Advertisement

Toxic Effects of Lead, with Particular Reference to Porphyrin and Heme Metabolism

  • Shigeru Sassa
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)

Abstract

Lead has been shown to interfere with the biosynthesis of heme in a number of in vitro systems and in experimental animals as well as in human beings. Several steps of the heme biosynthetic chain are subject to the toxic effects of lead. ALA-dehydratase and ferrochelatase, in particular, are two enzymes which are strongly inhibited by lead, leading to decreased heme synthesis.

Keywords

Blood Lead Level Lead Poisoning Heme Biosynthesis Blood Lead Concentration Heme Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, M., Haeger-Aronsen, B.: ALA-dehydratase activation by zinc. Enzyme 12, 708–710 (1971)PubMedGoogle Scholar
  2. Albahary, C.: Lead and hemopoiesis. The mechanism and consequences of the erythropathy of occupational lead poisoning. Amer. J. Med. 52, 367–378 (1972)PubMedGoogle Scholar
  3. Alvares, A.P., Kapelner, S., Sassa, S., Kappas, A.: Drug metabolism in normal children, lead-poisoned children, and normal adults. Clin Pharmacol. Ther. 17, 179–183 (1975)PubMedGoogle Scholar
  4. Alvares, A.P., Leigh, S., Cohn, J., Kappas, A.: Lead and methyl mercury; Effects of acute exposure on cytochrome P-450 and the mixed function oxidase system in the liver. J. exp. Med. 135, 1406–1409 (1972)PubMedGoogle Scholar
  5. Angle, C.R., McIntyre, M.S.: Red cell lead, whole blood lead, and red cell enzymes. Environ. Hlth Persp. 7, 133–137 (1974)Google Scholar
  6. Baloh, R.W.: Laboratory diagnosis of increased lead absorption. Arch. environ. Hlth 28, 198–208 (1974)Google Scholar
  7. Barltrop, D.: The prevalence of pica. Am. J. Dis. Child. 112, 116–123 (1966)PubMedGoogle Scholar
  8. Barltrop, D., Smith, A.: Interaction of lead with erythrocytes. Experientia (Basel) 27, 92–93 (1971)Google Scholar
  9. Batolska, A., Marinova, H.: Modifications du glutathion chez les travailleurs d’une enterprise metallurgique minière. Arch. Mal. prof. 31, 117–122 (1970)PubMedGoogle Scholar
  10. Battistini, V., Morrow, J.J., Ginsburg, D., Thompson, G., Moore, M.R., Goldberg, A.: Erythrocyte delta-aminolaevulinic acid dehydratase activity in anaemia. Brit. J. Haemat. 20, 177–184 (1971)PubMedGoogle Scholar
  11. Baum, S.: Incorporation of magnesium ion into porphyrins. Ph. D. Dissertation, Cornell University, Ithaca, N.Y. 1965 Beaver, D.L.: The ultrastructure of the kidney in lead intoxication with particular reference to intranuclear inclusions. Amer. J. Path. 39, 195–208 (1961)Google Scholar
  12. Becker, D., Viljoen, D., Kramer, S.: The inhibition of red cell and brain ATPase by δ-aminolevulinic acid. Biochim. Biophys. Acta 25, 26–34 (1971)Google Scholar
  13. Ber, R., Valero, A.: Pica and hypochromic anemia: A survey of 14 cases seen in Israel. Hebrew med. J. 61, 35–39 (1961)Google Scholar
  14. Berk, P.D., Tschudy, D.P., Shepley, L.A., Waggoner, J.G., Berlin, N.I.: Hematologic and biochemical studies in a case of lead poisoning. Amer. J. Med. 48, 137–144 (1970)PubMedGoogle Scholar
  15. Bessis, M.C., Breton-Gorius, J.: Ferritin and ferruginous miscelles in normal erythroblasts and hypochromic hypersideremic anemias. Blood 14, 423–432 (1959)PubMedGoogle Scholar
  16. Bessis, M.C., Jensen, W.N.: Sideroblastic anemia, mitochondria and erythroblastic iron. Brit.Google Scholar
  17. J. Haemat. 11, 49–51(1965)Google Scholar
  18. Beutler, E., Dern, R.J., Flanagan, C.L., Alving, A.S.: The hemolytic effect of primaquine VII.Google Scholar
  19. Biochemical studies of drug-sensitive erythrocytes. J. Lab. clin. Med. 45, 286–295 (1955)Google Scholar
  20. Blackman, S.S., Jr.: Intranuclear inclusion bodies in the kidney and liver caused by lead poisoning. Bull. Johns Hopk. Hosp. 58, 384–404 (1936)Google Scholar
  21. Blumberg, W.E., Eisinger, J., Lamola, A.A., Zuckerman, D.M.: A new quick test for lead poisoning: A dedicated portable hematofluorometer. J. Lab. clin. Med. 89, 712–723 (1977)PubMedGoogle Scholar
  22. Bogorad, L.: The enzymatic synthesis of porphyrins from porphyrinogen III. Uroporphyrinogens as intermediates. J. biol. Chem. 233, 516–519 (1958)PubMedGoogle Scholar
  23. Bonkowsky, H.L., Bloomer, J.R., Ebert, P.S., Mahoney, M.J.: Heme synthetase deficiency in human protoporphyria. Demonstration of the defect in liver and cultured skin fibroblasts. J. clin. Invest. 56, 1139–1148 (1975)PubMedGoogle Scholar
  24. Bonsignore, D., Calissano, P., Cartasegna, C.: Un semplice metodo per la determinazione della δ-amino-levulinicodeidratasi nel sangue: comportamento dell’enzima nell’intossicazione saturina. Med. d. Lavoro 56, 199–205 (1965)Google Scholar
  25. Bonsignore, B., Cartasegna, C., Ardoino, V., Vergnano, C.: Glutatione ridotto eritrocitario nel saturnismo. Lav. urn. 19, 97–102 (1967)Google Scholar
  26. Borova J., Ponka, P., Neuwirt, J.: Study of intracellular iron distribution in rabbit reticulocytes with normal and inhibited heme synthesis. Biochim. biophys. Acta 320, 143–156 (1973)PubMedGoogle Scholar
  27. Bottomley, S.S., Tanaka, M., Everett, M.A.: Diminished erythroid ferrochelatase activity in protoporphyria. J. Lab. clin. Med. 86, 126–131 (1975)PubMedGoogle Scholar
  28. Bracken, E.C., Beaver, D.L., Randall, C.C.: Histochemical studies of viral and lead-induced intranuclear bodies. J. Path. Bact. 75, 253–256 (1958)PubMedGoogle Scholar
  29. Burch, H.B., Siegel, A.L.: Improved method for measurement of delta-aminolevulinic acid dehydratase activity of human erythrocytes. Clin. Chem. 17, 1038–1041 (1971)PubMedGoogle Scholar
  30. Burnham, B., Lascelles, J.: Control of porphyrin biosynthesis through a negative-feedback mechadism. Studies with preparations of δ-aminolevulinate synthetase and δ-aminolaevulate dehydratase from Rhodopseudomonas spheroides. Biochem. J. 87, 462–472 (1963)PubMedGoogle Scholar
  31. Calissano, P., Bonsignore, D., Cartasegna, C.: Control of heme synthesis by feedback inhibition on human-erythrocyte δ-aminolaevulinate dehydratase. Biochem. J. 101, 550–552 (1966)PubMedGoogle Scholar
