqvist, F.: Steady-state plasma levels of nortriptyline in twins: Influence of genetic factors and drug therapy. Brit. med. J. 1969 IV, 764–768Google Scholar
  3. Alvares, A.P., Anderson, K.E., Conney, A.H., Kappas, A.: Interactions between nutritional factors and drug biotransformations in man. Proc. nat. Acad. Sci. (Wash.) 73, 2501–2504 (1976)CrossRefGoogle Scholar
  4. Alvares, A.P., Schilling, G., Levin, W., Kuntzman, R.: Studies on the induction of CO-binding pigments in liver microsomes by phenobarbital and 3-methylcholanthrene. Biochem. biophys. Res. Commun. 29, 521–526 (1967)PubMedCrossRefGoogle Scholar
  5. Alvares, A.P., Schilling, G., Levin, W., Kuntzman, R., Brand, L., Mark, L.C.: Cytochromes P-450 and bs in human liver microsomes. Clin. Pharmacol. Ther. 10, 655–659 (1969)PubMedGoogle Scholar
  6. Alvares, A.P., Siekevitz, P.: Gel electrophoresis of partially purified cytochromes P-450 from liver microsomes of variously treated rats. Biochem. biophys. Res. Commun. 54, 923–929 (1973)PubMedCrossRefGoogle Scholar
  7. Argyris, T.S., Layman, D.L.: Liver growth associated with the induction of demethylase activity after injection of 3-methylcholanthrene in immature rats. Cancer Res. 29, 549–553 (1969)PubMedGoogle Scholar
  8. Argyris, T.S., Magnus, D.: The stimulation of liver growth and demethylase activity following phenobarbital treatment. Develop. Biol. 17, 187–201 (1968)PubMedCrossRefGoogle Scholar
  9. Arias, I.M., Doyle, D., Schimke, R.T.: Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. biol. Chem. 244, 3303–3315 (1969)PubMedGoogle Scholar
  10. Attardi, C., Parnas, H., Hwang, M.LH., Attardi, B.: Giant-size rapidly labeled nuclear ribonucleic acid and cytoplasmic messenger ribonucleic acid in immature duck erythrocytes. J. molec. Biol. 20, 145–182 (1966)PubMedCrossRefGoogle Scholar
  11. Azarnoff, D.L., Tucker, D.R., Barr, G.A.: Studies with ethylchlorophenoxyisobutyrate (Clofibrate). Metabolism 14, 959–965 (1965)PubMedCrossRefGoogle Scholar
  12. Badawy, A.A.B., Evans, M.: The effects of chemical porphyrogens and drugs on the activity of rat liver tryptophan pyrrolase. Biochem. J. 136, 885–892 (1973)PubMedGoogle Scholar
  13. Badawy, A.A.B., Evans, M.: Guinea pig liver tryptophan pyrrolase. Biochem. J. 138, 445–451 (1974)PubMedGoogle Scholar
  14. Barka, T., Popper, H.: Liver enlargement and drug toxicity. Medicine (Baltimore) 46, 103–108 (1967)CrossRefGoogle Scholar
  15. Beckett, R.B., Weiss, R., Stitzel, R.E., Cenedella, R.J.: Studies on the hepatomegaly caused by the hypolipidemic drugs nafenopin and Clofibrate. Toxicol, appl. Pharmacol., 23, 42–53 (1972)CrossRefGoogle Scholar
  16. Benson, A.M., Talalay, P., Keen, J.H., Jakoby, W.B.: Relationship between the soluble glutathione-dependent Zl5–3-ketosteroid isomerase and the glutathione S-transferases of the liver. Proc. nat. Acad. Sci. (Wash.) 74, 158–162 (1977)CrossRefGoogle Scholar
  17. Berlin, C.M., Schimke, R.T.: Influence of turnover rates on the responses of enzymes to cortisone. Molec. Pharmacol. 1, 149–156 (1965)Google Scholar
  18. Best, M.M., Duncan, C.H.: Hypolipemia and hepatomegaly from ethylchlorophenoxyisobutyrate (CPIP) in the rat. J. Lab. clin. Med. 64, 634–642 (1964)PubMedGoogle Scholar
  19. Bock, K.W., Clausbruch, U.C.v., Josting, D., Ottenwälder, H.: Separation and partial purification of two differentially inducible UDP-glucuronyltransferases from rat liver. Biochem. Pharmacol. 26, 1097–1100 (1977)PubMedCrossRefGoogle Scholar
  20. Bock, K.W., Fröhling, W., Remmer, H.: Influence of fasting and hemin on microsomal cytochromes and enzymes. Biochem. Pharmacol. 22, 1557–1564 (1973a)PubMedCrossRefGoogle Scholar
  21. Bock, K.W., Fröhling, W., Remmer, H., Rexer, B.: Effects of phenobarbital and 3-methyl-cholanthrene on substrate specificity of rat liver microsomal UDP-glucuronyltransferase. Biochim. biophys. Acta (Amst.) 327, 45–56 (1973b)Google Scholar
  22. Bock, K.W., Krauss, E., Fröhling, W.: Regulation of δ-aminolevulinic acid synthetase by drugs and steroids in vivo and in isolated perfused rat liver. Europ. J. Biochem. 23, 366–371 (1971)PubMedCrossRefGoogle Scholar
  23. Bock, K.W., Siekevitz, P.: Turnover of heme and protein moieties of rat liver microsomal cytochrome bs. Biochem. biophys. Res. Commun. 41, 374–380 (1970)PubMedCrossRefGoogle Scholar
  24. Bolender, R.P., Weibel, E.R.: A morphometric study of the removal of phenobarbital induced membranes from hepatocytes after cessation of treatment. J. Cell Biol. 56, 746–761 (1973)PubMedCrossRefGoogle Scholar
  25. Boyd, G., Grimwade, A., Lawson, M.: Studies on rat liver microsomal 7α-hydroxylase. Europ. J. Biochem. 37, 334–340 (1973)PubMedCrossRefGoogle Scholar
  26. Brazda, F.G., Baucum, R.: The effect of nikethamide on the metabolism of pentobarbital by liver microsomes of the rat. J. Pharmacol, exp. Ther. 132, 225–298 (1961)Google Scholar
  27. Breyer, U.: Perazine, chlorpromazine, and imipramine as inducers of microsomal drug metabolism. Naunyn-Schmiedeberg’s Arch. Pharmacol. 272, 277–288 (1972)CrossRefGoogle Scholar
  28. Bruckner, J.V., Khanna, K.L., Cornish, H.H.: Biological responses of the rat to polychlorinated biphenyls. Toxicol, appl. Pharmacol. 24, 434–448 (1973)CrossRefGoogle Scholar
  29. Buu-Hoi, N.P., Hien, D., Saint-Ruf, G., Servoin-Sidoine, J.: Propriétés cancéromimétiques de la tétrachloro-2,3,7,8-dibenzo-p-dioxine. C. R. Acad. Sci. (Paris), Ser. D 272, 1447–1450 (1971)Google Scholar
  30. Chen, W., Vrindten, P.A., Dayton, P.G., Burns, J.J.: Accelerated aminopyrine metabolism in human subjects pretreated with phenylbutazone. Life Sci. 1, 35–39 (1962)CrossRefGoogle Scholar
  31. Comai, J., Gaylor, J.L.: Existence and separation of three forms of cytochrome P-450 from rat liver microsomes. J. biol. Chem. 248, 4947–4955 (1973)PubMedGoogle Scholar
  32. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmac. Rev. 19, 317–366 (1967)Google Scholar
