Effects of Drugs on Bilirubin Metabolism

  • H. L. Rayner
  • B. A. Schacter
  • L. G. Israels
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)


Type I: A hereditary disorder of bilirubin metabolism in which bilirubin glucuronyl transferase activity is lacking abd the bile is free of bilirubin glucuronide. Severe unconjugated hyperbilirubinemia usually leads to kernicterus in infancy.


Bile Flow Bile Pigment Unconjugated Bilirubin Heme Oxygenase Activity Glucuronyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts, E.M.: Differentiation of the barbiturate stimulation of the glucuronic acid pathway from de novo enzyme synthesis. Biochem. Pharmacol. 15, 1469–1477 (1966)PubMedGoogle Scholar
  2. Acocella, G., Billing, B.H.: The effect of rifamycin SV on bile pigment excretion in rats. Gastroenterology 49, 526–530 (1965)PubMedGoogle Scholar
  3. Acocella, G., Nicolis, F.B., Tenconi, L.T.: The effect of an intravenous infusion of rifamycin SV on the excretion of bilirubin, bromsulphalein and indocyanine green in man. Gastroenterology 49, 521–525 (1965)PubMedGoogle Scholar
  4. Adachi, Y., Yamamoto, T.: Influence of drugs and chemicals upon hepatic enzymes and proteins. I. Structure-activity relationship between various barbiturates and microsomal enzyme induction in rat liver. Biochem. Pharmacol. 25, 663–668 (1976)PubMedGoogle Scholar
  5. Adlard, B.P.F., Lathe, G.H.: Breast milk jaundice: Effect of 3α20β-pregnanediol on bilirubin conjugation by human liver. Arch. Dis. Childh. 45, 186–189 (1970)PubMedGoogle Scholar
  6. Adlercreutz, H., Tenhunen, R.: Some aspects of the interaction between natural and synthetic female sex hormones and the liver. Amer. J. Med. 49, 630–648 (1970)PubMedGoogle Scholar
  7. Alpert, S., Mosher, M., Shanske, A., Arias, I.M.: Multiplicity of hepatic excretory mechanisms for organic anions. J. gen. Physiol. 53, 238–247 (1969)PubMedGoogle Scholar
  8. Arias, I.M.: A defect in microsomal function in nonhemolytic acholuric jaundice. J. Histochem. Cytochem. 7, 250–252 (1959)PubMedGoogle Scholar
  9. Arias, I.M.: Ethereal and N-linked glucuronide formation by normal and Gunn rats in vitro and in vivo. Biochem. biophys. Res. Commun. 6, 81–84 (1961)Google Scholar
  10. Arias, I.M.: Effects of a plant acid (icterogenin) and certain anabolic steroids on the hepatic metabolism of bilirubin and sulfobromophthalein. Ann. N.Y. Acad. Sci. 104, 1014–1025 (1963)Google Scholar
  11. Arias, I.M.: Transfer of bilirubin from blood to bile. Semin. Hematol. 9, 55–70 (1972)PubMedGoogle Scholar
  12. Arias, I.M., Gartner, L.M.: Production of unconjugated hyperbilirubinemia in full-term new born infants following administration of pregnane-3(alpha), 20(beta)-diol. Nature (Lond.) 203, 1292–1293 (1964)Google Scholar
  13. Arias, I.M., Gartner, L.M., Cohen, M., Ben Ezzer, J., Levi, A.J.: Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Amer. J. Med. 47, 395–409 (1969)PubMedGoogle Scholar
  14. Arias, I.M., Gartner, L., Furman, M., Wolfson, S.: Studies of the effect of several drugs on hepatic glucuronide formation in newborn rats and humans. Ann. N.Y. Acad. Sci. 111, 274–280 (1963)PubMedGoogle Scholar
  15. Arias, I.M., Gartner, L.M., Seifter, S., Furman, M.: Prolonged neonatal unconjugated hyperbilirubinemia associated with breast feeding and a steroid, pregnane-3 (alpha), 20 (beta)-diol, in maternal milk that inhibits glucuronide formation in vitro. J. clin. Invest. 43, 2037–2047 (1964)PubMedGoogle Scholar
  16. Arias, I.M., Jansen, P.: Protein binding and conjugation of bilirubin in the liver cell In: Jaundice. Goresky, C.A., and Fisher, M.M. (eds.), pp. 175–193. New York: Plenum Press 1975Google Scholar
  17. Arias, I.M., Johnson, L., Wolfson, S.: Biliary excretion of injected conjugated and un conjugated bilirubin by normal and Gunn rats. Amer. J. Physiol. 200, 1091–1094 (1961)PubMedGoogle Scholar
  18. Arrowsmith, W.A., Payne, R.B., Littlewood, J.M., Comparison of treatments for congenital nonobstructive nonhemolytic hyperbilirubinemia. Arch. Dis. Childh. 50, 197–201 (1975)PubMedGoogle Scholar
  19. Aschoff, L.: Das reticulo-endotheliale System und seine Beziehungen zur Gallenfarbstoffbildung. Münch. med. Wschr. 69, 1352 (1922)Google Scholar
  20. Ashbrook, J.D., Spector, A.A., Santos, E.G., Fletcher, J.E.: Long chain fatty acid binding to human plasma albumin. J. biol. Chem. 250, 2333–2338 (1975)PubMedGoogle Scholar
  21. Bakken A.F., Thaler M.M., Schmid, R.: Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J. clin. Invest. 51, 530–536 (1972)PubMedGoogle Scholar
  22. Barnhart, J.L., Clarenburg, R.: Factors determining clearance of bilirubin in perfused rat liver. Amer. J. Physiol. 225, 497–507 (1973)PubMedGoogle Scholar
  23. Baron, J., Tephly, T.R.: The role of heme synthesis during the induction of hepatic microsomal cytochrome P-450 and drug metabolism produced by benzpyrene. Biochem. biophys. Res. Commun. 36, 526–532 (1969)PubMedGoogle Scholar
  24. Bartok, I., Varga, L., Varga, G.: Elektronenmikroskopische Veränderungen in der Rattenleber nach Verabreichung von dem oralen Antikonzeptionsmittel Lynestrenol. Acta hepato. splenol. (Stuttg.) 17, 1 (1970)Google Scholar
  25. Batt, A.M., Ziegler, J.M., Siest, G.: Competitive inhibition of glucoronidation by p-hydroxyphenyl hydantoin. Biochem. Pharmacol. 24, 152–154 (1975)PubMedGoogle Scholar
  26. Beayen, G.H., Chen, S.H., D’Albis, A., Gratzer, W.B.: A spectroscopic study of the haemin-human serum albumin system. Europ. J. Biochem. 41, 539–546 (1974)Google Scholar
  27. Beaven, G.H., D’Albis, A., Gratzer, W.B.: The interaction of bilirubin with human serum albumin. Europ. J. Biochem. 33, 500–510 (1973)Google Scholar
  28. Becker, B.A., Plaa, G.L.: The nature of α-naphthylisothiocyanate-induced cholestasis. Toxicol. appl. Pharmacol. 7, 680–685 (1965a)PubMedGoogle Scholar
  29. Becker, B.A., Plaa, G.L.: Quantitative and temporal delineation of various parameters of liver dysfunction due to α-naphthylisothiocyanate. Toxicol. appl. Pharmacol. 7, 708–718 (1965b)PubMedGoogle Scholar
  30. Bellet, H., Raynaud, A.: An assay of bilirubin UDP-glucuronyl transferase on needle-biopsies applied to Gilbert’s syndrome. Clin. chim. Acta 53, 51–55 (1974)PubMedGoogle Scholar
  31. Berk, P.D.: Total body handling of bilirubin. In: Jaundice. Goresky, C.A., and Fisher, M.M. (eds.), pp. 135–157. New York: Plenum Press 1975Google Scholar
  32. Berk, P.D., Blaschke, T.: Effect of glutethimide on the plasma concentration of unconjugated bilirubin. Clin. Res. 19, 347 (1971) (Abstract)Google Scholar
  33. Berk, P.D., Bloomer, J.R., Howe, R.B., Berlin, N.I.: Constitutional hepatic dysfunction (Gilbert’s syndrome). A new definition based on kinetic studies with unconjugated radio-bilirubin. Amer. J. Med. 49, 296–305 (1970)PubMedGoogle Scholar