  32. Carlander, O.: Aetiology of pica. Lancet 1959 II, 569Google Scholar
  33. Cartwright, G.E., Deiss, A.: Sideroblasts, siderocytes and sideroblastic anemia. New Engl. J. Med. 292, 185–193(1975)PubMedGoogle Scholar
  34. Charache, S., Weatherall, D.J.: Fast hemoglobin in lead poisoning. Blood 28, 377–386 (1966)PubMedGoogle Scholar
  35. Chisolm, J.J., Jr., Barrett, M.B., Mettits, E.D.: Dose-effect and dose-response relationships for lead in children. J. Pediat. in press (1975b)Google Scholar
  36. Chisolm, J.J., Jr., Brown, D.H.: Micro-scale photofluorometric determination of “free erythrocyte porphyrin” (Protoporphyrin IX). Clin. Chem. in press (1975a)Google Scholar
  37. Choie, D.D., Richter, G.W.: Cell proliferation in rat kidneys after prolonged treatment with lead. Amer. J. Path. 68, 359–367 (1972a)PubMedGoogle Scholar
  38. Choie, D.D., Richter, G.W.: Cell proliferation in rat kidney by lead acetate and effects of uninephrectomy on the proliferation. Amer. J. Path. 66, 265–276 (1972b)PubMedGoogle Scholar
  39. Choie, D., Richter, G.: Lead poisoning: Rapid formation of intranuclear inclusions. Science 177, 1194–1195 (1972c)PubMedGoogle Scholar
  40. Choie, D.D., Richter, G.W.: Stimulation of DNA synthesis in rat kidney by repeated administration of lead. Proc. Soc. exp. Biol. (N.Y.) 142, 446–449 (1973)Google Scholar
  41. Clarkson, T.W., Kench, J.E.: Uptake of lead by human erythrocytes in vitro. Biochem. J. 69, 432–439 (1958)PubMedGoogle Scholar
  42. Clemens, M.J., Henshaw, E.C., Rahamimoff, H., London, I.M.: Met-tRNAmet binding to 40S ribosomal subunits: A site for the regulation of initiation of protein synthesis by hemin. Proc. nat. Acad. Sci. (Wash.) 71, 2946–2950 (1974)Google Scholar
  43. Coleman, D.L.: Purification and properties of δ-aminolevulinate dehydratase from tissues of two strains of mice. J. biol. Chem. 241, 5511–5517 (1966)PubMedGoogle Scholar
  44. Collier, H.B.: A study of the determination of δ-aminolevulinate hydrolyase (δ-aminolaevulinate dehydratase) activity in hemolysates of human erythrocytes. Clin. Biochem. 4, 222–232 (1971)PubMedGoogle Scholar
  45. Committee on Biologic Effects of Atmospheric Pollutants. Lead; airborne lead in perspective. Nat. Acad. Sci. 1972, p. 81–84, Washington, D.C.Google Scholar
  46. Cramér, K.: Predisposing factors for lead poisoning. Acta med. scand. 179 (Suppl. 445), 56–59 (1966)Google Scholar
  47. Cremer, J.E.: Toxicology and biochemistry of alkyl lead compounds. Occup. Hlth Rev. 17, 14–19 (1965)Google Scholar
  48. Cunningham, A.G., Szenberg, A.: Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology 14, 599–601 (1968)PubMedGoogle Scholar
  49. Dagg, J.H., Goldberg, A., Lockhead, A., Smith J.A.: The relationship of lead poisoning to acute intermittent porphyria. Quart. J. Med. 34, 163–175 (1965)PubMedGoogle Scholar
  50. De Bruin, A., Hoolboom, H.: Early signs of lead exposure. A comparative study of laboratory tests. Brit. J. industr. Med. 24, 203–212 (1967)PubMedGoogle Scholar
  51. De Goeiji, A.F.P.M., Christianse, K., Van Steveninck, J.: Decreased haem synthetase activity in blood cells of patients with erythropoietic protoporphyria. Europ. J. clin. Invest. 5, 397–400 (1975)Google Scholar
  52. Dimant, E., Landerg, E., London, I.M.: The metabolic behavior of reduced glutathione in human and avian erythrocytes. J. biol. Chem. 213, 769–776 (1955)PubMedGoogle Scholar
  53. Doyle, D., Schimke, R.T.: The genetic and developmental regulation of hepatic δ-aminolevulinate dehydratase in mice. J. Biol. Chem. 244, 5449–5459 (1969)PubMedGoogle Scholar
  54. Dresel, E.I.B., Falk, J.D.: Studies on the biosynthesis of blood pigments. 2. Haem and porphyrin formation in intact chicken erythrocytes. Biochem. J. 63, 72–79 (1956a)PubMedGoogle Scholar
  55. Dresel, E.I.B., Falk, J.D.: Studies on the biosynthesis of blood pigments. 3. Haem and porphyrin formation from δ-aminolaevulinic acid and from porphobilinogen in haemolysed chicken erythrocytes. Biochem. J. 63, 80–87 (1956b)PubMedGoogle Scholar
  56. Epstein, S.S., Mantel, N.: Carcinogenicity of tetraethyl lead. Experientia (Basel) 24, 580–581 (1968)Google Scholar
  57. Erenberg, G., Rinsler, S.S., Fish, B.G.: Lead neuropathy and sickle cell disease. Pediatrics 54, 438–441 (1974)PubMedGoogle Scholar
  58. Estabrook, R.W., Hildebrandt, A., Remmer, H., Schenkman, J.B., Rosenthal, O., Cooper, D.Y.: The role of cytochrome P-450 in microsomal mixed function oxidation reactions. In: Hess and Staudinger 19th Colloquium der Gesellschaft für Biologische Chemie. Berlin: Springer 1968Google Scholar
  59. Fairbanks, V.F., Beutler, E.: Iron deficiency. In: Hematology. New York: McGraw-Hill 1972Google Scholar
  60. Falk, J.E.: Porphyrins and Metalloporphyrins, Vol. 2. New York: Elsevier 1964Google Scholar
  61. Feldman, D.S., Levere, R.D., Lieberman, J.S., Cardinal, R.A., Watson, C.J.: Presynaptic neuromuscular inhibition by porphobilinogen and porphobilin. Proc. nat. Acad. Sci (Wash.) 68, 383–386 (1971)Google Scholar
  62. Ferguson, J.H., Keaton, A.G.: Studies of the diets of pregnant women in Mississipi: Ingestion of clay and laundry starch. New Orleans med. surg. J. 102, 460–463 (1950)Google Scholar
  63. Ferm, V.H.: The synteratogenic effect of lead and cadmium. Experientia (Basel) 25, 56–57 (1969)Google Scholar
  64. Ferm, V.H., Carpenter, S.J.: Developmental malformations resulting from the administration of lead salts. J. exp. molec. Path. 7, 208–213 (1967a)Google Scholar
  65. Ferm, V.H., Carpenter, S.J.: Teratogenic effect of cadmium and its inhibition by zinc. Nature (Lond.) 216, 1123 (1967b)Google Scholar
  66. Ferm, V.H., Carpenter, S.J.: The relationship of cadmium and zinc in experimental mammalian teratogenesis. Lab. Invest. 18, 429–432 (1968)PubMedGoogle Scholar
  67. Finelli, V.N., Klauder, D.S., Karaffa, M.A., Petering, H.G.: Interaction of zinc and lead on δ-aminolevulinate dehydratase. Biochem. biophys. Res. Commun. 65, 303–311 (1975)PubMedGoogle Scholar