  33. Conney, A.H., Davison, C., Gastel, R., Burns J.J.: Adaptive increases in drug metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacol, exp. Ther. 130, 1–8 (1960)Google Scholar
  34. Conney, A.H., Kapitulnik, J., Levin, W., Dansette, P., Jerina, D.: Use of drugs in the evaluation of carcinogen metabolism in man. In: Screening Tests in Chemical Carcinogenesis. Montesano, R., Bartsch, H., Tomatis, L. (eds.). International Agency for Research on Cancer (IARC), Scientific Publications No. 12, pp. 319–336 (1976)Google Scholar
  35. Conney, A.H., Kuntzman, R.: Metabolism of normal body constituents by drug-metabolizing enzymes in liver microsomes. In: Handbook of Experimental Pharmacology. Brodie, B.B., Gillette, J.R. (eds.). Vol. 28, Part 2, pp. 401–421. Berlin — Heidelberg — New York: Springer 1971Google Scholar
  36. Conney, A.H., Lu, A.Y.H., Levin, W., Smogys, A., West, S., Jacobson, M., Ryan, D., Kuntzman, R.: Effect of enzyme inducers on substrate specificity of the cytochrome P-450’s. Drug Metab. Dispos. 1, 199–209 (1973)PubMedGoogle Scholar
  37. Conney, A.H., Michaelson, I.A., Burns, J.J.: Stimulatory effect of chlorcyclizine on barbiturate metabolism. J. Pharmacol, exp. Ther. 132, 202–206 (1961)Google Scholar
  38. Conney, A.H., Miller, E.C., Miller, J.A.: The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res. 16, 450–456 (1956)PubMedGoogle Scholar
  39. Conney, A.H., Miller, E.C., Miller, J.A.: Substrate-induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J. biol. Chem. 228, 753–766 (1957)PubMedGoogle Scholar
  40. Correia, M.A., Mannering, G.J.: Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system. Molec. Pharmacol. 9, 455–469 (1973a)Google Scholar
  41. Correia, M.A., Mannering, G.J.: Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. Role of the type I drug-binding site of cytochrome P-450. Molec. Pharmacol. 9, 470–485 (1973b)Google Scholar
  42. Correia, M.A., Meyer, U.A.: Apocytochrome P-450: Reconstitution of functional cytochrome with hemin in vitro. Proc. nat. Acad. Sci. (Wash.) 72, 400–404 (1975)CrossRefGoogle Scholar
  43. Cramer, J.W., Miller, J.A., Miller, E.C.: The hydroxylation of the carcinogen 2-acetylamino-fluorene by rat liver: Stimulation by pretreatment in vivo with 3-methylcholanthrene. J. biol. Chem. 235, 250–256 (1960)PubMedGoogle Scholar
  44. Cucinell, S.A., Conney, A.H., Sansur, M., Burns, J.J.: Drug interactions in man. Lowering effect of phenobarbital on plasma levels of bishydroxycoumarin (dicumarol) and diphenylhydantoin (dilantin). Clin. Pharmacol. Ther. 6, 420–424 (1965)PubMedGoogle Scholar
  45. Cucinell, S.A., Odessky, L., Weiss, M., Dayton, P.G.: The effect of chloralhydrate on bis-hydroxycoumarin metabolism. J. Amer. med. Ass. 197, 366–368 (1966)CrossRefGoogle Scholar
  46. Dallner, G., Siekevitz, P., Palade, G.E.: Biogenesis of endoplasmic reticulum membranes. Synthesis of constitutive microsomal enzymes in developing rat hepatocytes. J. Cell Biol. 30, 97–117 (1966)PubMedCrossRefGoogle Scholar
  47. Davies, D.S., Thorgeirsson, S.S.: Mechanism of hepatic drug oxidation and its relationship to individual differences in rates of oxidation in man. Ann. N.Y. Acad. Sci. 179, 411–420 (1971)PubMedCrossRefGoogle Scholar
  48. Davison, S.C., Wills, E.D.: Studies on the lipid composition of the rat liver endoplasmic reticulum after induction with phenobarbitone and 20-methylcholanthrene. Biochem. J. 140, 461–468 (1974)PubMedGoogle Scholar
  49. Dehlinger, P.J., Schimke, R.T.: Effects of phenobarbital, 3-methylcholanthrene and hematin on the synthesis of protein components of rat liver microsomal membranes. J. biol. Chem. 247, 1257–1264 (1972)PubMedGoogle Scholar
  50. De Matteis, F., Gibbs, A.: Stimulation of liver 5-aminolevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Biochem. J. 126, 1149–1160 (1972)PubMedGoogle Scholar
  51. Douglas, J.F., Ludwig, B.J., Smith, N.: Studies on the metabolism of meprobamate. Proc. Soc. exp. Biol. (N.Y.) 112, 436–439 (1963)Google Scholar
  52. Druyan, B., De Bernard, B., Rabinowitz, M.: Turnover of cytochromes labeled with δ-aminolevulinic acid-3H in rat liver. J. biol. Chem. 244, 5874 (1969)PubMedGoogle Scholar
  53. Druyan, R., Jakovcic, S., Rabinowitz, M.: Studies of cytochrome synthesis in rat liver. Biochem. J. 134, 377–385 (1973)PubMedGoogle Scholar
  54. Druyan, R., Kelly, A.: The effect of exogenous δ-aminolevulinate on rat liver heme and cytochromes. Biochem. J. 129, 1095–1099 (1972)PubMedGoogle Scholar
  55. Dutton, G.J., Burchell, B.: Newer aspects of glucuronidation. In: Progress in Drug Metabolism Bridges, J.W., Chasseaud, L.F. (eds.), Vol. 2, pp. 1–70. London: Wiley 1977Google Scholar
  56. Epstein, W., Beckwith, J.R.: Regulation of gene expression. Ann. Rev. Biochem. 37, 411–436 (1968)CrossRefGoogle Scholar
  57. Eriksson, L.C.: Studies on the biogenesis of endoplasmic reticulum in the liver cell. Acta path, microbiol. scand., Sect. B, Suppl. 239 (1973)Google Scholar
  58. Ernster, L., Orrenius, S.: Substrate-induced synthesis of the hydroxylating enzyme system of liver microsomes. Fed. Proc. 24, 1190–1199 (1965)PubMedGoogle Scholar
  59. Estabrook, R.W.: Cytochrome P-450—Its function in the oxidative metabolism of drugs. In: Handbook of Experimental Pharmacology. Brodie, B.B., Gillette, J.R. (eds.). Vol. 28, Part 2, pp. 264–284. Berlin — Heidelberg — New York: Springer 1971Google Scholar
  60. Falk, J.E.: Porphyrins and Metalloporphyrins. Amsterdam — London — New York: Elsevier Publ. Comp. 1964Google Scholar
  61. Farquhar, M.G., Bergeron, J.J.M., Palade, G.E.: Cytochemistry of Golgi fractions prepared from rat liver. J. Cell Biol. 60, 8–25 (1974)PubMedCrossRefGoogle Scholar
  62. Feigelson, P., Greengard, O.: Immunochemical evidence for increased titers of liver tryptophan pyrrolase during substrate and hormonal enzyme induction. J. biol. Chem. 237, 3714–3717 (1962)Google Scholar