  34. Berk, P.D. Howe, R.B., Berlin, N.I.: Disorders of bilirubin metabolism. pp. 841–880, In: Duncan’s Diseases of Metabolism. Bondy, P.K. and Rosenberg, L.E. (eds.). Philadelphia—London—Toronto: Saunders 1974Google Scholar
  35. Berk, P.D., Howe, R.B., Bloomer, J.R., Berlin, H.I.: Studies of bilirubin kinetics in normal adults. J. clin. Invest. 48, 2176–2190 (1969)PubMedGoogle Scholar
  36. Bernstein, L.H., Ben-Ezzer, J., Gartner, L., Arias, I.M.: Hepatic intracellular distribution of tritium-labelled unconjugated and conjugated bilirubin in normal and Gunn rats. J. clin. Invest. 45, 1194–1201 (1966)PubMedGoogle Scholar
  37. Berthelot, P.: Influence of drugs on bilirubin disposal. In: International Symposium on Hepatoxicity. M. Eliakim., J. Eshchar and H. J. Zimmermann (eds.), pp. 69–74. New York: Academic Press 1974Google Scholar
  38. Berthelot, P., Billing, B.H.: Effect of bunamiodyl on hepatic uptake of sulfobromphthalein in the rat. Amer. J. Physiol. 211, 395–399 (1966)PubMedGoogle Scholar
  39. Berthelot, P., Erlinger, S., Dhumeaux, D., Preaux, A.M.: Effect of rifamycin, bunamiodyl, and novobiocin on bilirubin UDP-glucuronyl transferase. Digestion 4, 134–135 (1971)Google Scholar
  40. Bessis, M., Breton-Gorius, J., Thiery, J.P.: Role possible de l’hemoglobine accompagnant le noyau des erythroblastes dans l’origine de la stercobiline eliminée precocement. C.R. Acad. Sci. (Paris) 252, 2300–2302 (1961)Google Scholar
  41. Beutler, E.: The hemolytic effect of primaquine and related compounds: A review. Blood 14, 103–139 (1959)PubMedGoogle Scholar
  42. Beutler, E: Drug induced hemolytic anemia. Pharmacol. Rev. 21, 73–103 (1969a)PubMedGoogle Scholar
  43. Beutler, E.: Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. J. clin. Invest. 48, 1957–1966 (1969b)PubMedGoogle Scholar
  44. Beutler, E.: Abnormalities of the hexose monophosphate shunt. Semin. Hemat. 8, 311–347 (1971)PubMedGoogle Scholar
  45. Bevan, B.R., Holton, J.B.: Inhibition of bilirubin conjugation in rat liver slices by free fatty acids, with relevance to the problem of breast milk jaundice. Clin. chim. Acta 41, 101–107 (1972)PubMedGoogle Scholar
  46. Billing, H.B., Black, M.: The action of drugs on bilirubin metabolism in man. Ann. N.Y. Acad. Sci. 179, 403–410 (1971)Google Scholar
  47. Billing, B.H., Cole, P.G., Lathe, G.H.: The excretion of bilirubin as a diglucuronide giving the direct van den Bergh reaction. Biochem. J. 65, 774–784 (197)Google Scholar
  48. Billing, B.H., Maggiore, Q., Cartter, M.A.: Hepatic transport of bilirubin. Ann. N.Y. Acad. Sci. 111, 319–324 (1963)PubMedGoogle Scholar
  49. Billing, B.H., Williams, R., Richards, T.G.: Defects in hepatic transport of bilirubin in congenital hyperbilirubinemia. An analysis of plasma bilirubin disappearance curves. Clin. Sci. 27, 245–257 (1964)PubMedGoogle Scholar
  50. Bissell, D.M., Hammaker, L., Schmid, R.: Hemoglobin and erythrocyte catabolism in rat liver: The separate roles of parenchymal and sinusoidal cells. Blood 40, 812–822 (1972)PubMedGoogle Scholar
  51. Black, M., Billing, B.H.: Hepatic bilirubin UDP-glucuronyl transferase activity in liver disease and Gilbert’s syndrome. New Engl. J. Med. 280, 1266–1271 (1969)PubMedGoogle Scholar
  52. Black, M., Billing, B.H., Heirwegh, K.P.M.: Determination of bilirubin UDP-glucuronyl transferase activity in needle-biopsy specimens of human liver. Clin. chim. Acta 29, 27–35 (1970)PubMedGoogle Scholar
  53. Black, M., Fevery, J., Parker, D., Jacobson, J., Billing, B.H., Carson, E.R.: Effect of phenobarbitone on plasma (14C) bilirubin clearance in patients with unconjugated hyperbili-rubinaemia. Clin. Sci. molec. Med. 46, 1–17 (1974)Google Scholar
  54. Black, M., Perret, R.D., Carter, A.E.: Hepatic bilirubin UDP-glucuronyl transferase activity and cytochrome P-450 content in a surgical population and the effects of preoperative drug therapy. J. Lab. clin. Med. 81, 704–712 (1973)PubMedGoogle Scholar
  55. Black, M., Sherlock, S.: Treatment of Gilbert’s syndrome with phenobarbitone. Lancet 1970 I, 1359–1362Google Scholar
  56. Blackburn, M.G., Orzalesi, M.M., Pigram, P.: Effect of light on fetal red blood cells in vivo. J. Pediat. 80, 640–643 (1972)Google Scholar
  57. Blaschke, T.F., Berk, P.D.: Augmentation of bilirubin UDP glucuronyl transferase activity in rat liver homogenates by glutethimide. Proc. Soc. exp. Biol. (N.Y.) 140, 1315–1318 (1972)Google Scholar
  58. Blaschke, T.F., Berk, P.D., Rodkey, F.L., Scharschmidt, B.F., Collison, H.A., Waggoner, J.G.: Drugs and the liver—I. Effects of glutethimide and phenobarbital on hepatic bilirubin clearance, plasma bilirubin turnover and carbon monoxide production in man. Biochem. Pharmacol. 23, 2795–2806 (1974a)PubMedGoogle Scholar
  59. Blaschke, T.F., Berk, P.D., Scharschmidt, B.F., Guyther, J.R., Vergalla, J.M., Waggoner, J.G.: Crigler-Najjar syndrome: An unusual course with development of neurologic damage at age eighteen. Pediat. Res. 8, 573–590 (1974b)PubMedGoogle Scholar
  60. Bloomer, J.R., Berk, P.D., Berlin, N.I.: Albumin and hepatic uptake of bilirubin. Clin. Res. 20, 449 (1972) (Abstract)Google Scholar
  61. Bloomer, J.R., Berk, P.D., Bonkowsky, H.L., Stein, J.A., Berlin, N.I., Tschudy, D.P.: Blood volume and bilirubin production in acute intermittent porphyria. New Engl. J. Med. 284, 17–20 (1971)PubMedGoogle Scholar
  62. Bloomer, J.R., Boyer, J.L.: Phenobarbital effects in cholestatic liver disease. Ann. intern. Med. 82, 310–317 (1975)PubMedGoogle Scholar
  63. Bloomer, J.R., Boyer, J.L., Klatskin, G.: Inhibition of bilirubin excretion in man during dehydrocholate choleresis. Gastroenterology 65, 929–935 (193)Google Scholar
  64. Blum, D., Etienne, J.: Agar in control of hyperbilirubinemia. J. Pediat. 83, 345 (1973)PubMedGoogle Scholar
  65. Blumenschein, S.D., Kallen, R.J., Storey, B., Natzschka, J., Odell, G.B., Childs, B.: Familial nonhemolytic jaundice with late onset of neurological damage. Pediatrics 42, 786–792 (1968)PubMedGoogle Scholar
  66. Bock, K.W.: Oxidation of barbiturates and the glucuronidation of 1-naphthol in perfused rat liver and in microsomes. Naunyn-Schmiedeberg’s Arch. Pharmacol. 283, 319–330 (1974)Google Scholar
  67. Bock, K.W., Frohling, W., Remmer, H., Rexer, B.: Effects of phenobarbital and 3-methyl-cholanthrene on substrate specificity of rat liver microsomal UDP-glucuronyltransferase. Biochim. biophys. Acta (Amst.) 327, 46–56 (1973)Google Scholar
  68. Bock, K.W., Siekevitz, P.: Turnover of heme and protein moieties of rat liver microsomal cytochrome b5. Biochem. biophys. Res. Commun. 41, 374—380 (1970)PubMedGoogle Scholar
  69. Bock, K.W., White, I.N.H.: UDP-glucuronyltransferase in perfused rat liver and in microsomes: Influence of phenobarbital and 3-methylcholanthrene. Europ. J. Biochem. 46, 451–459 (1974)PubMedGoogle Scholar
  70. Bolt, R.J., Dillon, R.S., Pollard, H.M.: Interference with bilirubin excretion by a gall-bladder dye. (Bunamiodyl). New Engl. J. Med. 265, 1043–1045 (1961)PubMedGoogle Scholar