  68. Finelli, V.N., Murthy, L., Peirano, W.B., Petering, H.G.: δ-aminolevulinate dehydratase, a zinc dependent enzyme. Biochem. biophys. Res. Commun. 60, 1418–1424 (1974)PubMedGoogle Scholar
  69. Fischbein, A., Sassa, S., Eisinger, J., Blumberg, W.: Blood lead and protoporphyrin levels in lead exposed workers. The application of a new method for the detection of lead poisoning. Proc. Int. Conf. on Heavy Metals in the Environment. Toronto, Ontario, Canada, Oct., 1975Google Scholar
  70. Forbes, G.B., Reino, J.C.: Effect of age on gastrointestinal absorption (Fe, Sr, Pb) in the rat. J. Nutr. 102, 647–652 (1972)PubMedGoogle Scholar
  71. Fratianne, R.B., Griggs, R.C., Harris, J.W.: Autosurvival of erythrocytes treated in vitro with lead chlorides. Clin. Res. 7, 384 (1958)Google Scholar
  72. French, S.W., Todoroff, T.: Hepatic mitochondrial fragility and permeability. Arch. Path. (Chicago) 89, 329–336 (1970)Google Scholar
  73. Fullerton, J.M.: Value of hematology in diagnosis of chronic plumbism. Brit. med. J. 1952 II, 117–119Google Scholar
  74. Gajdos, A., Gajdos-Török, M.: Delta-aminolevulinic acid synthetase and adenosine triphosphate activity in acute saturnine intoxication in rabbits. Arch. environ. Hlth. 23, 270–274 (1971)Google Scholar
  75. Galzigna, L., Corsi, G.C., Saia, B., Rizzoli, A.A.: Inhibitory effect of triethyl lead on serum choline esterase in vitro. Clin. chim. Acta 26, 391–393 (1969)PubMedGoogle Scholar
  76. Gibson, S.M., Goldberg, A.: Defects in heme synthesis in mammalian tissues in experimental lead poisoning and experimental porphyria. Clin. Sci. 38, 63–72 (1970)PubMedGoogle Scholar
  77. Gibson, K.D. Laver, W.G., Neuberger, A.: Initial stages in the biosynthesis of porphyrins. 2. The formation of δ-aminolaevulinic acid from glycine and succinyl coenzyme A by particles from chicken erythrocytes. Biochem. J. 70, 71–81 (1958)PubMedGoogle Scholar
  78. Gibson, S.L.M., MacKenzie, G.C., Goldberg, A.: The diagnosis of industrial lead poisoning. Brit. J. industr. Med. 26, 40–51 (1968)Google Scholar
  79. Gibson, K.D., Neuberger, A., Scott, J.J.: The purification and properties of δ-aminolaevulinic acid dehydratase. Biochem. J. 61, 618–629 (1955)PubMedGoogle Scholar
  80. Goldberg, A.: Lead poisoning as a disorder of heme synthesis. Semin. Hemat. 5, 424–433 (1968)PubMedGoogle Scholar
  81. Goldberg, A., Ashenbrucker, G.E., Cartwright, G.E., Wintrobe, M.M.: Studies on the biosynthesis of heme in vitro by avian erythrocytes. Blood 11, 821–833 (1956)PubMedGoogle Scholar
  82. Goldberg, A., McGillion, F.B.: Central uptake and cardiovascular effects of δ-aminolaevulinic acid. Brit. J. Pharmacol. 49, 178 (1973)Google Scholar
  83. Goldberg, A., Paton, W.D.M., Thompson, J.W.: Pharmacology of porphyrins and porphobilinogen. Brit. J. Pharmacol. 9, 91–94 (1954)PubMedGoogle Scholar
  84. Goudy, B., Dawes, E., Wilkinson, A.E., Wills, E.D.: Ferrochelatase activity in normal and irradiated animal tissues. Europ. J. Biochem. 3, 208–212 (1967)PubMedGoogle Scholar
  85. Goyer, R.A.: The renal tubule in lead poisoning. I. Mitochondrial swelling and aminoaciduria. Lab. Invest. 19, 71–77 (1968)PubMedGoogle Scholar
  86. Goyer, R.A.: Lead and the kidney. Curr. Top. Path. 55, 147–176 (1971)Google Scholar
  87. Goyer, R.A., Leonard, D., Moore, J.F., Rhyne, B., Krigman, M.R.: Lead dosage and the role of the intranuclear inclusion body. Arch environ. Hlth 20, 705–711 (1970)Google Scholar
  88. Grafflin, A.L.: Histological observations upon the porphyrin excreting Harderian gland of the albino rat. Amer. J. Anat. 71, 43–64 (1942)Google Scholar
  89. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria. A response to certain drugs, sex hormones, and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  90. Granick, S., Mauzerall, D.: Porphyrin biosynthesis in erythrocytes. II. Enzymes converting δ-aminolevulinic acid to coproporphyrinogen. J. biol. Chem. 232, 1119–1140 (1958)PubMedGoogle Scholar
  91. Granick, S., Sassa, S., Granick, J.L., Levere, R.D., Kappas, A.: Assays for porphyrins, δ-aminolevulinic acid dehydratase, and porphyrinogen synthetase in microliter samples of whole blood: Applications to metabolic defects involving the heme pathway. Proc. nat. Acd. Sci. (Wash.) 69, 2381–2385 (1972)Google Scholar
  92. Granick, J.L., Sassa, S., Granick, S., Levere, R.D., Kappas, A.: Studies in lead poisoning. II. Correlation between the ratio of activated to inactivated δ-aminolevulinic acid dehydratase of whole blood and the blood lead level. Biochem. Med. 8, 149–159 (1973)PubMedGoogle Scholar
  93. Granzoni, A., Rhomberg, F.: Hämolytische Krise bei Mangel an Glukose-6-phosphatdehydro-genase und Bleiintoxikation. Acta hemat. (Basel) 34, 338–346 (1965)Google Scholar
  94. Greenbaum, D., Richardson, P.C., Salmon, M.V., Urich, H.: Pathological observation on six cases of diabetic neuropathy. Brain 87, 201–214 (1964)PubMedGoogle Scholar
  95. Greer, M., Schotland, D.: Abnormal hemoglobin as a cause of neurologic disease. Neurology (Minneap.) 12, 114–123 (1962)Google Scholar
  96. Grigarzik, H., Passow, H.: Versuche zum Mechanismus der Bleiwirkung auf die Kaliumpermeabilität roter Blutkörperchen. Pflügers Arch. ges. Physiol. 267, 73–92 (1958)Google Scholar
  97. Griggs, R.C.: Lead poisoning. Hematologic aspects. Progr. Hemat. 4, 117–137 (1964)Google Scholar
  98. Griggs, R.C., Harris, J.W.: Erythrocyte survival and heme synthesis in lead poisoning. Clin. Res. 6, 188 (1958)Google Scholar
  99. Grinstein, M., Bannerman, R.M., Moore, C.V.: The utilization of protoporphyrin IX in heme synthesis. Blood 14, 476–489 (1959)PubMedGoogle Scholar
  100. Gunn, S.A., Gould, T.C., Anderson, W.A.D.: Specific response of mesenchymal tissue to carcinogenesis by cadmium. Arch. Path. (Chicago) 83, 493–499 (1967)Google Scholar
  101. Gurba, P.E., Sennet, R.E., Kobes, R.D.: Studies on the mechanism of action of δ-aminolevulinate dehydratase from bovine and rat liver. Arch. Biochem. 150, 130–136 (1972)PubMedGoogle Scholar