  63. Fitzhugh, O.G., Nelson, A.A.: The chronic oral toxicity of DDT. J. Pharmacol, exp. Ther. 89, 18–30 (1947)Google Scholar
  64. Fleischer, S., Fleischer, B., Azzi, A., Chance, B.: Cytochrome bs and P-450 in liver cell fractions. Biochim. biophys. Acta (Amst.) 225, 194–200 (1971)CrossRefGoogle Scholar
  65. Fleischner, G., Meijer, D.K.F., Levine, W.G., Gatmaitan, Z., Gluck, R., Arias, I.M.: Effect of hypolipidemic drugs, nafenopin and Clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem. biophys. Res. Commun. 67, 1401–1407 (1975)PubMedCrossRefGoogle Scholar
  66. Frommer, U., Ullrich, V., Staudinger, H., Orrenius, S.: The monooxygenation of n-heptane by rat liver microsomes. Biochim. biophys. Acta (Amst.) 280, 487–494 (1972)Google Scholar
  67. Gear, A.R.L., Albert, A.D., Bednarek, J.M.: The effect of the hypocholesterolemic drug Clofibrate on liver mitochondrial biogenesis. J. biol. Chem. 249, 6495–6504 (1974)PubMedGoogle Scholar
  68. Gelboin, H.V.: Mechanisms of induction of drug metabolism enzymes. In: Handbook of Experimental Pharmacology. Brodie, B.B., Gillette, J.R. (eds.). Vol. 28, Part 2, pp. 431–451. Berlin — Heidelberg — New York: Springer 1971Google Scholar
  69. Gelboin, H.V., Blackburn, N.R.: The stimulatory effect of 3-methylcholanthrene on benzpyrene hydroxylase activity in several rat tissues. Inhibition by actinomycin D and puromycin. Cancer Res. 24, 356–360 (1964)PubMedGoogle Scholar
  70. Gelboin, H.V., Okuda, T., Selkirk, J., Nemoto, N., Yang, S.K, Wiebel, F.J., Whitlock, Jr., J.P., Rapp, H.J., Bast, Jr., R.C.: Benzo(a)-pyrene metabolism; Enzymatic and liquid chromatographic analysis and application to human liver, lymphocytes and monocytes. In: Screening Tests in Chemical Carcinogenesis. Montesano, R., Bartsch, H., Tomatis, L. (eds.). International Agency for Research on Cancer (IARC), Scientific Publications No. 12, pp. 225–247 (1976)Google Scholar
  71. Gellhorn, A., Benjamin, W.: The intracellular localization of an enzymatic defect of lipid metabolism in diabetic rats. Biochim. biophys. Acta (Amst.) 84, 167–175 (1964)Google Scholar
  72. Ghazal, A., Koransky, W., Portig, J., Vohland, H.W., Klempau, I.: Beschleunigung von Entgiftungsreaktionen durch verschiedene Insektizide. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 249, 1–10 (1964)Google Scholar
  73. Gielen, J.E., Goujon, F.M., Nebert, D.W.: Genetic regulation of aryl hydrocarbon hydroxylase induction. II. Simple mendelian expression in mouse tissues in vivo. J. biol. Chem. 247, 1125–1137 (1972)PubMedGoogle Scholar
  74. Gillette, J.R., Mitchell, J.R., Brodie, B.B.: Biochemical mechanisms of drug toxicity. Ann. Rev. Pharmacol. 14, 271–288 (1974)CrossRefGoogle Scholar
  75. Gillette, J.R., Stripp, B.: Pre-and postnatal enzyme capacity for drug metabolite production. Fed. Proc. 34, 172–178 (1975)PubMedGoogle Scholar
  76. Goldstein, A., Aronow, L., Kaiman, S.M.: Zero order absorption, first order elimination: The plateau principle. In: Principles of Drug Action, pp. 292–317. New York: Harper and Row 1969Google Scholar
  77. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones, and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  78. Greig, J.B., De Matteis, F.: Effects of 2,3,7,8-tetrachloro-dibenzo-p-dioxin on drug metabolism and hepatic microsomes of rats and mice. Environ. Health Perspec, Exp. Issue 5, 211–219 (1973)Google Scholar
  79. Greim, H.: Synthesesteigerung und Abbauhemmung bei der Vermehrung mikrosomaler Cytochrome P-450 und b-5 durch Phenobarbital. Naunyn-Schmiedeberg’s Arch. Pharmakol. 266, 261–275 (1970)Google Scholar
  80. Greim, H., Schenkman, J.B., Klotzbücher, M., Remmer, H.: The influence of Phenobarbital on the turnover of hepatic microsomal cytochrome b-5 and cytochrome P-450 hemes in the rat. Biochim. biophys. Acta (Amst.) 201, 20–25 (1970)Google Scholar
  81. Habig, W.H., Papst, M.J., Fleischner, G., Gatmaitan, Z., Arias, I.M., Jacoby, W.B.: The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Nat. Acad. Sci. (Wash.) 71, 3879–3882 (1974)CrossRefGoogle Scholar
  82. Hara, T., Minakami, S.: Presence of apo-cytochrome bs in microsomes. Incorporation of radioactive heme to the cytochrome in vitro. J. Biochem. (Tokyo) 67, 741–743 (1970)Google Scholar
  83. Harris, H.: Nucleus and Cytoplasm. London: Oxford Univ. Press 1968Google Scholar
  84. Hart, L.G., Fouts, J.R.: Effects of acute and chronic DDT administration on hepatic microsomal drug metabolism in the rat. Proc. Soc. exp. Biol. (N.Y.) 114, 388–396 (1963)Google Scholar
  85. Hart, L.G., Shultice, R.W., Fouts, J.R.: Stimulatory effects of chlordane on hepatic microsomal drug metabolism in the rat. Toxicol. appl. Pharmacol. 5, 371–386 (1963)PubMedCrossRefGoogle Scholar
  86. Hashimoto, C., Imai, Y.: Purification of a substrate complex of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-treated rabbits. Biochem. biophys. Res. Commun. 68, 821–827 (1976)PubMedCrossRefGoogle Scholar
  87. Haugen, D.A., Coon, M.J.: Properties of electrophoretically homogeneous phenobarbital-inducible and β-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J. biol. Chem. 251, 7929–7939 (1976)PubMedGoogle Scholar
  88. Haugen, D.A., Coon, M.J., Nebert, D.W.: Induction of multiple forms of mouse liver cytochrome P-450. J. biol. Chem. 251, 1817–1827 (1976)PubMedGoogle Scholar
  89. Havel, R.J., Kane, J.P.: Drugs and lipid metabolism. Ann. Rev. Pharmacol. 13, 287–308 (1973)PubMedCrossRefGoogle Scholar
  90. Hayaishi, O.: Oxygenases. New York: Academic Press 1962Google Scholar
  91. Hess, R., Stäubli, W., Riess, W.: Nature of the hepatomegalic effect produced by ethyl-chlorophenoxyisobutyrate in the rat. Nature (Lond.) 208, 856–858 (1965)CrossRefGoogle Scholar
  92. Hildebrandt, A., Estabrook, R.W.: Evidence for the participation of cytochrome bs in hepatic microsomal mixed-function oxidation reactions. Arch. Biochem. biophys. 143, 66–79 (1971)PubMedCrossRefGoogle Scholar