  71. Bonnett, R., Stewart, J.C.M.: Photo-oxidation of bilirubin in hydroxylic solvents. Propentdyopent adducts as major products. Chem. Commun. 1972, 596–597Google Scholar
  72. Bonnett, R., Stewart, J.C.M.: The photo-oxidation of bilirubin in hydroxylic solvents. J. chem. Soc. [Perkin I] 1, 224–231 (1975)Google Scholar
  73. Bourke, E., Milne, M.D., Stokes, G.S.: Mechanism of renal excretion of urobilinogen. Brit. med. J. 1965 II, 1510–1514Google Scholar
  74. Boyer, J.L., Klatskin, G.: Canalicular bile flow and bile secretory pressure. Evidence for a non-bile salt dependent fraction in the isolated perfused rat liver. Gastroenterology 59, 853–859 (1970)PubMedGoogle Scholar
  75. Branch, R.A., Shand, D.G., Wilkinson, G.R., Nies, A.S.: Increased clearance of antipyrine and d-propranolol after phenobarbital treatment in the monkey. J. clin. Invest. 53, 1101–1107 (1974)PubMedGoogle Scholar
  76. Bratlid, D.: The effect of free fatty acids, bile acids, and hematin on bilirubin binding by human erythrocytes. Scand. J. clin. Lab. Invest. 30, 107–112 (1972a)PubMedGoogle Scholar
  77. Bratlid, D.: The effect of antimicrobial agents on bilirubin binding by human erythrocytes. Scand. J. clin. Lab. Invest. 30, 331–337 (1972b)PubMedGoogle Scholar
  78. Brauer, R.W., Leong, G.F., Holloway, R.J.: Mechanics of bile secretion. Effect of perfusion pressure and temperature on bile flow and bile secretion pressure. Amer. J. Physiol. 177, 103–119 (1954)PubMedGoogle Scholar
  79. Brewer, J.G., Dern, P.J.: A new inherited enzymatic deficiency of human erythrocytes: 6-phos-phogluconate dehydrogenase deficiency. Amer. J. hum. Genet. 16, 472–476 (1964)PubMedGoogle Scholar
  80. Brodersen, R.: Competitive binding of bilirubin and drugs to human serum albumin studied by enzymatic oxidation. J. clin. Invest. 54, 1353–1364 (1964)Google Scholar
  81. Brodersen, R., Hermann, L.S.: Intestinal reabsorption of unconjugated bilirubin: A possible contributing factor in neonatal jaundice. Lancet 1963 I, 1242Google Scholar
  82. Brody, T.M., Akera, T., Baskin, S.I., Gubitz, R., Lee, C.Y.: Interaction of Na, K-ATPase with chlorpromazine free radical and related compounds. Ann. N.Y. Acad. Sci. 242, 527–542 (1974)PubMedGoogle Scholar
  83. Broughton, P.M.G., Rossiter, E. Jr., Warren, C.B.M., Goulis, G., Lord, P.S.: Effect of blue light on hyperbilirubinemia. Arch. Dis. Childh. 40, 666–671 (1965)PubMedGoogle Scholar
  84. Brown, A.K.: Variations in the management of neonatal hyperbilirubinemia; Impact on our understanding of fetal and neonatal physiology. In: Bilirubin Metabolism in the Newborn. D. Bergsma, D.Y.Y. Hsia, and C. Jackson (eds.), pp. 22–30. New York: National Foundation for Birth Defects (Original Article Series) 1970Google Scholar
  85. Brown, A.K., Henning, G.: The effect of novobiocin on the development of the glucuronide conjugating system in newborn animals. Ann. N.Y. Acad. Sci. 111, 307–318 (1963)PubMedGoogle Scholar
  86. Brown, A.K., Zuelzer, W.W.: Studies on the neonatal development of the glucuronide conjugating system. J. clin. Invest. 37, 332–340 (1958)PubMedGoogle Scholar
  87. Brown, W.R., Grodsky, G.M., Carbone, J.: Intracellular distribution of tritiated bilirubin during hepatic uptake and excretion. Amer. J. Physiol. 207, 1237–1241 (1964)PubMedGoogle Scholar
  88. Burchell, B.: Observations of uridine diphosphate glucuronyltransferase activity towards oestriol and xenobiotics in developing and cultured tissues from mouse and man. Biochem. Soc. Trans. 1, 1212–1214 (1973)PubMedGoogle Scholar
  89. Call, N.B., Tisher, C.C.: The urinary concentrating defect in the Gunn strain of rat. J. clin. Invest. 55, 319–329 (1975)PubMedGoogle Scholar
  90. Callahan, E.W. Jr., Thaler, M.M., Karon, M., Bauer, K., Schmid, R.: Phototherapy of severe unconjugated hyperbilirubinemia: Formation and removal of labelled bilirubin derivatives. Pediatrics 46, 841–848 (1970)PubMedGoogle Scholar
  91. Capelle, P., Dhumeaux, D., Mora, M., Feldmann, G., Berthelot, P.: Effect of rifamycin on liver function in man. Gut 13, 366–371 (1972)PubMedGoogle Scholar
  92. Capizzo, F., Roberts, R.J.: Effect of phenobarbital, chlorpromazine, actinomycin D and chronic α-Napthylisothiocyanate administration on α-Naphthylisothiocyanate-14C disposition and α-Naphthylisothiocyanate-induced hyperbilirubinemia. J. Pharmacol. exp. Ther. 179, 455–464 (1971)Google Scholar
  93. Careddu, P., Marini, A.: Stimulating bilirubin conjugation. Lancet 1968 I, 982–983Google Scholar
  94. Careddu, P., Piceni sereni, L., Guinta, A., Sereni, F.: Sulle possibilita di attivare i processe di coniugazione e di escrezione epatica della bilirubina mediante alcuni farmaci. Richerche sperimentali con la dietilamide dell’acido nicotinico (Coramina) e con l’acido fenil-etilbarbiturico (Gardenale). Minerva pediat. 55, 2559–2562 (1964)Google Scholar
  95. Carey, M.C., Small, D.M.: The characteristics of mixed micellar solutions with particular reference to bile. Amer. J. Med. 49, 590–608 (1970)PubMedGoogle Scholar
  96. Catz, C., Yaffe, S.J.: Pharmacological modification of bilirubin conjugation in the newborn. Amer. J. Dis. Child. 104, 516–517 (1962) (Abstract)Google Scholar
  97. Catz, C., Yaffe, S.J.: Barbiturate enhancement of bilirubin conjugation and excretion in young and adult animals. Pediat. Res. 2, 361–370 (1968)PubMedGoogle Scholar
  98. Chan, G., Shiff, D., Stern, L.: Competitive binding of free fatty acids and bilirubin to albumin: Differences in HBABA dye versus Sephadex G-25 interpretation of results. Clin. Biochem. 4, 208–214 (1971)PubMedGoogle Scholar
  99. Chignell, C.F., Starkweather, D.K.: Optical studies of drug-protein complexes. V. The interaction of phenylbutazone, flufenamic acid, and dicoumarol with acetylsalicylic acid-treated human serum albumin. Molec. Pharmacol. 7, 229–237 (1971)Google Scholar
  100. Chignell, C.F., Vessell, E.S., Starkweather, D.K., Berlin, C.M.: The binding of sulfaphenazole to fetal, neonatal, and adult human plasma albumin. Clin. Pharmacol. Ther. 12, 897–901 (1971)PubMedGoogle Scholar
  101. Clarenburg, R., Kao, L.: Shared and separate pathways for biliary excretion of bilirubin and BSP in rats. Amer. J. Physiol. 225, 192–199 (1973)PubMedGoogle Scholar
  102. Coburn, R.F.: Enhancement by phenobarbital and diphenylhydantoin of carbon monoxide production in normal man. New Engl. J. Med. 283, 512–515 (1970)PubMedGoogle Scholar
  103. Cole, P.G., Lathe, G.H., Billing, B.H.: Separation of the bile pigments of serum, bile, and urine. Biochem. J. 57, 514–518 (1954)PubMedGoogle Scholar
  104. Conney, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967)PubMedGoogle Scholar
  105. Conney, A.H., Levin, W., Jacobson, M., Kuntzman, R.: Effects of drugs and environmental chemicals on steroid metabolism. Clin. Pharmacol. Ther. 14, 727–741 (1973)PubMedGoogle Scholar