  102. Gutelius, M.F., Millican, F.K., Layman, E.M., Cohen, G.J., Dublin, C.C.: Nutritional studies of children with pica: I. Controlled study evaluating nutritional status. Pediatrics 29, 1012–1023 (1962)PubMedGoogle Scholar
  103. Gutelius, M.F., Millican, Y.K., Layman, E.M., Cohen, G.J., Dublin, C.C.: Treatment of pica with a vitamin and mineral supplement. Amer. J. clin. Nutr. 12, 388–393 (1963)PubMedGoogle Scholar
  104. Haeger-Aronsen, B.: Studies on urinary excretion of δ-aminolevulinic acid and other heme precursors in lead workers and lead-intoxicated rabbits. Scand. J. clin. Lab. Invest. 12 (Suppl. 47) 1–28 (1960)PubMedGoogle Scholar
  105. Haeger-Aronsen, B., Abdulla, M., Fristedt, B.I.: Effect of lead on δ-aminolevulinic acid dehydratase in red blood cells. Arch. environ. Hlth 23, 440–445 (1971)Google Scholar
  106. Harris, J.W., Greenberg, M.S.: Erythrocyte fragilities in plumbism. Clin. Res. Proc. 2, 55 (1954)Google Scholar
  107. Harris, J.W., Kellermeyer, R.W.: The Red Cell. Production, Metabolism, Destruction: Normal and Abnormal. Cambridge, Mass.: Harvard University Press 1970Google Scholar
  108. Hasan, J., Vihko, V., Hernberg, S.: Deficient red cell membrane (Na+ + K+)-ATPase in lead poisoning. Arch. environ. Hlth. 14, 313–318 (1967)Google Scholar
  109. Hass, G.M., Brown, D.V.L., Eisenstein, R., Hemmens, A.: Relations between lead poisoning in rabbit and man. Amer. J. Path. 45, 691–727 (1964)PubMedGoogle Scholar
  110. Hemphill, F.E., Kaeberle, M.L., Buck, W.B.: Lead suppression of mouse resistance to Salmonella typhimurium. Science 172, 1031–1032 (1971).PubMedGoogle Scholar
  111. Hernberg, S., Nikkanen, G.: Enzyme inhibition by lead under normal urban conditions. Lancet 1970 I, 63–64Google Scholar
  112. Hoogeveen, J.T.: Thermoconductometric investigation of phosphatidylcholine in aqueous tertiary butanol solutions in the absence and presence of metal ions. In: Effect of Metals on Cells, Subcellular Elements and Macromolecules. Springfield, Ill.: Thomas 1970Google Scholar
  113. HSMHA: Medical aspects of childhood poisoning. HSMHA Hlth Rep. 86, 140–143 (1971)Google Scholar
  114. Icen, A.: Glutathione reductase of human erythrocytes. Purification and properties. Scand. J. clin. Lab. Invest. Suppl. 96, 1–67 (1967)PubMedGoogle Scholar
  115. Israels, L.G.: Inhibition of heme synthesis in the kidney by organic mercurials. Biochem. Pharmacol. 21, 434–435 (1972)Google Scholar
  116. Jandl, J.H.: The agglutination and sequestration of immature red cells. J. Lab. clin. Med. 55, 663–681 (1960)PubMedGoogle Scholar
  117. Jarrett, A., Rimington, C., Willoughby, D.A.: δ-aminolaevulinic acid and porphyria. Lancet 1956 I, 125–127Google Scholar
  118. Jensen, W.N., Moreno, G.D., Bessis, M.C.: An electron microscopic description of basophilic stippling in red cells. Blood 25, 933–943 (1965)PubMedGoogle Scholar
  119. Jones, O.T.G.: Ferrochelatase of spinach chloroplasts. Biochem. J. 107, 113–119 (1968)PubMedGoogle Scholar
  120. Jordan, P.M., Shemin, D.: Uroporphyrinogen I synthetase from R. spheroides. Purification and properties. Fed. Proc. 30, 1260 (1971)Google Scholar
  121. Jordan, P.M., Shemin, D.: Purification and properties of uroporphyrinogen I synthetase from Rhodopseudomonas spheroides. J. biol. Chem. 248, 1019–1024 (1973)PubMedGoogle Scholar
  122. Joyce, C.R.B., Moore, H.L., Weatherall, M.: Effects of lead, mercury and gold on the potassium turnover of rabbit blood cells. Brit. J. Pharmacol. 9, 463–470 (1954)PubMedGoogle Scholar
  123. Kagawa, Y., Minakami, S., Yoneyama, Y.: Heme synthesis in the soluble preparation from avian erythrocytes. J. Biochem. 46, 771–780 (1959)Google Scholar
  124. Kammholz, L. P., Thatcher, L.G., Blodgett, F.M., Good, T. A.: Rapid protoporphyrin quantitation for detection of lead poisoning. Pediatrics 50, 625–631 (1972)PubMedGoogle Scholar
  125. Kappas, A., Alvares, A.P.: How the liver metabolizes foreign substances. Sci. Amer. 232, 22–31 (1975)PubMedGoogle Scholar
  126. Karibian, D., London, I.M.: Control of heme synthesis by feedback inhibition. Biochem. biophys. Res. Commun. 18, 243–249 (1965)PubMedGoogle Scholar
  127. Kassenaar, A., Morell, H., London, I.M.: The incorporation of glycine into globin and the synthesis of heme in vitro in duck erythrocytes. J. biol. Chem. 229, 423–435 (1957)PubMedGoogle Scholar
  128. Kehoe, R.A.: Normal metabolism of lead. Arch. environ. Hlth 8, 232–235 (1964)Google Scholar
  129. Kjellström, T., Eng, M.: Mathematical and statistical approaches in evaluating dose-response relationships for metals. In: Effects and Dose-Response Relationships of Toxic Metals. Amsterdam: Elevier 1975Google Scholar
  130. Koller, L.D., Kovacic, S.: Decreased antibody formation in mice exposed to lead. Nature (Lond.) 250, 148–150 (1974)Google Scholar
  131. Komai, H., Neilands, J.B.: The metalloprotein nature of Ustilago δ-aminolevulinate dehydratase. Biochim. biophys. Acta 171, 311–320 (1969)PubMedGoogle Scholar
  132. Kostial, K., McMcilovic, B.: Transport of lead203 and calcium47 from mother to offspring. Arch. environ. Hlth 29, 28–30 (1975)Google Scholar
  133. Kreimer-Birnbaum, M., Grinstein, M.: Porphyrin biosynthesis III. Porphyrin metabolism in experimental lead poisoning. Biochim. biophys. Acta 111, 110–123 (1965)PubMedGoogle Scholar
  134. Labbe, P., Volland, C., Chaix, P.: Etude de l’activité ferrochélatase des mitochondries de levure. Biochim. biophys. Acta 159, 527–539 (1968)PubMedGoogle Scholar
  135. Labbe, R.F., Hubbard, N.: Preparation and properties of iron-proto chelating enzyme. Biochim. biophys. Acta 41, 185–191 (1960)PubMedGoogle Scholar
  136. Lamola, A.A., Joselow, M., Yamane, T.: Zinc protoporphyrin (ZPP): A simple sensitive, fluorometric screening test for lead poisoning. Clin. Chem. 21, 93–97 (1975a)PubMedGoogle Scholar
  137. Lamola, A.A., Piomelli, S., Poh-Fitzpatrick, M., Yamane, T., Harber, L.: Erythropoietic protoporphyria and Pb intoxication: The molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin. J. clin. Invest. 56, 1528–1535 (1975b)PubMedGoogle Scholar