  93. Hildebrandt, A., Remmer, H., Estabrook, R.W.: Cytochrome P-450 of liver microsomes, one pigment or many. Biochem. biophys. Res. Commun. 30, 607–612 (1968)PubMedCrossRefGoogle Scholar
  94. Holder, G., Yagi, H., Dansette, P., Jerina, D.M., Levin, W., Lu, A.Y.H., Conney, A.H.: Effects of inducers and epoxide hydrase on the metabolism of benzo(a) pyrene by liver microsomes and a reconstituted system: Analysis by high pressure liquid chromatography. Proc. nat. Acad. Sci. (Wash.) 71, 4356–4360 (1974)CrossRefGoogle Scholar
  95. Holloway, P.W., Peluffo, P., Wakil, S.J.: On the biosynthesis of dienoic fatty acid by animal tissues. Biochem. biophys. Res. Commun. 12, 300–304 (1963)PubMedCrossRefGoogle Scholar
  96. Hoogland, D.R., Miya, T.S., Bousquer, W.F.: Metabolism and tolerance studies with chlordiazepoxide-2–14C in the rat. Toxicol, appl. Pharmacol. 9, 116–123 (1966)CrossRefGoogle Scholar
  97. Hornef, W.: Quantitative changes of the activity of lysosomal enzymes in the induced rat liver. Naunyn-Schmiedeberg’s Arch. Pharmak. 266, 361–362 (1970)CrossRefGoogle Scholar
  98. Huang, M.-T., West, S.B., Lu, A.Y.H.: Separation, purification and properties of multiple forms of cytochrome P-450 from the liver microsomes of phenobarbital-treated mice. J. biol. Chem. 251, 4659–4665 (1976)PubMedGoogle Scholar
  99. Imai, J., Sato, R.: A gel-electrophoretically homogeneous preparation of cytochrome P-450 from liver microsomes of phenobarbital-pretreated rabbits. Biochem. biophys. Res. Commun. 60, 8–14 (1974)PubMedCrossRefGoogle Scholar
  100. Inscoe, J.K., Axelrod, J.: Some factors affecting glucuronide formation in vitro: J. Pharm. exp. Ther. 129, 128–131 (1960)Google Scholar
  101. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318–356 (1961)PubMedCrossRefGoogle Scholar
  102. Jacob, S.T., Scharf, M.B., Vessel, E.S.: Role of RNA in induction of hepatic microsomal mixed function oxidases. Proc. nat. Acad. Sci. (Wash.) 71, 704–707 (1974)CrossRefGoogle Scholar
  103. Jacobson, M.M., Levin, W., Conney, A.H.: Studies on bilirubin and steroid glucuronidation by rat liver microsomes. Biochem. Pharmacol. 24, 655–662 (1975)PubMedCrossRefGoogle Scholar
  104. Jick, H., Shuster, L.: The turnover of microsomal reduced nicotinamide adenine nucleotide phosphate-cytochrome c reductase in the livers of mice treated with phenobarbital. J. biol. Chem. 241, 5366–5369 (1966)PubMedGoogle Scholar
  105. Johnson, E.F., Muller-Eberhard, U.: Resolution of two forms of cytochrome P-450 from liver microsomes of rabbits treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. J. biol. Chem. 252, 2839–2845 (1977)PubMedGoogle Scholar
  106. Kafatos, F.C., Reich, J.: Stability of differentiation–specific and nonspecific messenger RNA in insect cells. Proc. nat. Acad Sci. (Wash.) 60, 1458–1465 (1968)CrossRefGoogle Scholar
  107. Kato, R., Chiesara, E., Vasanelli, P.: Increased activity of microsomal strychnine-metabolizing enzyme induced by phenobarbital and other drugs. Biochem. Pharmacol. 11, 913–922 (1962)CrossRefGoogle Scholar
  108. Kato, R., Gillette, J.R.: Effect of starvation on NADPH-dependent enzymes in liver microsomes of male und female rats. J. Pharmacol. exp. Ther. 150, 279–284 (1965)Google Scholar
  109. Kato, R., Takahashi, A.: Thyroid hormone and activities of drug-metabolizing enzymes and electron transport systems of rat liver microsomes. Molec. Pharmacol. 4, 109–120 (1968)Google Scholar
  110. Kato, R., Vasanelli, P.: Induction of increased meprobamate metabolism in rats pretreated with some neurotropic drugs. Biochem. Pharmacol. 11, 779–794 (1962)PubMedCrossRefGoogle Scholar
  111. Kellermann, G., Cantrell, E., Shaw, C.R.: Variations in extent of aryl hydrocarbon hydroxylase induction in cultured human lymphocytes. Cancer Res. 33, 1654–1656 (1973a)PubMedGoogle Scholar
  112. Kellermann, G., Shaw, C.R., Luyten-Kellermann, M.: Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. New Engl. J. Med. 934–937 (1973b)Google Scholar
  113. Knox, W.E.: Two mechanisms which increase in vivo the liver tryptophan peroxidase activity: Specific enzyme adaptation and stimulation of the pituitary-adrenal system. Brit. J. exp. Path. 32, 462–469 (1951)PubMedGoogle Scholar
  114. Knox, W.E., Piras, M.M.: Tryptophan pyrrolase of liver. Conjugation in vivo during cofactor induction by tryptophan analogues. J. biol. Chem. 242, 2959–2965 (1967)PubMedGoogle Scholar
  115. Koransky, W., Magour, S., Merker, H.J., Schlicht, I., Schulte-Hermann, R.: Influence of inducing substances on growth of liver and microsomal electron transport systems. Proceedings Third International Pharmacological Meeting, Vol. 4, p. 55. New York: Pergamon Press 1966Google Scholar
  116. Koransky, W., Portig, J., Vohland, H.W., Klempau, I.: Aktivierung von Mikrosomenenzymen durch Hexachlorcyclohexan-Isomere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmakol. 247, 61–67 (1964)CrossRefGoogle Scholar
  117. Kumaki, K., Jensen, N.M., Shire, J.G.M., Nebert, D.W.: Genetic difference in induction of cytosol reduced-NAD(P): menadione oxidoreductase and microsomal aryl hydrocarbon hydroxylase in the mouse. J. biol. Chem. 252, 157–165 (1977)PubMedGoogle Scholar
  118. Kuntzman, R., Mark, L.C., Brand, L., Jacobson, M., Levin, W., Conney, A.H.: Metabolism of drugs and carcinogens by human liver enzymes. J. Pharmacol, exp. Ther. 152, 151–156 (1966)Google Scholar
  119. Kunz, W., Schaude, G., Schimasseck, H., Schmid, W., Siess, M.: Stimulation of liver growth by drugs, II. Biochemical analysis. Proceedings European Society for the Study of Drug Toxicity, Excerpta Medica Foundation, Amsterdam.,7, 138–153 (1966a)Google Scholar
  120. Kunz, W., Schaude, G., Schmid, W., Siess, M.: Stimulation of liver growth by drugs, I. Morphological analysis. Proceedings European Society for the Study of Drug Toxicity, Excerpta Medica Foundation, Amsterdam, 7, 113–137 (1966b)Google Scholar