  106. Corchs, J.L., Serrani, R.E., Rodriguez Garay, E.: Bilirubin uptake in vitro by the rat intestinal mucosa. Biochim. biophys. Acta (Amst.) 291, 308–314 (1973)Google Scholar
  107. Cornelius, C.E., Ben-Ezzer, J., Arias, I.M.: Binding of sulfobromphthalein sodium (BSP) and other organic anions by isolated hepatic cell plasma membranes in vitro. Proc. Soc. exp. Biol. (N.Y.) 124, 665–667 (1967)Google Scholar
  108. Coutinho, C.B., Lucek, R.W., Cheripko, J.A., Kuntzman, R.: A new approach to the determination of protein-bound bilirubin displacement and its applications. Ann. N.Y. Acad. Sci. 226, 238–246 (1973)PubMedGoogle Scholar
  109. Cremer, R.J., Perryman, P.W., Richards, D.H.: Influence of light on the hyperbilirubinemia of infants. Lancet 1958 I, 1094–1097Google Scholar
  110. Crigler, J.F. Jr., Gold, N.I.: Effect of sodium phenobarbital on bilirubin metabolism in an infant with congenital nonhemolytic, unconjugated hyperbilirubinemia and kernicterus. J. clin. Invest. 48, 42–55 (1969)PubMedGoogle Scholar
  111. Dacie, J.V.: The Haemolytic Anaemias. Congenital and Acquired. Part IV. Drug-induced haemolytic anaemias, paroxysmal nocturnal haemoglobinuria, hemolytic disease of the newborn. London: J. & A. Churchill Ltd. 1967Google Scholar
  112. Davies, R.E., Keohane, S.J.: Some aspects of the photochemistry of bilirubin. Boll. chim.-farm. 109, 589–598 (1970)PubMedGoogle Scholar
  113. Degowin, R.L., Eppes, R.B., Powell, R.D., Carson, P.E.: The hemolytic effects of diaphenyl-sulfone (DDS) in normal subjects and in those with glucose-6-phosphate dehydrogenase deficiency. Bull. Wld. Hlth. Org. 35, 165–179 (1966)Google Scholar
  114. Deleon, A.L., Gartner, M., Arias, I.M.: The effect of phenobarbital on hyperbilirubinemia in glucuronyl transferase deficient rats. J. Lab. clin. Med. 70, 273–278 (1967)PubMedGoogle Scholar
  115. De Matteis, F.: Rapid loss of cytochrome P-450 and heme caused in the liver microsomes by the porphyrinogenic agent 2-allyl-2-isopropylacetamide. FEBS Lett. 6, 343–345 (1970)PubMedGoogle Scholar
  116. De Matteis, F.: Loss of heme in rat liver caused by the porphyrinogenic agent 2-allyl-2-iso-propylacetamide. Biochem. J. 124, 767–777 (1971)PubMedGoogle Scholar
  117. De Matteis, F.: Drug-induced destruction of cytochrome P-450. Drug Metab. Dispos. 1, 267–274 (1973)PubMedGoogle Scholar
  118. Dem, R.J., Beutler, E., Alving, A.S.: The hemolytic effect of primaquine. V. Primaquine sensitivity as a manifestation of a multiple drug sensitivity. J. Lab. clin. Med. 45, 30–39 (1955)Google Scholar
  119. Dhumeaux, D., Berthelot, P.: Chronic hyperbilirubinemia associated with hepatic uptake and storage impairment. Gastroenterology 69, 988–993 (1975)PubMedGoogle Scholar
  120. Dhumeaux, D., Erlinger, S., Benhamou, J.P., Fauvert, R.: Effects of rose bengal on bile secretion in the rabbit: Inhibition of bile salt independent fraction. Gut 11, 134–140 (1970)PubMedGoogle Scholar
  121. Diamond, I.: Bilirubin binding and kernicterus. Advanc. Pediat. 16, 99–119 (1969)Google Scholar
  122. Done, A.K.: Developmental pharmacology. Clin. Pharmacol. Ther. 5, 432–479 (1964)PubMedGoogle Scholar
  123. Drabkin, D.L.: Independent biosynthesis of different hemin chromoproteins-cytochrome c in various tissues. Proc. Soc. exp. Biol. (N.Y.) 76, 527–530 (1951)Google Scholar
  124. Dutton, G.J.: The biosynthesis of glucuronides. In: Glucuronic Acid Free and Combined. Dutton, G.J. (ed.), pp. 186–299. New York: Academic Press 1966Google Scholar
  125. Dutton, G.J.: Glucuronide forming enzymes. In: Handbook of Experimental Pharmacology XXVIII/2 pp. 378–400. Berlin — Heidelberg — New York. Springer 1971Google Scholar
  126. Dybing, E.: Chlorpromazine inhibition of p-aminophenol glucuronidation by rat hepatoma cells in culture. Acta pharmacol. (Kbh.) 31, 287–295 (1972)Google Scholar
  127. Dybing, E.: Effects of membrane stabilizers on glucuronidation and amino acid transport in cultures of rat hepatoma cells. Acta pharmacol. (Kbh.) 32, 481–486 (1973)Google Scholar
  128. Dybing, E., Rugstad, H.E.: The inhibiting effect of diethylaminoethyl diphenylvalerate (SKF 525-A) on glucuronidation by cultures of rat hepatoma cells. Acta pharmacol. (Kbh.) 32, 112–118 (1973)Google Scholar
  129. Edmond, M., Erlinger, S., Berthelot, P., Benhamou, J.P., Fauvert, R.: Effets de la novobiocine sur la fonctionnement du foie: I. Etude clinique. Canad. med. Ass. J. 94, 900–904 (1966)Google Scholar
  130. Elder, G., Gray, C.H., Nicholson, D.C.: Bile pigment fate in gastrointestinal tract. Semin. Hematol. 9, 71–89 (1972)PubMedGoogle Scholar
  131. Eliakim, M., Eisner, M., Ungar, H.: Experimental intrahepatic obstructive jaundice following ingestion of alpha-naphthyl-isothiocyanate. Bull. Res. Coun. Israel E, 8, 7–17 (1959)Google Scholar
  132. Engstrom, J., Hellstrom, K., Posse, N., Sjovall, J.: Recurrent cholestasis of pregnancy. Acta obstet. gynec. scand. 49, 29–34 (1970)PubMedGoogle Scholar
  133. Erlinger, S.: Physiology of bile flow. Progr. Liver Dis. IV, 63–82 (1972)Google Scholar
  134. Erlinger, S., Dhumeaux, D., Berthelot, P., Dumont, M.: Effect of inhibitors of sodium transport on bile formation in the rabbit. Amer. J. Physiol. 219, 416–422 (1970)PubMedGoogle Scholar
  135. Erlinger, S., Dumont, M.: Influence of theophylline on bile formation in the dog. Biomedicine 19, 27–32 (1973)Google Scholar
  136. Ertel, I.J., Newton, W.A.: Therapy in congenital hyperbilirubinemia. Phenobarbital and diethylnicotinamide. Pediatrics 44, 43–48 (1969)PubMedGoogle Scholar
  137. Espinoza, J., Baranafi, L., Schnaidt, E.: The effect of phenobarbital on intrahepatic cholestasis of pregnancy. Amer. J. Obstet. Gynec. 119, 234–238 (1974)PubMedGoogle Scholar
  138. Felsher, B.F., Craig, J.R., Carpio, N.: Hepatic bilirubin glucuronidation in Gilbert’s syndrome. J. Lab. clin. Med. 81, 829–837 (1973)PubMedGoogle Scholar
  139. Fevery, J., Van Damme, B., Michiels, R., De Groote, J., Heirwegh, K.P.M.: Bilirubin conjugates in bile of man and rat in the normal state and in liver disease. J. clin. Invest. 51, 2482–2492 (1972)PubMedGoogle Scholar
  140. Fischer, H., Orth, H.: Die Chemie des Pyrrols. Leipzig: Akademische Verlagsgesellschaft 1973Google Scholar
  141. Fleischner, G., Kamisaka, K., Habig, W., Jakoby, W., Arias, I.M.: Human ligandin: Characterization and quantitation. Gastroenterology 69, 821 (1975a) (Abstract)Google Scholar
  142. Fleischner, G., Meijer, D.K.F., Levine, W.G., Gatmaitan, Z., Gluck, R., Arias, I.M.: Effect of hypolipidemic drugs, nafenopin and Clofibrate, on the concentration of ligandin and Z protein in rat liver. Biochem. biophys. Res. Commun. 67, 1401–1407 (1975b)Google Scholar
  143. Fleischner, G., Robbins, J., Arias, I.M.: Immunological studies of Y protein. J. clin. Invest. 51, 677–684 (1972)PubMedGoogle Scholar
  144. Fleischner, G., Robbins, J., Reyes, H., Levi, A.J., Arias, I.M.: Immunologic studies of Y., the major organic anion-binding protein in rat liver cytosol. Gastroenterology 60, 185 (1971) (Abstract)Google Scholar