  138. Lamola, A.A., Yamane, T.: Zinc protoporhyrin in the erythrocytes of patients with lead intoxication and iron deficiency anemia. Science 186, 936–938 (1974)PubMedGoogle Scholar
  139. Landow, S.A., Schooley, J.C., Arroyo, F.L.: Decreased erythropoietin synthesis and impaired erythropoiesis in acutely lead-poisoned rats. Clin. Res. 21, 559 (1973)Google Scholar
  140. Lanzkowsky, P.: Investigation into the aetiology and treatment of pica. Arch. Dis. Childh. 34, 140–148 (1959)PubMedGoogle Scholar
  141. Lauwerys, R., Buchet, J.P.: Relationship between occupational exposure to mercury vapors and biological action. Arch. environ. Hlth 27, 65–68 (1973)Google Scholar
  142. Leiken, S., Eng, G.: Erythrokinetic studies of the anemia of lead poisoning. Pediatrics 31, 996–1002 (1963)Google Scholar
  143. Lessler, M.A., Cardona, E., Padilla, F., Jensen, W.N.: Effect of lead on reticulocyte respiratory activity. J. Cell Biol. 39, 171a (1968)Google Scholar
  144. Lin-Fu, J.S.: Undue absorption of lead among children — A new look at an old problem. New Engl. J. Med. 286, 702–710 (1972)PubMedGoogle Scholar
  145. Llambias, E.B.C., Del C. Battle, A.M.: Porphyrin biosynthesis VIII. Avian erythrocyte porphobilinogen deaminase. Uroporphyrinogen III cosynthetase, its purification, properties and the separation of its components. Biochim. biophys. Acta 227, 180–191 (1971)PubMedGoogle Scholar
  146. Maines, M.D., Kappas, A.: Studies on the mechanism of induction of heme oxygenase by cobalt and other metal ions. Biochem. J. 154, 125–131 (1976a)PubMedGoogle Scholar
  147. Maines, M.D., Kappas, A.: The induction of heme oxidation in various tissues by trace metals: Evidence for the catabolism of endogenous heme by hepatic heme oxygenase. Procedings of the International Conference on Porphyrin Metabolism, Sannas, Finland (1976b)Google Scholar
  148. Marver, H.S., Collins, A., Tschudy, D.P., Rechcigl, M.Jr.: δ-Aminolevulinic acid synthetase. II. Induction in rat liver. J. biol. Chem. 241, 4323–4329 (1966b)PubMedGoogle Scholar
  149. Marver, H.S., Tschudy, D.P., Perlroth, M.G., Collins, A.: δ-Aminolevulinic acid synthetase. I. Studies in liver homogenates. J. biol. Chem. 241, 2803–2809 (1966a)PubMedGoogle Scholar
  150. Mauzerall, D.: Normal porphyrin metabolism. J. Pediatr. 64, 5–16 (1964)Google Scholar
  151. Mauzerall, D., Granick, S.: The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J. biol. Chem. 219, 435–446 (1956)PubMedGoogle Scholar
  152. McIntire, M.S., Angle, C.R.: Air lead; relation to lead in blood of black school children deficient in glucose-6-phosphate dehydrogenase. Science 177, 520–522 (1972)PubMedGoogle Scholar
  153. McLaren, G.D., Carpenter, J.T.Jr., Nino, H.V.: Erythrocyte protoporhyrin in the detection of iron deficiency. Clin. Chem. 21, 1121–1127 (1975)PubMedGoogle Scholar
  154. Meredith, P.A., Moore, M.R., Goldberg, A.: Effects of aluminum, lead, and zinc on delta-aminolaevulinic acid dehydratase. Biochem. Soc. Trans. 2, 1243–1245 (1974)Google Scholar
  155. Meyer, U.A., Schmid, R.: Hereditary hepatic porphyrias. Fed. Proc. 32, 1649–1655 (1973)PubMedGoogle Scholar
  156. Miani, N., Viterbo, B.: Studio isoautoradiografico sulla localizzazione del piombo (RaD) in vari organi di cane. Z. Zeilforsch. 49, 188–208 (1958Google Scholar
  157. Millar, J.A., Battistini, V., Cumming, R.L.C., Carswell, F., Goldberg, A.: Lead and δ-aminolevulinic acid dehydratase levels in mentally retarded children and in lead-poisoned suckling rats. Lancet 1970 II, 695–698Google Scholar
  158. Miyagi, K., Cardinal, R., Bossenmaier, I., Watson, C.J.: The serum porphobilinogen and hepatic porphobilinogen deaminase in normal and porphyric individuals. J. Lab. clin. Med. 78, 683–695 (1971)PubMedGoogle Scholar
  159. Moore, M.R.: Lead, ethanol and δ-aminolaevulinate dehydratase. Biochem. J. 129, 43P–44P (1972)Google Scholar
  160. Moosa, A., Harris, F.: Erythrocyte hypoplasia due to lead poisoning. A devastating, yet curable disease. Clin. Pediat. 8, 400–402 (1969)PubMedGoogle Scholar
  161. Mooty, J., Ferrand, C.F.Jr., Harris, P.: Relationship of diet to lead poisoning in children. Pediatrics 55, 636–639 (1975)PubMedGoogle Scholar
  162. Morrow, J.J., Urata, G., Goldberg, A.: The effect of lead and ferrous and ferric iron on δ-aminolevulinic acid synthetase. Clin. Sci. 37, 533–538 (1969)PubMedGoogle Scholar
  163. Muirhead, E.E., Groves, M., Bryan, S.: Positive direct Coombs test induced by Phenylhydrazine. J. clin. Invest. 33, 1700–1711 (1954)PubMedGoogle Scholar
  164. Nagai, T., Huse, T., Saikawa, S.: On the change of blood glutathione level in experimentally lead-poisoned rabbits. Sci. Labour (Japan) 32, 390–403 (1956)Google Scholar
  165. Nakao, K., Wada, O., Yano, Y.: δ-aminolevulinic acid dehydratase activity in erythrocytes for the evaluation of lead poisoning. Clin. chim. Acta 19, 319–325 (1968)PubMedGoogle Scholar
  166. Nandi, D.L., Baker-Cohen, K.F., Shemin, D.: δ-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. I. Isolation and properties. J. biol. Chem. 243, 1224–1230 (1968)PubMedGoogle Scholar
  167. Narisawa, K., Kikuchi, G.: Effect of inhibitors of DNA synthesis on allylisopropylacetamide induced increases of δ-aminolevulinc acid synthetase and other enzymes in rat liver. Biochim. biophys. Acta 99, 580–583 (1965)PubMedGoogle Scholar
  168. NIOSH: Criteria for a recommended standard, occupational exposure to inorganic lead. U.S. Department of Health, Education, and Welfare, Public Health Service. National Institute for Occupational Safety and Health, 1972.Google Scholar
  169. Ono, T., Wada, O., Nagahashi, M., Yamaguchi, N., Toyokawa, K.: Maximum levels of the increased sulfhydryl group in a special protein fraction extracted from kidney of mice administered with cadmium. Industr. Hlth 11, 243–244 (1973a)Google Scholar
  170. Ono, T. Wada, O., Nagahashi, M., Yamaguchi, N., Toyokawa, K.: Increase of sulfhydryl group in proteins from kidney of mice administered with various heavy metals. Industr. Health 11, 73–74 (1973b)Google Scholar