  121. Kuriyama, Y., Omura, T., Siekevitz, P., Palade, G.E.: Effects of phenobarbital on the synthesis and degradation of the protein components of rat liver microsomal membranes. J. biol. Chem. 244, 2017–2026 (1969)PubMedGoogle Scholar
  122. Kutt, H.W., McDowell, F.: Management of epilepsy with diphenylhydantoin sodium. J. Amer. med. Ass. 203, 969–974 (1968)CrossRefGoogle Scholar
  123. Lazarow, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. Biochemical pathway of catalase synthesis. J. Cell Biol. 59, 491–506 (1973a)PubMedCrossRefGoogle Scholar
  124. Lazarow, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. Intracellular pathway of catalase synthesis. J. Cell Biol. 59, 507–524 (1973b)PubMedCrossRefGoogle Scholar
  125. Lazarow, P.B., De Duve, C.: A fatty aryl-CoA oxidizing system in rat liver peroxisomes; enhancement by Clofibrate, a hypolipidemic drug. Proc. nat. Acad. Sci. (Wash.) 73, 2043–2046 (1976)CrossRefGoogle Scholar
  126. Leighton, F., Poole, B., Lazarow, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. Fractionation of peroxisome proteins. J. Cell Biol. 41, 521–535 (1969)PubMedCrossRefGoogle Scholar
  127. Levin, W., Kuntzman, R.: Biphasic decrease of radioactive hemoprotein from liver microsomal carbon monoxide-binding particles. Effect of phenobarbital and chlordane. Molec. Pharmacol. 5, 499–506 (1969)Google Scholar
  128. Lu, A.Y.H., Kuntzman, R., West, S., Jacobson, M., Conney, A.H.: Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. Role of the cytochrome P-450 and P-448 fractions in drug and steroid hydroxylations. J. biol. Chem. 247, 1727–1734 (1972)PubMedGoogle Scholar
  129. Lu, A.Y.H., Levin, W., West, S.B., Jacobson, M., Ryan, D., Kuntzman, R., Conney, A.H.: Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. Different substrate specificities of the cytochrome P-450 fractions from control and phenobarbital-treated rats. J. biol. Chem. 248, 456–460 (1973)PubMedGoogle Scholar
  130. MacDonald, M.G., Robinson, D.S., Jaffe, J.S., Sylvester, D.: The effects of phenobarbital, glutethimide, and chloral betaine on plasma half-life and anticoagulant action of warfarin in man. Pharmacologist 9, 191–196 (1967)Google Scholar
  131. Mannering, G.J., Kuwahara, S., Omura, T.: Immunochemical evidence for the participation of cytochrome b5 in the NADH synergism of the NADPH-dependent mono-oxidase system of hepatic microsomes. Biochem. biophys. Res. Commun. 57, 476–481 (1974)PubMedCrossRefGoogle Scholar
  132. Marshall, J.W., McLean, A.E.M.: The effect of oral phenobarbitone on hepatic microsomal cytochrome P-450 and demethylation activity in rats fed normal and low protein diets. Biochem. Pharmacol. 18, 153–157 (1962)CrossRefGoogle Scholar
  133. Marver, H.S.: The role of heme in the synthesis and repression of microsomal protein. In: Microsomes and Drug Oxidations. Gillette, J.R., Conney, A.H., Cosmides, C.J., Estabrook, R.W., Fouts, J.R., Mannering, G.J. (eds.), pp. 495–511. New York: Academic Press 1969Google Scholar
  134. Marver, H.S., Schmid, R.: The prophyrias. In: Metabolic Basis of Inherited Desease. Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S. (eds.), pp. 1087–1140. New York: McGraw-Hill Book Co. 1972Google Scholar
  135. Marver, H.S., Tschudy, D.P., Perlroth, M.G.: Coordinate synthesis of heme and apoenzyme in the formation of tryptophan pyrrolase. Science 154, 501–502 (1966)PubMedCrossRefGoogle Scholar
  136. Mason, H.S., North, J.C., Vanneste, M.: Microsomal mixed function oxidations. The metabolism of xenobiotics. Symposium of electron transport systems in microsomes. Fed. Proc. 24, 1172–1180 (1965)PubMedGoogle Scholar
  137. Matern, S., Fröhling, W., Bock, K.W.: Albumin synthesis in isolated perfused livers from phenobarbital pretreated rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 273, 242–247 (1972)CrossRefGoogle Scholar
  138. Michot, F., Bürgi, M., Büttner, J.: Rimactan (Rifampicin) und Anticoagulantientherapie. Schweiz. med. Wschr. 100, 583–584 (1970)PubMedGoogle Scholar
  139. Mitropoulos, K.A., Suzuki, M., Myant, N.B., Danielsson, H.: Effects of thyroidectomy and thyroxine treatment on the activity of 12α-hydroxylase and of some components of microsomal electron transfer chains in rat liver. FEBS Ltrs. 1, 13–15 (1968)CrossRefGoogle Scholar
  140. Moldeus, P.W., Young-Nam, C., Cinti, D.L., Schenkman, J.B.: Hepatic organelle interaction. Mitochondrial modification of microsomal drug metabolism. J. biol. Chem. 248, 8574–8584 (1973)PubMedGoogle Scholar
  141. Mulder, G.J.: The effect of phenobarbital on the submicrosomal distribution of uridine diphosphate glucuronyltransferase from rat liver. Biochem. J. 117, 319–324 (1970)PubMedGoogle Scholar
  142. Narasimhulu, S.: Uncoupling of oxygen activation from hydroxylation in the steroid C-21 hydroxylase of bovine adrenocortical microsomes. Arch. Biochem. Biophys. 147, 384–390 (1971)PubMedCrossRefGoogle Scholar
  143. Nebert, D.W., Benedict, W.F., Gielen, J.E., Oesch, F., Daly, J.W.: Aryl hydrocarbon hydroxylase, epoxide hydrase, and 7,12-dimethylbenz(a)anthracene-produced skin tumorigenesis in the mouse. Molec. Pharmacol. 8, 374–379 (1972)Google Scholar
  144. Nebert, D.W., Gelboin, H.V.: Substrate-inducible microsomal aryl hydroxylase in mammalian cell culture. Assay and properties of induced enzyme. J. biol. Chem. 243, 6242–6249 (1968)PubMedGoogle Scholar
  145. Nebert, D.W., Gielen, J.E.: Aryl hydrocarbon hydroxylase induction in mammalian liver cell culture. J. biol. Chem. 246, 5199–5206 (1971)PubMedGoogle Scholar
  146. Nebert, D.W., Kon, H.: Genetic regulation of aryl hydrocarbon hydroxylase induction. Specific changes in spin state of cytochrome P-450 from genetically responsive animals. J. biol. Chem. 248, 169–178 (1973)PubMedGoogle Scholar
  147. Negishi, M., Omura, T.: Presence of apo-cytochrome b5 in microsomes from rat liver. J. Biochem. 67, 745–747 (1970)PubMedGoogle Scholar