  145. Fletcher, M.J., Sanadi, D.R.: Turnover of rat liver mitochondria. Biochim. biophys. Acta (Amst.) 51, 356–360 (1961)Google Scholar
  146. Freedman, A.L., Barr, P.S., Brody, E.A.: Hemolytic anemia due to quinidine: Observations on its mechanism. Amer. J. Med. 20, 806–816 (1956)PubMedGoogle Scholar
  147. Frick, P.G., Hitzig, W.H., Betke, L.: Hemoglobin Zurich. Blood. 20, 261–271 (1962)PubMedGoogle Scholar
  148. Fritz, M.E., Brooks, F.P.: Control of bile flow in the cholecystectomized dog. Amer. J. Physiol. 204, 825–828 (1963)PubMedGoogle Scholar
  149. Fromke, V.L., Miller, D.: Constitutional hepatic dysfunction (CHD; Gilbert’s disease); a review with special reference to a characteristic increase and prolongation of the hyper-bilirubinemic response to nicotinic acid. Medicine 51, 451–464 (1972)PubMedGoogle Scholar
  150. Garner, R.C., McLean, A.E.M.: Separation of heme incorporation from protein synthesis in liver microsomes. Biochem. biophys. Res. Commun. 37, 883–887 (1969)Google Scholar
  151. Girotti, F., Finocchi, G., Sartori, L., Boscherini, B.: Congenital non-haemolytic jaundice in a four year old girl without disease of the central nervous system. Helv. paediat. Acta 4, 399–403 (1969)Google Scholar
  152. Gisselbrecht, C., Berk, P.D.: Failure of phenobarbital to increase bilirubin production in the rat. Biochem. Pharmacol. 23, 2895–2905 (1974)PubMedGoogle Scholar
  153. Glader, B.E.: Salicylate-induced injury of pyruvate-kinase-deficient erythrocytes. New Engl. J. Med. 294, 916–918 (1976)PubMedGoogle Scholar
  154. Glass, J., Yannoni, C.Z., Robinson, S.H.: Rapidly synthesized heme: Relationship to erythro-poiesis and hemoglobin production. Blood Cells 1, 557–571 (1975)Google Scholar
  155. Glaumann, H.: Chemical and enzymatic composition of microsomal subfractions from rat liver after treatment with phenobarbital and 3-methylcholanthrene. Chem. biol. Interact. 2, 369–380 (1970)PubMedGoogle Scholar
  156. Goldfischer, S., Arias, I.M., Essner, E., Novikoff, A.B.: Cytochemical and electronmicroscopic studies of rat liver with reduced capacity to transport conjugated bilirubin. J. exp. Med. 115, 467–474 (1962)PubMedGoogle Scholar
  157. Goldstein, J.A., Taurog, A.: Enhanced biliary excretion of thyroxine glucuronide in rats pretreated with benzpyrene. Biochem. Pharmacol. 17, 1049–1065 (1968)PubMedGoogle Scholar
  158. Gollan, J.L., Huang, S.N., Billing, B., Sherlock, S.: Prolonged survival in three brothers with severe type 2 Crigler-Najjar syndrome: Ultrastructural and metabolic studies. Gastroenterology 68, 1543–1555 (1975)PubMedGoogle Scholar
  159. Goodman, D.S.: The interaction of human serum albumin with long-chain fatty acid anions. J. Amer. chem. Soc. 80, 3892–3898 (1958)Google Scholar
  160. Goresky, C.A.: Initial distribution and rate of uptake of sulfobromophthalein in the liver. Amer. J. Physiol. 207, 13–26 (1964)PubMedGoogle Scholar
  161. Goresky, C.A.: The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Canad. med. Ass. J. 92, 851–857 (1965)PubMedGoogle Scholar
  162. Goresky, C.A.: The hepatic uptake process: Its implications for bilirubin transport. In: Jaundice. Goresky, C.A. and Fisher, M.M. (eds.), pp. 159–174. New York: Plenum Press 1975Google Scholar
  163. Goresky, C.A., Haddad, H.H., Kluger, W.S., Nadeau, B.E., Bach, G.G.: The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. Canad. J. Physiol. Pharmacol. 52, 389–403 (1974)Google Scholar
  164. Goresky, C.A., Kluger, S.W.: The relation between bile flow and transport maximum for bilirubin in the dog. Gastroenterology 56, 398 (1969) (Abstract)Google Scholar
  165. Gralnick, H.R., McGinness, M., Elton, W., McCurdy, P.: Hemolytic anemia associated with cephalothin. J. Amer. med. Ass. 217, 1193–1197 (1971)Google Scholar
  166. Gram, T.E., Hansen, A.R., Fouts, J.R.: The submicrosomal distribution of hepatic uridine diphosphate glucuronyl transferase in the rabbit. Biochem. J. 106, 587–591 (1968)PubMedGoogle Scholar
  167. Gram, T.E., Rogers, L.A., Fouts, J.R.: Effect of pretreatment of rabbits with phenobarbital or 3-methylcholanthrene on the distribution of drug-metabolizing enzyme activity in sub-fractions of hepatic microsomes. J. Pharmacol. exp. Ther. 157, 435–445 (1967)PubMedGoogle Scholar
  168. Granick, S.: The induction in vitro of the synthesis of delta-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  169. Gray, C.H.: Bile Pigments in Health and Disease. Springfield Ill.: Ch. C Thomas 1961Google Scholar
  170. Gray, C.H., Neuberger, A., Sneath, P.H.A.: Studies in congenital porphyria. 2. Incorporation of 15N in the stercobilin in the normal and in the porphyric. Biochem. J. 47, 87–92 (1950)PubMedGoogle Scholar
  171. Gray, D.W.G., Mowat, A.P.: Effects of aspartic acid, orotic acid, and glucose on serum bilirubin concentrations in infants born before term. Arch. Dis. Childh. 46, 123–124 (1971)PubMedGoogle Scholar
  172. Greenwood, D.T., Stevenson, I.H.: The stimulation of glucuronide formation in vitro and in vivo by a carcinogen diethylnitrosamine. Biochem. J. 96, 37P (1965) (Abstract)Google Scholar
  173. Gregory, D.H., Strickland, R.D.: Preparation characterization and partial purification of soluble bilirubin UDP-glucuronyl transferase. Gastroenterology 62, 171 (1972) (Abstract)Google Scholar
  174. Gregory, D.H., Strickland, R.D.: Solubilization and characterization of hepatic bilirubin-UDP-Glucuronyltransferase. Biochim. biophys. Acta (Amst.) 327, 36–45 (1973)Google Scholar
  175. Greim, H., Schenkman, J.B., Klotzbucher, M., Remmer, H.: The influence of phenobarbital on the turnover of hepatic microsomal cytochrome b5 and cytochrome P-450 hemes in the rat. Biochim. biophys. Acta (Amst.) 201, 20–25 (1970)Google Scholar
  176. Grodsky, G.M., Carbone, J.V.: The synthesis of bilirubin glucuronide by tissue homogenates. J. biol. Chem. 226, 449–458 (1957)PubMedGoogle Scholar
  177. Gross, R.T., Bracci, R., Rudolph, N., Schroeder, E., Kochen, J.A.: Hydrogen peroxide toxicity and detoxification in erythrocytes of newborn infants. Blood 29, 481–493 (1967)PubMedGoogle Scholar
  178. Groszmann, R.J., Kotelanski, B., Kendler, J., Zimmerman, H.J.: Effect of sulfobromophthalein and indocyanine green on bile excretion. Proc. Soc. exp. Biol. (N.Y.) 132, 712–714 (1969)Google Scholar
  179. Gumusio, J.J., Valdivieso, V.D.: Studies on the mechanism of ethynylestradiol impairment of the bile flow and bile salt excretion in the rat. Gastroenterology 61, 339–344 (1971)Google Scholar
  180. Gutstein, S., Alpert, S., Arias, I.M.: Studies of hepatic excretory function. IV. Biliary excretion of sulfobromophthalein sodium in a patient with the Dubin-Johnson syndrome and a biliary fistula. Israel J. med. Sci. 4, 36–40 (1968)PubMedGoogle Scholar