  171. Ørskov, S.L.: Untersuchungen über den Einfluss von Kohlensäure und Blei auf die Permeabilität der Blutkörperchen für Kalium and Rubidium. Biochem. Z. 279, 250–261 (1935)Google Scholar
  172. Oyama, H., Sugita, Y., Yoneyama, Y., Yoshikawa, H.: Stoichiometry of heme synthesis by partially purified enzyme prepared from duck erythrocytes. Biochim. biophys. Acta 47, 413–414 (1961)PubMedGoogle Scholar
  173. Paglia, D.E., Valentine, W.N.: Characteristics of a pyrimidine-specific 5′-nucleotidase in human erythrocytes. J. biol. Chem. 250, 7973–7979 (1975)PubMedGoogle Scholar
  174. Paglia, D.E., Valentine, W.N., Dahlgren, J.G.: Effects of low-level lead exposure on pyrimidine 5′-nucleotidase and other erythrocyte enzymes. Possible role of pyrimidine 5′-nucleotidase in the pathogenesis of lead-induced anemia. J. clin. Invest. 56, 1164–1169 (1975)PubMedGoogle Scholar
  175. Parr, D.R., Harris, E.J.: Enhancement by chelating agents of lead toxicity to mitochondria in the presence of inorganic phosphate. FEBS Lett. 59, 92–95 (1975)PubMedGoogle Scholar
  176. Passow, H.: Ion and water permeability of the red blood cell. In: The Red Blood Cell: A Comprehensive Treatise. New York: Academic Press 1964Google Scholar
  177. Passow, H.: The red blood cell: Penetration, distribution, and toxic actions of heavy metals. In: Effects of Metals on Cells, Subcellular Elements, and Macromolecules. Springfield, Ill.: Thomas 1970Google Scholar
  178. Passow, H., Rothstein, A., Clarkson, T.W.: The general pharmacology of the heavy metals. Pharmacol. Rev. 13, 185–224 (1961)PubMedGoogle Scholar
  179. Passow, H., Tillman, K.: Untersuchungen über den Kaliumverlust bleivergifteter Menschenerythrocyten. Pflügers Arch. ges. Physiol. 262, 23–26 (1955)Google Scholar
  180. Pentschew, A., Garro F.: Lead encephalomyelopathy of suckling rat and implications on the porphyrinopathic nervous diseases. Acta neuropath. (Bed.) 6, 266–278 (1966)Google Scholar
  181. Piomelli, S.: A micromethod for free erythrocyte porphyrins: The FEP test. J. Lab. clin. Med. 81, 932–940 (1973)PubMedGoogle Scholar
  182. Piomelli, S., Lamola, A.A., Poh-Fitzpatrick, M.B., Seaman, C., Harber, L.C.: Erythropoietic protoporphyria and Pb intoxication: The molecular basis for difference in cutaneous photosensitivity. I. Different rates of diffusion of protoporhyrin from the erythrocytes, both in vivo and in vitro. J. clin. Invest. 56, 1519–1527 (1975)PubMedGoogle Scholar
  183. Piper, W.N., Tephly, T.R.: Differential inhibition of erythrocyte and hepatic uroporphyrinogen I synthetase activity by lead. Life Sci. 14, 873–876 (1974)PubMedGoogle Scholar
  184. Poňka, P., Neuwirt, G.: Mitochondrial iron overload. New Engl. J. Med. 293, 406 (1975)PubMedGoogle Scholar
  185. Porra, R.J., Jones, O.T.G.: Studies on ferrochelatase. I. Assay and properties of ferrochelatase from a pig-liver mitochondrial extract. Biochem. J. 87, 181–185 (1963a)PubMedGoogle Scholar
  186. Porra, R.J., Jones, O.T.G.: Studies on ferrochelatase II. An investigation of the role of ferrochelatase in the biosynthesis of various heme prosthetic groups. Biochem. J. 87, 186–192 (1963b)PubMedGoogle Scholar
  187. Porter, S.: Congenital erythropoietic protoporhyria. II. An experimental study. Blood 22, 532–544 (1963)PubMedGoogle Scholar
  188. Quaterman, J., Morrison, J.N., Humphries, W.R.: The influence of high dietary intakes of calcium on lead retention and release in rats. Proc. Nutr. Soc. 34, 89–90 A (1975)Google Scholar
  189. Richter, G.W., Kress, Y., Cornwall, C.C.: Another look at lead inclusion bodies. Amer. J. Path. 53, 189–217 (1968)PubMedGoogle Scholar
  190. Roels, H.A., Buchet, J.P., Lauwerys, R.R., Sonnett, J.: Comparison of in vivo effect of inorganic lead and cadmium on glutathione reductase system and δ-aminolevulinate dehydratase in human erythrocytes. Brit. J. industr. Med. 32, 181–192 (1975a)PubMedGoogle Scholar
  191. Roels, H.A., Lauwerys, R.R., Buchet, J.P., Vrelust, M.TH.: Response of free erythrocyte porphyrin and urinary δ-aminolevulinic acid in men and women moderately exposed to lead. Int. Arch. Arbeitsmed. 34, 97–108 (1975b)PubMedGoogle Scholar
  192. Rosen, J.F., Zarate-Salvador, C., Trinidad, E.E.: Plasma lead levels in normal and lead-intoxicated children. J. Pediatr. 84, 45–48 (1974)PubMedGoogle Scholar
  193. Rosenberg, S.A., Guidotti, G.: Fractionation of the protein components of human erythrocyte membranes. J. biol. Chem. 244, 5118–5124 (1969)PubMedGoogle Scholar
  194. Rosenthal, A.S., Moses, H.L., Tice, L., Ganote, C.E.: Lead ion and phosphatase histochemistry. III. The effects of lead and adenosine triphosphate concentration on the incorporation of phosphate into fixed tissue. J. Histochem. Cytochem. 17, 608–616 (1969)PubMedGoogle Scholar
  195. Rubino, G.F., Coscia, G.C., Perrelli, G., Parigi, A.: Comportamento del glutatione del test di stabilita del glutationee dell’attivita glucosio-6-fosfato-deidrogenasica nel saturnismo. Minerva med. (Torino) 54, 930–932 (1963)Google Scholar
  196. Rubino, G.F., Prato, V., Fiorina, L.: Anemia of lead poisoning: Its nature and pathogenesis. Folia med. (Napoli) 42, 1–20 (1959)Google Scholar
  197. Russell, R.L., Coleman, D.L.: Genetic control of hepatic δ-aminolevulinate dehydratase in mice. Genetics 48, 1033–1039 (1963)PubMedGoogle Scholar
  198. Saita, G., Lussana, S.: Intossicazione da piombo in portatrice de emazie fabiche. Med. d. Lavoro 62, 22–27 (1971)Google Scholar
  199. Sanai, G.H., Hasegawa, T., Yoshikawa, H.: Pretreatment of rats with lead in experimental acute lead poisoning. J. occup. Med. 14, 301–305 (1972)PubMedGoogle Scholar
  200. Sano, S.: The effect of mitochondria on porphyrin and heme biosynthesis in red blood cells. Acta hemat. jap. 21 (Suppl. 2), 337–351 (1958)Google Scholar
  201. Sano, S., Granick, S.: Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J. biol. Chem. 236, 1173–1180 (1961)PubMedGoogle Scholar