  148. Nelson, E.B., Raj, P.P., Belfi, K.J., Masters, B.S.S.: Oxidative drug metabolism in human liver microsomes. J. Pharmacol, exp. Ther. 178, 580–588 (1971)Google Scholar
  149. Nemoto, N., Gelboin, H.V.: Enzymatic conjugation of benzo(a)pyrene oxides, phenols and dihydrodiols with UDP-glucuronic acid. Biochem. Pharmacol. 25, 1221–1226 (1976)PubMedCrossRefGoogle Scholar
  150. Norred, W.P., Wade, A.E.: Dietary fatty acid-induced alterations of hepatic microsomal drug-metabolizing enzymes. Biochem. Pharmacol. 21, 2887–2897 (1972)PubMedCrossRefGoogle Scholar
  151. Oesch, F.: Mammalian epoxide hydrases: Inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and oleflnic compounds. Xenobiotica 3, 305–340 (1973)PubMedCrossRefGoogle Scholar
  152. Oesch, F., Daly, J.: Conversion of naphthaline to trans-naphthaline dihydrodiol: Evidence for the presence of a coupled aryl monooxygenase-epoxide hydrase system in hepatic microsomes. Biochem. biophys. Res. Commun. 46, 1713–1720 (1972)PubMedCrossRefGoogle Scholar
  153. Oesch, F., Jerina, D.M., Daly, J.: A radiometric assay for hepatic epoxide hydrase activity with (7–3H) styrene oxide. Biochim. biophys. Acta (Amst.) 227, 685–697 (1971)Google Scholar
  154. Oesch, F., Morris, N., Daly, J.W., Gielen, J.E., Nebert, D.W.: Genetic expression of the induction of epoxide hydrase and aryl hydrocarbon hydroxylase activities in the mouse by phenobarbital or 3-methylcholanthrene. Molec. Pharmacol. 9, 692–696 (1973)Google Scholar
  155. Omura, T., Sato, R.: The carbon monoxide-binding pigment of liver microsomes. J. biol. Chem. 239, 2370–2385 (1964)PubMedGoogle Scholar
  156. Omura, T., Sato, R., Cooper, D.Y., Rosenthal, O., Estabrook, R.W.: Function of cytochrome P-450 in microsomes. Fed. Proc. 24, 1181–1189 (1965)PubMedGoogle Scholar
  157. Omura, T., Siekevitz, P., Palade, G.E.: Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. biol. Chem. 242, 2389–2396 (1967)PubMedGoogle Scholar
  158. Oshino, N., Imai, Y., Sato, R.: Electron-transfer mechanism associated with fatty acid desaturation catalyzed by liver microsomes. Biochim. biophys. Acta (Amst.) 128, 13–28 (1966)Google Scholar
  159. Owen, N.V., Griffing, W.J., Hoffman, D.G., Gibson, W.R., Anderson, R.C.: Effects of dietary administration of 5-(3,4-dichlorophenyl)-5-ethylbarbituric acid (dichlorophenobarbital) to rats. Emphasis on hepatic drug-metabolizing enzymes and morphology. Toxicol. appl. Pharmacol. 18, 720–733 (1971)PubMedCrossRefGoogle Scholar
  160. Owens, I.S.: Genetic regulation of UDP-glucuronyltransferase. Induction by polycyclic aromatic compounds in mice. J. biol. Chem. 252, 2827–2833 (1977)PubMedGoogle Scholar
  161. Parke, D.V., Rahman, H.: The induction of hepatic microsomal enzymes by safrole. Biochem. J. 119, 53P–54P (1970)PubMedGoogle Scholar
  162. Pelkonen, O., Kaltiala, E.H., Larmi, T.K.I., Kärki, N.T.: Cytochrome P-450-linked mono-oxygenase system and drug-induced spectral interactions in human liver microsomes. Chem. biol. Interact. 9, 205–216 (1974)PubMedCrossRefGoogle Scholar
  163. Phillips, B.M., Miya, T.A., Yim, G.K.W.: Studies on the mechanism of meprobamate tolerance in the rat. J. Pharmacol, exp. Ther. 135, 223–229 (1962)Google Scholar
  164. Platt, D.S., Cockrill, B.L.: Biochemical changes in rat liver in response to treatment with drugs and other agents. II. Effects of halothane, DDT, and other chlorinated hydrocarbons, thioacetamide, dimethylnitrosamine and ethionine. Biochem. Pharmacol. 18, 445–457 (1969)PubMedCrossRefGoogle Scholar
  165. Piatt, D.S., Thorp, J.M.: Changes in the weight and composition of the liver in the rat, dog, and monkey, treated with ethylchlorophenoxyisobutyrate. Biochem. Pharmacol. 15, 915–925 (1966)CrossRefGoogle Scholar
  166. Poland, A., Glover, E.: Chlorinated dibenzo-p-dioxins: Potent inducers of δ-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase. A study of the structure-activity relationship. Molec. Pharmacol. 9, 736–747 (1973)Google Scholar
  167. Poland, A.P., Glover, E.: Comparison of 2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene. Molec. Pharmacol. 10, 349–359 (1974)Google Scholar
  168. Poland, A., Glover, E., Kende, A.S.: Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. J. biol. Chem. 251, 4936–4946 (1976)PubMedGoogle Scholar
  169. Poland, A.P., Glover, E., Robinson, J.R., Nebert, D.E.: Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenäse activities and cytochrome P1-450 formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons. J. biol. Chem. 249, 5599–5606 (1974)PubMedGoogle Scholar
  170. Poole, B., Leighton, F., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. Turnover of peroxisome proteins. J. Cell Biol. 41, 536–546 (1969)PubMedCrossRefGoogle Scholar
  171. Price, V.E., Sterlin, W.R., Tarantola, V.A., Hartley, R.W., Jr., Rechcigl, M., Jr.: The kinetics of catalase synthesis and destruction in vivo. J. biol. Chem. 237, 3468–3475 (1962)PubMedGoogle Scholar
  172. Quinn, G.P., Axelrod, J., Brodie, B.B.: Species, strain, and sex differences in metabolism of hexobarbitone, amidopyrine, antipyrine and aniline. Biochem. Pharmacol. 1, 152–159 (1958)CrossRefGoogle Scholar
  173. Reddy, J., Chiga, M., Bunyaratvej, S., Svoboda, D.: Microbodies in experimentally altered cells. VII. CPJB-induced hepatic microbody proliferation in the absence of significant catalase synthesis. J. Cell Biol. 44, 226–234 (1970)PubMedCrossRefGoogle Scholar
  174. Reddy, J., Svoboda, D., Azarnoff, D.: Microbody proliferation in liver induced by nafenopin, a new hypolipidemic drug: Comparison with CPIB. Biochem. biophys. Res. Commun. 52, 537–543 (1973)PubMedCrossRefGoogle Scholar
  175. Reith, A., Brdiczka, D., Nolte, J., Staudte, H.W.: The inner membrane of mitochondria under influence of triiodothyronine and riboflavin deficiency in rat heart muscle and liver. Exp. Cell Res. 77, 1–14 (1973)PubMedCrossRefGoogle Scholar