  181. Gydell, K.: Transient effect of nicotinic acid on bilirubin metabolism and formation of carbon monoxide. Acta med. scand. 167, 431–441 (1960)PubMedGoogle Scholar
  182. Habig, W.H., Pabst, M.J., Fleischner, G., Gatmaitan, Z., Arias, I.M., Jakoby, W.B.: The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. nat. Acad. Sci. (Wash.) 71, 3879–3882 (1974)Google Scholar
  183. Hakim, J., Feldmann, G., Boivin, P., Troube, H., Boucherot, J., Penaud, J., Guibot, P., Kreis, B.: Étude comparative des activités bilirubine et paranitrophenolglucuronyl transferases hépatique. III. Effet de la rifampicine seule ou associée à la streptomycine et à l’isoniazide chez l’homme. Path. et Biol. 21, 255–263 (1973)Google Scholar
  184. Halac, E., Reff, A.: Studies on bilirubin UDP-glucuronyltransferase. Biochim. biophys. Acta (Amst.) 139, 328–343 (1967)Google Scholar
  185. Halac, E., Sicignano, C.: Re-evaluation of the influence of sex, age, pregnancy and phenobarbital on the activity of UDP-glucuronyl transferase in rat liver. J. Lab. clin. Med. 73, 677–685(1969)PubMedGoogle Scholar
  186. Hammaker, L., Schmid, R.: Interference with bile pigment uptake in the liver by flavaspidic acid. Gastroenterology 53, 31—37 (1967)PubMedGoogle Scholar
  187. Hanninen, O.: Repression in the glucuronic acid pathway in the different tissues in the rat. Acta med. scand., Suppl. 101, 8 (1968) (Abstract)Google Scholar
  188. Hanninen, O., Aitio, A.: Enhanced glucuronide formation in the different tissues following drug administration. Biochem. Pharmacol. 17, 2307–2311 (1968)PubMedGoogle Scholar
  189. Harbison, R.D., Spratt, J.L.: Novobiocin-induced hyperbilirubinemia and its reduction by Phenobarbital pretreatment. Toxicol. appl. Pharmacol. 11, 257–263 (1967)Google Scholar
  190. Hardy, J.B., Mellits, E.D.: Does maternal smoking during pregnancy have a long term effect on the child? Lancet 1972 II, 1332–1336Google Scholar
  191. Hargreaves, T.: Cholestatic drugs and bilirubin metabolism. Nature (Lond.) 206, 154–156 (1965)Google Scholar
  192. Hargreaves, T.: The effect of male fern extract on biliary secretion. Brit. J. Pharmacol. 26, 34–40 (1966)PubMedGoogle Scholar
  193. Hargreaves, T.: The effect of diethylaminoethyl diphenylpropylacetic acid (SKF 525-A) on uridine 5-pyrophosphate glucuronyltransferase. Biochem. Pharmacol. 16, 1481–1488 (1967)PubMedGoogle Scholar
  194. Hargreaves, T.: The effect of monoamine oxidase inhibitors on conjugation. Experientia (Basel) 24, 157–158 (1968)Google Scholar
  195. Hargreaves, T.: Effect of fatty acids on bilirubin conjugation. Arch. Dis. Childh. 48, 446–450 (1973)PubMedGoogle Scholar
  196. Hargreaves, T., Holton, J.B.: Jaundice of the newborn due to novobiocin. Lancet 1962 I, 839Google Scholar
  197. Hargreaves, T., Lathe, G.H.: Inhibitory aspects of bile secretion. Nature (Lond.) 200, 1172–1176 (1963)Google Scholar
  198. Hargreaves, T., Piper, R.F.: Breast milk jaundice. Effect of inhibitory breast milk and 3α, 20β-pregnanediol on glucuronyl transferase. Arch. Dis. Childh. 46, 195–198 (1971).PubMedGoogle Scholar
  199. Hargreaves, T., Piper, R.F., Cam, J.: Effect of oral contraceptives on glucuronyl transferase. Nature (Lond.) New Biol. 234, 110–111 (1971)Google Scholar
  200. Hargreaves, T., Piper, R.F., Trickey, R.: The effect of imipramine and desipramine on UDP-glucuronyl transferase. Experientia (Basel) 25, 725–726 (1969)Google Scholar
  201. Harris, J.W.: Studies on the mechanism of a drug induced hemolytic anemia. J. Lab. clin. Med. 47, 760–775 (1956)PubMedGoogle Scholar
  202. Harris, R.C., Lucey, J.F., MacLean, J.R.: Kernicterus in premature infants associated with low concentration of bilirubin in the plasma. Pediatrics 21, 875–884 (1958)PubMedGoogle Scholar
  203. Heath, E.C., Dingell, J.V.: The interaction of foreign chemical compounds with the glucuronidation of estrogens in vitro. Drug Metab. Dispos. 2, 556–565 (1974)PubMedGoogle Scholar
  204. Heikel, T.A.J., Lathe, G.H.: The effect of oral contraceptive steroids on bile secretion and bilirubin T m in rats. Brit. J. Pharmacol. 38, 593–601 (1970a)Google Scholar
  205. Heikel, T.A.J., Lathe, G.H.: The effect of 17α-ethinyl substituted steroids on adenosine triphosphatases of rat liver plasma membrane. Biochem. J. 118, 187–189 (1970a)PubMedGoogle Scholar
  206. Heirwegh, K.P.M., Meuwissen, J.A.T.P., Fevery, J.: Enzymic formation of β-D-monoglucuronide, β-D-monoglucoside and mixtures of β-D-monoxyloside and β-D-dixyloside of bilirubin by microsomal preparations from rat liver. Biochem. J. 125, 28p–29p (1971)PubMedGoogle Scholar
  207. Heirwegh, K.P.M., Meuwissen, J.A.T.P., Fevery, J.: Critique of the assay and significance of bilirubin conjugation. In: Advances in Clin. Chem. O. Bodansky and A.L. Latner (eds.). Vol. 16, pp. 239–289. New York: Academic Press 1973Google Scholar
  208. Heirwegh, K.P.M., Van de Vijver, M., Fevery, J.: Assay and properties of digitonin activated bilirubin uridine diphosphate glucuronyl transferase from rat liver. Biochem. J. 129, 605–618 (1972)PubMedGoogle Scholar
  209. Heirwegh, K.P.M., Vanhees, G.P., Leroy, P., Vanroy, F.P., Jansen, F.H.: Heterogeneity of bile pigment conjugation as revealed by chromatography of their ethyl anthranilate azo-pigments. Biochem. J. 120, 877–890 (1970)PubMedGoogle Scholar
  210. Hertz, H.: A direct spectrometric method for determination of the concentration of available bilirubin binding sites in serum using bromphenol blue. Scand. J. clin. Lab. Invest. 35, 545–559 (1975)PubMedGoogle Scholar
  211. Heubel, F.: Diazepam und phenobarbital bei der Senkung des Neugeborenen-Bilirubinspiegels durch nichtsedierende Dosen. Int. J. clin. Pharmacol. 9, 210–219 (1974)Google Scholar
  212. Heubel, F., Muhlberger, G.: Senkung des Neugeborenen Bilirubinspiegels durch Diazepam. Int. J. clin. Pharmacol. 6, 332–341 (1971)Google Scholar
  213. Hodgman, J.E., Schwartz, A.: Phototherapy and hyperbilirubinemia of the premature. Amer. J. Dis. Child. 119, 473–477 (1970)PubMedGoogle Scholar
  214. Hollman, S., Touster, O.: Alterations in tissue levels of uridine diphosphate glucose dehydrogenase, uridine diphosphate glucuronic acid pyrophosphatase and glucuronyl transferase induced by substances influencing the production of ascorbic acid. Biochim biophys. Acta (Amst.) 62, 338–352 (1962)Google Scholar
  215. Howland, R.D., Burkhalter, A., Trevor, A.J., Hegman, S., Shirachi, D.Y.: Properties of lubrol-extracted uridine diphosphate glucuronyl transferase. Biochem. J. 125, 991–997 (1971)PubMedGoogle Scholar
  216. Hsia, D.Y., Dowben, R.M., Riabov, S.: Inhibitors of glucuronyl transferase in the newborn. Ann. N.Y. Acad. Sci. 111, 326–336 (1963)PubMedGoogle Scholar
  217. Hunter, J., Thompson, R.P.H., Rake, M.O., Williams, R.: Controlled trial of phetharbital, a non-hypnotic barbiturate, in unconjugated hyperbilirubinemia. Brit. med. J. 1971 II, 497–499Google Scholar