  202. Sassa, S., Granick, J. L., Granick, S., Kappas, A., Levere, R.D.: Studies in lead poisoning I. Microanalysis of erythrocyte protoporphyrin levels by spectrofluorometry in the detection of chronic lead intoxication on the subclinical range. Biochem. Med. 8, 135–148 (1973b)PubMedGoogle Scholar
  203. Sassa, S., Granick, S., Bickers, D.R., Bradlow, H.L., Kappas, A.: Studies in porphyria III. A micro-assay for uroporphyrinogen I synthetase, one of the three abnormal enzyme activities in acute intermittent porphyria, and its application to the study of the genetics of this disease. Proc. nat. Acad. Sci. (Wash.) 71, 732–736 (1974)Google Scholar
  204. Sassa, S., Granick, S., Bickers, D.R., Levere, R.D., Kappas, A.: Studies on the inheritance of human erythrocyte δ-aminolevulinate dehydratase and uroporphyrinogen synthetase. Enzyme 16, 326–333 (1973a)PubMedGoogle Scholar
  205. Sassa, S., Granick, S., Kappas, A.: Effect of lead and genetic factors on heme biosynthesis in the human red cell. Ann. N.Y. Acad. Sci. 244, 419–440 (1975)PubMedGoogle Scholar
  206. Sawada, H., Takeshita, M., Sugita, Y., Yoneyama, Y.: Effect of lipid on protoheme ferrolyase. Biochim. biophys. Acta 178, 145–155 (1969)PubMedGoogle Scholar
  207. Sawinsky, A., Durzt, J., Pasztor, G.: Leukozytenschädigung by Bleiexposition. Z. ges. Hyg. 17, 239–240 (1971)Google Scholar
  208. Schoomaker, E.B., Prasad, A, Oelshlegel, F.J., Ortego, J., Brewer, G.J.: Role of zinc in sickle cell disease. I. Zinc deficiency through hemolysis. Clin. Res. 21, 834 (1973)Google Scholar
  209. Schwartz, S.: Clinical aspects of porphyrin metabolism. V.A. Admin. Techn. Bull. TB 10–94, Washington, D.C. (1953)Google Scholar
  210. Scoppa, P., Roumengous, M., Penning, W.: Hepatic drug metabolizing activity in lead-poisoned rats. Experientia (Basel) 29, 970–972 (1973)Google Scholar
  211. Seppelainen, A.M.: Peripheral nervous system in lead exposed workers. In: Behavioral Toxicology. Early Detection of Occupational Hazards. U.S. DHEW, PHS, CDC, NIOSH, HEW Publ. No. (NIOSH) 74–126, 1974Google Scholar
  212. Shanley, B.C., Neethling, A.C., Percy, V.A.: Neurochemical aspects of porphyria. S. Afr. med. J. 49, 576–580 (1975)PubMedGoogle Scholar
  213. Shemin, D.: Structure and function of δ-aminolevulinic acid dehydratase. “Porphyrins in Human Diseases”, 1st International Porphyrin Meeting, p. 15, Freiburg, Germany 1975Google Scholar
  214. Shemin, D., London, I.M., Rittenberg, D.: The in vitro synthesis of heme from glycine by the nucleated red blood cell. J. biol. Chem. 173, 799–800 (1948)PubMedGoogle Scholar
  215. Shetty, A.S., Miller, G.W.: Purification and general properties of δ-aminolaevulinate dehydratase from Nicotiana tabacum L. Biochem. J. 114, 331–337 (1969)PubMedGoogle Scholar
  216. Shiraishi, A.: Concentration of reduced glutathione in the blood of lead-poisoned persons. Nisshin Igaku 39, 478–483 (1952)Google Scholar
  217. Silverstein, E.: Inhibition of certain mitochondrial oxidative enzymes by porphyrins and metalloporphyrins. Biochem. Pharmacol. 11, 431–444 (1962)PubMedGoogle Scholar
  218. Simpson, C.F., Damron, B.L., Harms, R.H.: Abnormality of erythrocytes and renal tubules of chicks poisoned with lead. Amer. J. vet. Res. 31, 515–523 (1970)PubMedGoogle Scholar
  219. Six, K.M., Goyer, R.A.: Experimental enhancement of lead toxicity by low dietary calcium. J. Lab. clin. Med. 76, 933–940 (1970)PubMedGoogle Scholar
  220. Six, K.M., Goyer, R.A.: The influence of iron deficiency on tissue content and toxicity of ingested lead in the rat. J. Lab. clin. Med. 79, 128–136 (1972)PubMedGoogle Scholar
  221. Skaar, H., Ophus, E., Gullväg, B.M.: Lead accumulation within nuclei of moss leaf cells. Nature (Lond.) 241, 215–216 (1973)Google Scholar
  222. Spector, M.J., Guinee, V.F., Davidow, B.: The unsuitability of random urinary delta-amino-levulinic acid samples as a screening test for lead poisoning. J. Pediat. 79, 799–804 (1971)Google Scholar
  223. Steiger, M.: Die Bedeutung von Blei bei hereditären Erythrozytenanomalien. Schw. Zschr. f. Unfallmedizin und Berufskrankheiten 61, 199–221 (1968)Google Scholar
  224. Stetson, C.A., Jr.: Pica: Its relationship to lead poisoning in children. J. Maine med. Ass. 38, 10–12 (1947)Google Scholar
  225. Stevens, E., Frydman, R.B., Frydman, B.: Separation of porphobilinogen deaminase and uroporphyrinogen III cosynthetase from human erythrocytes. Biochim. biophys. Acta 158, 496–498 (1968)PubMedGoogle Scholar
  226. Strand, L.J. Manning, J., Marver, H.S.: The induction of δ-aminolevulinic acid synthetase in cultured liver cells: The effect of end product and inhibitors of heme biosynthesis. J. biol. Chem. 247, 2820–2827 (1972a)PubMedGoogle Scholar
  227. Strand, L.J., Meyer, U.A., Felscher, B.F., Redeker, A.G., Marver, H.S.: Decreased red cell uroporphyrinogen I synthetase in intermittent acute porphyria. J. clin. Invest. 51, 2530–2536 (1972b)PubMedGoogle Scholar
  228. Stuik, E.J.: Biological response of male and female volunteers to inorganic lead. Int. Arch. Arbeitsmed. 33, 83–97 (1974)PubMedGoogle Scholar
  229. Sutherland, D.A., Eisentraut, A.M.: The direct Coombs test in lead poisoning. Blood 11, 1024–1031 (1956).PubMedGoogle Scholar
  230. Tephly, T.R., Hasegawa, E., Baron, J.: Effect of drugs on heme synthesis in the liver. Metabolism 20, 200–214 (1971)PubMedGoogle Scholar
  231. Teras, L.E., Kakhn, K.A.: Oxidative processes and phosphorylation in liver in lead intoxication. Vop. med. khim. 12, 40–45 (1967)Google Scholar
  232. Thomas, P.K., Lascelles, R.G.: The pathology of diabetic neuropathy. Quart. J. Med. 35, 489–509 (1966)Google Scholar
  233. Thomas, P.K., Lascelles, R.G.: Hypertrophic neuropathy. Quart. J. Med. 36, 223–238 (1967)PubMedGoogle Scholar
  234. Tice, L.W.: Lead-adenosine triphosphate complexes in adenosine triphosphatase histochemistry, J. Histochem. Cytochem. 17, 85–94 (1969)PubMedGoogle Scholar
  235. Tokunaga, R., Sano, S.: Comparative studies on nonenzymic and enzymic protoheme formation. Biochim. biophys. Acta 264, 263–271 (1972)PubMedGoogle Scholar