  176. Remmer, H.: Der beschleunigte Abbau von Pharmaka in den Lebermikrosomen unter dem Einfluß von Luminal. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmakol. 235, 279–290 (1959)Google Scholar
  177. Remmer, H.: Drug Tolerance. CIBA Foundation Symp. on Enzymes and Drug Action, p. 276. London:1962Google Scholar
  178. Remmer, H.: The role of the liver in drug metabolism. Amer. J. Med. 49, 617–629 (1970)PubMedCrossRefGoogle Scholar
  179. Remmer, H.: Induction of drug metabolizing enzyme system in the liver. Europ. J. clin. Pharmacol. 5, 116–136 (1972a)CrossRefGoogle Scholar
  180. Remmer, H.: The induction of the enzymie “detoxication” system in liver cells. Rev. Canad. Biol. 31, 193–222 (1972b)PubMedGoogle Scholar
  181. Remmer, H., Hirschmann, J., Greiner, I.: Die Bedeutung von Kumulation und Elimination für die Dosierung von Phenytoin (Diphenylhydantoin) Dtsch. med. Wschr. 94, 1265–1272 (1969)PubMedCrossRefGoogle Scholar
  182. Remmer, H., Merker, H.-J.: Drug-induced changes in the liver endoplasmic reticulum: Association with drug-metabolizing enzymes. Science 142, 1657–1658 (1963)PubMedCrossRefGoogle Scholar
  183. Remmer, H., Schenkman, J., Estabrook, R.W., Sasame, H., Gillette, J., Narasimhulu, S., Cooper, D.Y., Rosenthal, O.: Drug interactions with hepatic microsomal cytochrome. Molec. Pharmacol. 2, 187–190 (1966)Google Scholar
  184. Remmer, H., Schoene, B., Fleischmann, R.A.: Induction of the unspecific microsomal hydroxylase in the human liver. Drug Metabolism and Disposition 1, 224–230 (1973)PubMedGoogle Scholar
  185. Remmer, H., Siegert, M., Merker, H.-J.: Vermehrung arzneimittelabbauender Enzyme durch Tolbutamid. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmakol. 249, 71–84 (1964)Google Scholar
  186. Revel, M., Hiatt, H.H.: The stability of liver messenger RNA. Proc. nat. Acad. Sci. (Wash.) 51, 810–818 (1964)CrossRefGoogle Scholar
  187. Rogers, M.J., Strittmatter, P.: The binding of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase to hepatic microsomes. J. biol. Chem. 249, 5565–5569 (1974)PubMedGoogle Scholar
  188. Salvador, R.A., Haber, S., Atkins, C., Gommi, B.W., Welch, R.M.: Effect of Clofibrate and 1-methyl-l-piperidyl-bis-(p-chlorophenoxy) acetate (Sandoz 42–343) on steroid and drug metabolism by rat liver microsomes.Life Sci. 9, 397–400 (1970)PubMedCrossRefGoogle Scholar
  189. Sato, R., Nishibayashi, H., Ito, A.: Characterization of two hemoproteins of liver microsomes. In: Microsomes and Drug Oxidations. Gillette, J.R., Conney, A.H., Cosmides, C.J., Estabrook, R.W., Fouts, J.R., Mannering, G.J. (eds.), pp. 111–128. New York: Academic Press 1969Google Scholar
  190. Schatz, G., Mason, T.L.: The biosynthesis of mitochondrial proteins. Ann. Rev. Biochem. 43, 51–87 (1974)CrossRefGoogle Scholar
  191. Schaude, G.: Cytologische Differenzierung des normalen und des fremdstoffinduzierten Leberwachstums bei der weißen Maus. Habilitationsschrift, Marburg, 1972Google Scholar
  192. Schenkman, J.B., Cinti, D.L., Orrenius, S., Moldeus, P., Kraschnitz, R.: The nature of the reversed type I (modified type II) spectral change in liver microsomes. Biochemistry 11, 4243–4251 (1972)PubMedCrossRefGoogle Scholar
  193. Schenkman, J.B., Frey, L, Remmer, H., Estabrook, R.W.: Sex differences in drug metabolism by rat liver microsomes. Molec. Pharmacol. 3, 516–525 (1967)Google Scholar
  194. Schimke, R.T., Doyle, D.: Control of enzyme levels in animal tissues. Ann. Rev. Biochem. 39, 929–976 (1970)PubMedCrossRefGoogle Scholar
  195. Schimke, R.T., Sweeney, F.W., Berlin, CM.: The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J. biol. Chem. 240, 322–331 (1965)PubMedGoogle Scholar
  196. Schlicht, I., Koransky, W., Magour, S., Schulte-Hermann, R.: Größe und DNS-Synthese der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmakol. 261, 26–41 (1968)CrossRefGoogle Scholar
  197. Schmid, K., Cornu, F., Imhof, P., Keberle, H.: Die biochemische Deutung der Gewöhnung an Schlafmittel. Schweiz. med. Wschr. 94, 235–240 (1964)PubMedGoogle Scholar
  198. Schoene, B., Fleischmann, R.A., Remmer, H., v. Oldershausen, H.F.: Determination of drug metabolizing enzymes in needle biopsies of human liver. Europ. J. clin. Pharmacol. 4, 65–73 (1972)CrossRefGoogle Scholar
  199. Schoenheimer, R.: Dynamic State of Body Constituents. Cambridge: Harvard Univ. Press 1942Google Scholar
  200. Scholz, R., Hansen, W., Thurman, R.G.: Interaction of mixed-function oxidation with biosynthetic processes. Inhibition of gluconeogenesis by aminopyrine in perfused rat liver. Europ. J. Biochem. 38, 64–72 (1973)PubMedCrossRefGoogle Scholar
  201. Schulte-Hermann, R.: Induction of liver growth by xenobiotic compounds and other stimuli. Critical Reviews in Toxicology 3, 97–158 (1974)PubMedCrossRefGoogle Scholar
  202. Schulte-Hermann, R., Thorn, R., Schlicht, I., Koransky, W.: Zahl und Ploidiegrad der Zellkerne der Leber unter dem Einfluß körperfremder Stoffe. Naunyn-Schmiedebergs Arch. exp. Path. Pharmakol. 261, 42–58 (1968)CrossRefGoogle Scholar
  203. Selkirk, J.K., Croy, R.G., Roller, P.P., Gelboin, H.V.: High-pressure liquid chromatographic analysis of benzo(a)pyrene metabolism and covalent binding and the mechanism of action of 7,8-benzoflavone and l,2-epoxy-3,3,3-trichloropropane. Cancer Res. 34, 3474–3480 (1974)PubMedGoogle Scholar
  204. Sies, H., Brauser, B.: Interaction of mixed function oxidase with its substrates and associated redox transitions of cytochrome P-450 and pyridine nucleotides in perfused rat liver. Europ. J. Biochem. 15, 531–540 (1970)PubMedCrossRefGoogle Scholar
  205. Sladek, N.E., Mannering, G.J.: Evidence for a new P-450 hemoprotein in hepatic microsomes from methylcholanthrene treated rats. Biochem. biophys. Res. Commun. 24, 668–674 (1966)CrossRefGoogle Scholar
  206. Solymoss, B., Classen, H.G., Varga, S.: Increased hepatic microsomal activity induced by spironolactone and other steroids. Proc. Soc. exp. Biol. (N.Y.) 132, 940–942 (1969)Google Scholar