  218. Hunton, D.B., Bollman, J.L., Hoffman, H.N.H.: The plasma removal of indocyanine green and sulfobromophthalein: Effect of dosage and blocking agents. J. clin. Invest. 40, 1648–1655 (1961)PubMedGoogle Scholar
  219. Hupka, A.L., Karler, R.: Biotransformation of ethylmorphine and heme by isolated parenchymal and reticuloendothelial cells of rat liver. RES: J. reticuloendoth. Soc. 14, 225–241 (1973)Google Scholar
  220. Ibrahim, G.W., Schwartz, S., Watson, C.J.: Early labeling of bilirubin from glycine and Δ–aminolevulinic acid in bile fistula dogs, with special reference to stimulated versus suppressed erythropoiesis. Metabolism 15, 1129–1139 (1966)PubMedGoogle Scholar
  221. Ideo, G., Defranchis, R., Del Ninno, E., Dioguardi, N.: Ethanol increases liver uridine diphosphate glucuronyl transferase. Experientia (Basel) 27, 24–25 (1971)Google Scholar
  222. Indacochea-Redmond, N., Plaa, G.L.: Functional effects of α-naphthylisothiocyanate in various species. Toxicol. appl. Pharmacol. 19, 71–80 (1971)PubMedGoogle Scholar
  223. Indacochea-Redmond, N., Witschi, H.P., Plaa, G.L.: Effect of inhibitors of protein and ribonucleic acid synthesis on the hyperbilirubinemia and cholestasis produced by a-naphthylisothiocyanate. J. Pharmacol. exp. Ther. 184, 780–786 (1973)PubMedGoogle Scholar
  224. Indacochea-Redmond, N., Witschi, H., Plaa, G.L.: Effects of inhibitors of protein and ribonucleic acid synthesis on α-naphthylisothiocyanate-induced hyperbilirubinemia, sulfobromophthalein retention and prolongation of pentobarbital hypnosis. J. Pharmacol. exp. Ther. 189, 278–284 (1974)PubMedGoogle Scholar
  225. Inscoe, J.K., Axelrod, J.: Some factors affecting glucuronide formation in vitro. J. Pharmacol. exp. Ther. 129, 128–133 (1960)PubMedGoogle Scholar
  226. Israels, L.G., Schacter, B.A., Yoda, B., Goldenberg, G.J.: Delta-aminolevulinic acid transport and synthesis, porphyrin synthesis and heme catabolism in chick embryo liver and heart cells. Biochim. biophys. Acta (Amst.) 372, 32–38, (1974)Google Scholar
  227. Israels, L.G., Skanderbeg, J., Guyda, H., Zingg, W., Zipursky, A.: A study of the early-labeled fraction of bile pigment. The effect of altering erythropoiesis on the incorporation of (2–14C) glycine into heme and bilirubin. Brit J. Haemat. 9, 50–62 (1963b)Google Scholar
  228. Israels, L.G., Yamamoto, T., Skanderbeg, J., Zipursky, A.: Shunt bilirubin: Evidence for two components. Science 139, 1054–1055 (1963a)PubMedGoogle Scholar
  229. Isselbacher, K.J., Chrabas, M.F., Quinn, R.C.: The solubilization and partial purification of a glucuronyl transferase from rabbit liver microsomes. J. biol. Chem. 237, 3033–3036 (1962)PubMedGoogle Scholar
  230. Isselbacher, K.J., McCarthy, E.A.: Studies on bilirubin sulphate and other non-glucuronide conjugates of bilirubin. J. clin. Invest. 38, 645–651 (1959)PubMedGoogle Scholar
  231. Jacobsen, C: Chemical modification of the high affinity bilirubin binding site of human serum albumin. Europ. J. Biochem. 27, 513–519 (1972)PubMedGoogle Scholar
  232. Jacobsen, J.: Binding of bilirubin to human serum albumin-determination of the dissociation constants. FEBS Lett. 5, 112–114 (1969a)PubMedGoogle Scholar
  233. Jacobsen, J.: A chromatographic separation of bilirubin glucuronides from human bile. Acta chem. scand. 23, 3023–3026 (1969b)PubMedGoogle Scholar
  234. Jansen, F.H., Billing, B.H.: The identification of mono-conjugates of bilirubin in bile as amide derivatives. Biochem. J. 125, 917–919 (1971)PubMedGoogle Scholar
  235. Jansen, P.L., Henderson, P.T.: Influence of phenobarbital treatment on p-nitrophenol and bilirubin glucuronidation in Wistar rat, Gunn rat, and cat. Biochem. Pharmacol. 21, 2457–2462 (1972)PubMedGoogle Scholar
  236. Javitt, N.B., Emerman, S.: Effect of sodium taurolithocholate on bile flow and bile acid excretion. J. clin. Invest. 47, 1002–1014 (1968)PubMedGoogle Scholar
  237. Jirsa, M., Vecerek, B.: Neue Bilirubinderivate. I. Ihr Vergleich mit Gallen- und Serum-Bilirubin. Hoppe Seylers Z. physiol. Chem. 311, 87–92 (1958)PubMedGoogle Scholar
  238. Johnson, L., Boggs, T.R.: In Ostrow, J.D.: Photochemical and biochemical basis of the treatment of neonatal jaundice. Progress in Liver Disease. H. Popper and F. Schaffner (eds.). Vol. IV, p. 452. New York: Grune and Stratton 1972Google Scholar
  239. Johnson, L., Garcia, M.L., Figueroa, E., Sarmiento, F.: Kernicterus in rats lacking glucuronyl transferase. II. Factors which alter bilirubin concentration and frequency of kernicterus. Amer. J. Dis. Child. 101, 322–349 (1961)PubMedGoogle Scholar
  240. Johnson, L., Sarmiento, F., Blanc, W.A., Day, R.: Kernicterus in rats with an inherited deficiency of glucuronyl transferase. Amer. J. Dis. Child. 97, 591–608 (1959)Google Scholar
  241. Jones, B.: Glucuronyl transferase inhibition by steroids. J. Pediat. 64, 815–821 (1964)PubMedGoogle Scholar
  242. Jones, E.A., Bloomer, J.R., Berlin, N.I.: The measurement of the synthetic rate of bilirubin from hepatic heme in patients with acute intermittent porphyria. J. clin. Invest. 50, 2259–2265 (1971)PubMedGoogle Scholar
  243. Jones, R.S., Grossman, M.I.: Choleretic effects of secretin and histamine in the dog. Amer. J. Physiol. 217, 532–535 (1969)PubMedGoogle Scholar
  244. Josephson, B., Furst, P.: Sulfonamides competing with bilirubin for conjugation to albumin. Scand. J. clin. Lab. Invest. 18, 51–63 (1966)PubMedGoogle Scholar
  245. Kamisaka, K., Listowsky, I., Arias, I.M.: Circular dichroism studies of Y protein (ligandin), a major organic anion binding protein in liver, kidney, and small intestine. Ann. N.Y. Acad. Sci. 226, 148–153 (1973)PubMedGoogle Scholar
  246. Kamisaka, K., Listowsky, I., Betheil, J.J., Arias, I.M.: Competitive binding of bilirubin, sulfobromophthalein, indocyanine green and other organic anions to human and bovine serum albumin. Biochim. biophys. Acta (Amst.) 365, 169–180 (1974)Google Scholar
  247. Kamisaka, K., Listowsky, I., Gatmaitan, Z., Arias, I.M.: Interactions of bilirubin and other ligands with ligandin. Biochemistry 14, 2175–2180 (1975)PubMedGoogle Scholar
  248. Kapitulnik, J., Horner-Mibashan, R., Blondheim, S.H., Kaufmann, N.A., Russell, A.: Increase in bilirubin binding affinity of serum with age of infant. J. Pediat. 86, 442–445 (1975)PubMedGoogle Scholar
  249. Kaplowitz, N., Percy-Robb, I.W., Javitt, N.B.: Role of hepatic anion-binding protein in bromsulphthalein conjugation. J. exp. Med. 138, 483–487 (1973)PubMedGoogle Scholar
  250. Kawasaki, H., Sakaguchi, S., Arimura, K., Irisa, T., Tominaga, K., Hirayama, C., Ibayashi, H.: Studies on the relationship of hepatic anion-binding proteins and sulfobromophthalein-glutathione conjugation in normal and phenobarbital-treated rats. Biochim. biophys. Acta (Amst.) 385, 334–342 (1975)Google Scholar
  251. Kellermeyer, R.W., Tarlov, A.R., Brewer, G.J., Carson, P.E., Alving, A.S.P.: Hemolytic effect of therapeutic drugs. Clinical consideration of the primaquine-type hemolysis. J. Amer. med. Ass. 180, 388–394 (1962)Google Scholar