  236. Tomio, J.M., Tuzman, V., Grinstein, M.: δ-Aminolevulinate dehydratase from rat Harderian gland. Purification and properties. Europ. J. Biochem. 6, 84–87 (1968)PubMedGoogle Scholar
  237. Tomokuni, K.: New method for determination of aminolaevulinate dehydratase activity of human erythrocytes as an index of lead exposure. Clin. Chem. 20, 1280–1291 (1974)Google Scholar
  238. Tomokuni, K., Kawanishi, T.: Relationship between activation of delta-aminolevulinic acid dehydratase by heating and blood lead level. Arch. Toxicol. 34, 253–258 (1975)PubMedGoogle Scholar
  239. Traketeller, A.C., Hernie, E.W., Montjar, M., Axelrod, A.E., Jensen, W.N.: Studies on rat reticulocyte polysomes during in vitro maturation. Arch. Biochem. 112, 89–97 (1965)Google Scholar
  240. Tuttle, A.H., Fitch, C.: Alteration in the electrophoretic characteristics of hemoglobin in paint eaters. Amer. J. Dis. Child. 96, 503 (1958)Google Scholar
  241. Ulmer, D.D., Vallee, B.L.: Trace substances in environmental health. II. Proceedings Univ. Missouri Ann. Conf. Trace Substances. Environm. Health, 2nd ed., D.D. Hemphill, 7. Columbia: Univ. Missouri 1969Google Scholar
  242. Valentine, W.N., Fink, K., Paglia, D.E., Harris, S.R., Adams, W.S.: Hereditary hemolytic anemia with human erythrocyte pyrimidine 5′-nucleotidase deficiency. J. clin. Invest. 54, 866–879 (1974)PubMedGoogle Scholar
  243. Van Esch, G.J., Van Genderen, H., Vink, H.H.: The induction of renal tumours by feeding of basic lead acetate to rats. Brit. J. Cancer 16, 289–297 (1962)PubMedGoogle Scholar
  244. Vasiliu, A., Stavri, G., Freund, S.: Value of reduced glutathione determinations in workers exposed to lead. Revista Iasi 73, 647–652 (1962)Google Scholar
  245. Vergnano, C., Cartasegna, C., Bonsignore, D.: Livelli di glutatione ridotto nella intossicazione sperimentale da piombo. Boll. Soc. ital. Biol. sper. 43, 1099–1102 (1967)PubMedGoogle Scholar
  246. Vincent, P.C., Blackburn, C.R.B.: Effects of heavy metal ions on the human erythrocyte I. Comparison of the action of several heavy metals. Aust. J. exp. Biol. med. Sci. 36, 471–479 (1958a)Google Scholar
  247. Vincent, P.C., Blackburn, C.R.B.: Effects of heavy metal ions on the human erythrocyte: II. Effects of lead and mercury. Aust. J. exp. Biol. med. Sci. 36, 589–601 (1958b)PubMedGoogle Scholar
  248. Vitale, L.F., Joselow, M.M., Wedeen, R.P., Pawlow, M.: Blood lead — an inadequate measure of occupational exposure. J. occup. Med. 17, 155–156 (1975)PubMedGoogle Scholar
  249. Wachstein, M.: Studies on inclusion bodies: I. Acid-fastness of nuclear inclusion bodies that are induced by ingestion of lead and bismuth. Amer. J. clin. Path. 19, 608–614 (1949).Google Scholar
  250. Wada, O., Toyokawa, K., Suzuki, T., Suzuki, S., Yano, Y., Nakao, K.: Response to low concentration of mercury vapor. Arch. environ. Hlth. 19, 485–488 (1969)Google Scholar
  251. Wada, O., Yano, Y., Toyokawa, K., Suzuki, T., Suzuki, S., Katsunuma, H.: Human response to lead: In special references to porhyrin metabolism in bone marrow erythroid cells and clinical and laboratory study. Industr. Hlth. 10, 84–92 (1972)Google Scholar
  252. Waldron, H.A.: The anemia of lead poisoning: A review. Brit. J. industr. Med. 23, 83–100 (1966)PubMedGoogle Scholar
  253. Watrach, A.M.: Degeneration of mitochondria in lead poisoning. J. Ultrastruct. Res. 10, 177–181 (1964)PubMedGoogle Scholar
  254. Watson, R.J., Decker, E., Lichtman, H.C.: Hematologic studies in children with lead poisoning. Pediatrics 21, 40–46 (1958)PubMedGoogle Scholar
  255. Waxman, H.S., Rabinovitz, M.: Control of reticulocyte polyribosome content and hemoglobin synthesis by heme. Biochim. biophys. Acta 129, 369–379 (1966)Google Scholar
  256. Weed, R.I., Eber, J., Rothstein, A.: Interaction of mercury with human embryos. J. gen. Physiol. 45, 395–410 (1962)PubMedGoogle Scholar
  257. Weippl, G.: Anemia with geophagia in early childhood. Z. Kinderheilk. 160, 142 (1959)Google Scholar
  258. Weissberg, J.N. Lipschutz, F., Oski, F.A.: δ-Aminolevulinic acid dehydratase activity in circulating blood cells. A sensitive laboratory test for the detection of childhood lead poisoning. New Engl. J. Med. 284, 565–569 (1971)PubMedGoogle Scholar
  259. Weissberg, J.B., Voytek, P.E.: Liver and red cell porphobilinogen synthetase in the adult and fetal guinea pig. Biochim. biophys. Acta 364, 304–319 (1974)PubMedGoogle Scholar
  260. White, J.M., Harvey, D.R.: Defective synthesis of α and β globin chains in lead poisoning. Nature (Lond.) 236, 71–73 (1972)Google Scholar
  261. Whitfield, C. L., Ch’ien, L.T., Whitehead, J.D.: Lead encephalopathy in adults. Amer. J. Med. 52, 289–298 (1972)PubMedGoogle Scholar
  262. Whiting, M., Granick, S.: δ-Aminolevulinic acid synthetase from chick embryo liver mitochondria. II. Immunochemical correlation between synthesis and activity in induction and repression. J. biol. Chem. 251, 1347–1353 (1976)Google Scholar
  263. Wilson, E.L., Burger, P.E., Dowdle, E.B.: Beef-liver 5-aminolevulinic avid dehydratase. Europ. J. Biochem. 29, 563–571 (1972)Google Scholar
  264. Wilson, V.K., Thompson, M.L., Dent, C.E.: Aminoaciduria in lead poisoning. Lancet 1953 ii, 66–68Google Scholar
  265. Wintrobe, M.M.: Factors and mechanisms in the production of red blood corpuscles. Harvey Lect. 45, 87–126 (1949–1950)Google Scholar
  266. Yoneyama, Y., Sawada, H., Takeshita, M., Sugita, Y.: The role of lipids in heme synthesis. Lipids 4, 321–326 (1969)PubMedGoogle Scholar
  267. Yoshikawa, H.: Tolerance to lethal doses of metals in mice pretreated with their low doses. Industr. Hlth 6, 88–89 (1968)Google Scholar
  268. Zollinger, H.U.: Durch chronische Bleivergiftung erzeugte Nierenadenome und Carcinome bei Ratten und ihre Beziehungen zu den entsprechenden Neubildungen des Menschen. Virchows Arch. path. Anat. 323, 694–710 (1953)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Shigeru Sassa

There are no affiliations available

Personalised recommendations