  207. Solymoss, B., Werringloer, J., Toth, S.: The influence of pregnenolone-16a-carbonitrile on hepatic mixed-function oxygenases. Steroids 17, 427–433 (1971)PubMedCrossRefGoogle Scholar
  208. Sottocasa, L., Kuylenstierna, B., Ernster, L., Bergstrand, A.: An electron-transport system associated with the outer membrane of liver mitochondria. J. Cell Biol. 32, 415–438 (1967)PubMedCrossRefGoogle Scholar
  209. Spatz, L., Strittmatter, P.: A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc. nat. Acad. Sci. (Wash.) 68, 1042–1046 (1971)CrossRefGoogle Scholar
  210. Stäubli, W., Hess, R., Weibel, E.R.: Correlated morphometric and biochemical studies on the liver cell. Effects of phenobarbital on rat hepatocytes. J. Cell Biol. 42, 92–112 (1969)PubMedCrossRefGoogle Scholar
  211. Staudt, H., Lichtenberger, F., Ullrich, V.: The role of NADH in uncoupled microsomal monooxygenations. Europ. J. Biochem. 46, 99–106 (1974)PubMedCrossRefGoogle Scholar
  212. Stonard, M.D., Nenov, P.Z.: Effect of hexachlorobenzene on hepatic microsomal enzymes in the rat. Biochem. Pharmacol. 23, 2175–2183 (1974)PubMedCrossRefGoogle Scholar
  213. Stripp, B., Hamrick, M., Zampaglione, N.: Effect of spironolactone treatment of rats on the oxidation of drugs by liver microsomes. Fed. Proc. 29, 346, 571 (1970)Google Scholar
  214. Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M.J., Setlow, B., Redline, R.: Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc. nat. Acad. Sci. (Wash.) 71, 4565–4569 (1974)CrossRefGoogle Scholar
  215. Strobel, H.W., Lu, A.Y.H., Heidema, J., Coon, M.J.: Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P-450 and in fatty acid, hydrocarbon, and drug hydroxylation. J. biol. Chem. 245, 4851–4854 (1970)PubMedGoogle Scholar
  216. Tettenborn, D.: Toxicität und enzyminduzierende Aktivität von Clotrimazol. Naunyn-Schmiedeberg’s Arch. Pharmakol. 266, 468 (1970)CrossRefGoogle Scholar
  217. Thomas, P.E., Lu, A.Y.H., Ryan, D., West, S.B., Kawałek, J., Lewin, W.: Multiple forms of rat liver cytochrome P-450. J. biol. Chem. 251, 1385–1391 (1976)PubMedGoogle Scholar
  218. Thurman, R.G., Scholz, R.: Mixed function oxidation in perfused rat liver. The effect of aminopyrine on oxygen uptake. Europ. J. Biochem. 10, 459–467 (1969)PubMedCrossRefGoogle Scholar
  219. Thurman, R.G., Scholz, R.: Interaction of mixed-function oxidation with biosynthetic processes. Inhibition of lipogenesis by aminopyrine in perfused rat liver. Europ. J. Biochem. 38, 73–78 (1973)PubMedCrossRefGoogle Scholar
  220. Ullrich, V., Diehl, H.: Uncoupling of monooxygenation and electron transport by fluorocarbons in liver microsomes. Europ. J. Biochem. 30, 509–512 (1971)CrossRefGoogle Scholar
  221. Van der Hoeven, T.A., Coon, M.J.: Preparation and properties of partially purified cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from rabbit liver microsomes. J. biol. Chem. 249, 6302–6310 (1974)PubMedGoogle Scholar
  222. Van der Hoeven, T.A., Haugen, D.A., Coon, M.J.: Cytochrome P-450 purified to apparent homogeneity from phenobarbital-induced rabbit liver microsomes: catalytic activity and other properties. Biochem. biophys. Res. Commun. 60, 569–575 (1974)PubMedCrossRefGoogle Scholar
  223. Vesell, E.S.: Pharmacogenetics. Biochem. Pharmacol. 24, 445–450 (1975)PubMedCrossRefGoogle Scholar
  224. Vesell, E.S., Page, J.G.: Genetic control of drug levels in man: phenylbutazone. Science 159, 1479–1480 (1968a)PubMedCrossRefGoogle Scholar
  225. Vesell, E.S., Page, J.G.: Genetic control of drug levels in man: antipyrine. Science 161, 72–73 (1968b)PubMedCrossRefGoogle Scholar
  226. Villeneuve, D.C., Grant, D.L., Phillips, W.E.J., Clark, M.L., Clegg, D.J.: Effects of PCB administration on microsomal enzyme activity in pregnant rabbits, Bull. environ. Contam. Toxicol. 6, 120 (1971)PubMedCrossRefGoogle Scholar
  227. Wada, O., Yano, Y., Urata, G., Nakao, K.: Behavior of hepatic microsomal cytochromes after treatment of mice with drugs known to disturb porphyrin metabolism in liver. Biochem. Pharmacol. 17, 595–603 (1968)PubMedCrossRefGoogle Scholar
  228. Wattenberg, L.W., Leong, J.L.: Effects of phenothiazines on protective systems against polycyclic hydrocarbons. Cancer Res. 25, 365–370 (1965)PubMedGoogle Scholar
  229. Wattenberg, L.W., Page, M.A., Leong, J.L.: Induction of increased benzpyrene hydroxylase activity by flavones and related compounds. Cancer Res. 28, 934–937 (1968)PubMedGoogle Scholar
  230. Westerfeld, W.R., Richert, D.A., Ruegamer, W.R.: The role of the thyroid hormone in the effect of p-chlorophenoxyisobutyrate in rats. Biochem. Pharmacol. 17, 1003–1016 (1968)PubMedCrossRefGoogle Scholar
  231. White-Stevens, R.H., Kamin, H.: Uncoupling of oxygen activation from hydroxylation in a bacterial salicylate hydroxylase. Biochem. biophys. Res. Commun. 38, 882–889 (1970)PubMedCrossRefGoogle Scholar
  232. Whitlock, J.P., Jr., Gelboin, H.V.: Aryl hydrocarbon (benzo(a)pyrene) hydroxylase induction in rat liver cells in culture. J. biol. Chem. 249, 2616–2623 (1974)PubMedGoogle Scholar
  233. Witmer, C., Remmer, H., Nehls, R., Krauss, P., Snyder, R.: Optical and EPR spectra of microsomal hemoproteins. Fed. Proc. 33, 587 (1974)Google Scholar
  234. Yang, C.S.: Interactions between solubilized cytochrome P-450 and hepatic microsomes. J. biol. Chem. 252, 293–298 (1977)PubMedGoogle Scholar
  235. Young, D.L., Powell, C., McMillan, W.O.: Phenobarbital-induced alterations in phosphatidylcholine and triglyceride synthesis in hepatic endoplasmic reticulum. J. Lipid Res. 12, 1–8 (1971)PubMedGoogle Scholar
  236. Zeidenberg, P., Orrenius, S., Ernster, L.: Increase in levels of glucuronylating enzymes and associated rise in activities of mitochondrial oxidative enzymes upon phenobarbital administration in the rat. J. Cell Biol. 32, 528–531 (1967)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • K. W. Bock
  • H. Remmer

There are no affiliations available

Personalised recommendations