  252. Kenwright, S., Levi, A.J.: Impairment of hepatic uptake of rifamycin antibiotics by pro-benicid and its therapeutic implications. Lancet 1973 II, 1401–1405Google Scholar
  253. Kenwright, S., Levi, A.J.: Sites of competition in the selective hepatic uptake of rifamycin-SV, flavaspidic acid, bilirubin and bromsulphthalein. Gut 15, 220–226 (1974)PubMedGoogle Scholar
  254. Khanna, N.N., Harpur, E.R., Stern, L.: In vitro effect of sodium phenobarbital and diethyl-nicotinamide (Coramine) on the protein binding of bilirubin. Clin. Biochem. 2, 349–356 (1969)Google Scholar
  255. King, M.A.R., Wiltshire, B.G., Lehmann, H., Morimoto, H.: An unstable haemoglobin with reduced oxygen affinity. Haemoglobin Peterborough. Brit. J. Haemat. 22, 125–134 (1972)PubMedGoogle Scholar
  256. Kintzel, H.W., Hinkel, G.K., Schwarze, R.: The decrease in the serum bilirubin level in premature infants by orotic acid. Acta paediat. scand. 61, 1–5 (1971)Google Scholar
  257. Kirsch, R., Fleischner, G., Kamisaka, K., Arias, I.M.: Structural and functional studies of ligandin, a major renal organic anion-binding protein. J. clin. Invest. 55, 1009–1019 (1975)PubMedGoogle Scholar
  258. Klaassen, C.D.: Effects of phenobarbital on the plasma disappearance and biliary excretion of drugs in rats. J. Pharmacol. exp. Ther. 175, 289–300 (1970)PubMedGoogle Scholar
  259. Klaassen, C.D.: Biliary excretion of drugs: Role of ligandin in newborn immaturity and in the action of microsomal enzyme inducers. J. Pharmacol. exp. Ther. 195, 311–319 (1975)PubMedGoogle Scholar
  260. Klatskin, G.: Drug-induced hepatic injury. In: The Liver and its Disease. Schaffner, F., Sherlock, S., and Leevy, C.M. (eds.), pp. 163–178. New York: Intercontinental Med. Book Corp. 1974Google Scholar
  261. Kopelman, A.E., Brown, R.S., Odell, G.B.: The bronze baby; a complication of phototherapy. Trans. Amer. pediat. Soc. 81, 3 (1971) (Abstract)Google Scholar
  262. Krasner, J., Giacoia, G.P., Yaffe, S.J.: Drug-protein binding in the newborn infant. Ann. N.Y. Acad. Sci. 226, 101–114 (1973a)PubMedGoogle Scholar
  263. Krasner, J., Juchau, M.R., Yaffe, S.J.: Postnatal developmental changes in hepatic bilirubin UDP-glucuronyl transferase. Studies on the solubilized enzyme. Biol. Neonat. (Basel) 23, 381–390 (1973b)Google Scholar
  264. Kreek, M.J., Sleisenger, M.H.: Reduction of serum unconjugated bilirubin with phenobarbital in adult congenital non-haemolytic unconjugated hyperbilirubinemia. Lancet 1968 II, 73–78Google Scholar
  265. Kuenzle, C.C.: Bilirubin conjugates of human bile. Isolation of phenylazo derivatives of bile bilirubin. Biochem. J. 119, 387–394 (1970a)PubMedGoogle Scholar
  266. Kuenzle, C.C.: Bilirubin conjugates of human bile. Nuclear magnetic-resonance, infrared and optical spectra of model compounds. Biochem. J. 119, 395–409 (1970b)PubMedGoogle Scholar
  267. Kuenzle, C.C.: Bilirubin conjugates of human bile. The excretion of bilirubin as the acyl glycosides of aldobiouronic acid, pseudoaldobiouronic acid and hexuronosylhexuronic acid, with a branched-chain hexuronic acid as one of the components of the hexuronosyl-hexuronide. Biochem. J. 119, 411–435 (1970c)PubMedGoogle Scholar
  268. Kunin, C.M., Craig, W.A., Kornguth, M., Monson, R.: Influence of binding on the pharmacologic activity of antibiotics. Ann. N.Y. Acad. Sci. 226, 214–224 (1973)PubMedGoogle Scholar
  269. Kutz, K., Loffler, A., Kandier, H., Fevery, J.: Clofibrate: A potent serum bilirubin lowering agent in subjects with Gilbert’s syndrome. Digestion 12, 255 (1975)Google Scholar
  270. Lage, G.L., Spratt, J.L.: Bilirubin conjugation by hepatic microsomes from adult male guinea pigs. Arch. Biochem. Biophys. 126, 175–180 (1968)PubMedGoogle Scholar
  271. Laitinen, M., Lang, M., Hanninen, O.: Changes in the protein lipid interaction in rat liver microsomes after pretreatment of the rat with barbiturates and polycyclic hydrocarbons. Int. J. Biochem. 5, 747–751 (1974)Google Scholar
  272. Lakshminarayan, S., Sahn, S.A., Hudson, L.D.: Massive haemolysis caused by rifampicin. Brit. med. J. 1973 II, 282–283Google Scholar
  273. Landaw, S.W., Callahan, E.W. Jr., Schmid, R.: Catabolism of heme in vivo: Comparison of the simultaneous production of bilirubin and carbon monoxide. J. clin. Invest. 49, 914–925 (1970)PubMedGoogle Scholar
  274. Lathe, G.H., Lord, P., Toothill, C: Bilirubin transport by plasma protein. In: Desgrez, P. and De Traverse, P.M. (eds.). Transport Functions of Plasma Protein. Vol. V, p. 129. New York: Elsevier 1966Google Scholar
  275. Lathe, G.H., Walker, M.: The synthesis of bilirubin glucuronide in animal and human liver. Biochem. J. 70, 705–712 (1958)PubMedGoogle Scholar
  276. Lee, J.J., Cowger, M.L.: Bilirubin albumin binding and a possible mechanism of kernicterus. Res. Commun. chem. Path. Pharmacol. 8, 327–339 (1974)Google Scholar
  277. Lester, R., Hammaker, L., Schmid, R.: A new therapeutic approach to unconjugated hyperbilirubinemia. Lancet 1962 II, 1257Google Scholar
  278. Lester, R., Klein, P.D.: Bile pigment excretion: a comparison of the biliary excretion of bilirubin and bilirubin derivatives. J. clin. Invest. 45, 1839–1846 (1966)PubMedGoogle Scholar
  279. Lester, R., Schmid, R.: Intestinal absorption of bile pigments. I. The enterohepatic circulation of bilirubin in the rat. J. clin. Invest. 42, 736–746 (1963a)PubMedGoogle Scholar
  280. Lester, R., Schmid, R.: Intestinal absorption of bile pigments. II. Bilirubin absorption in man. New Engl. J. Med. 269, 178–182 (1963b)PubMedGoogle Scholar
  281. Lester, R., Schmid, R.: Intestinal absorption of bile pigments. III. The enterohepatic circulation of urobilinogen in the rat. J. clin. Invest. 44, 722—730 (1965)PubMedGoogle Scholar
  282. Lester, R., Schumer, W., Schmid, R.: Intestinal absorption of bile pigments. IV. Urobilinogen absorption in man. New Engl. J. Med. 272, 939–943 (1965)PubMedGoogle Scholar
  283. Levi, A.J., Gatmaitan, Z., Arias, I.M.: Two cytoplasmic proteins from rat liver and their role in hepatic uptake of sulfobromophthalein (BSP) and bilirubin. J. clin. Invest. 47, 61a (1968)Google Scholar
  284. Levi, A.J., Gatmaitan, Z., Arias, I.M.: Two hepatic cytoplasmic protein fractions, Y and Z and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J. clin. Invest. 48, 2156–2167 (1969)PubMedGoogle Scholar
  285. Levi, A.J., Gatmaitan, Z., Arias, I.M.: Deficiency of hepatic organic anion-binding protein, impaired organic anion uptake by liver and “physiologic” jaundice in newborn monkeys. New Engl. J. Med. 283, 1136–1139 (1970)PubMedGoogle Scholar
  286. Levin, W., Jacobson, M., Kuntzman, R.: Incorporation of radioactive delta-aminolevulinic acid into microsomal cytochrome P-450: Selective breakdown of the hemoprotein by allylisopropylacetamide and carbon tetrachloride. Arch. Biochem. Biophys. 148, 262–269 (1972)PubMedGoogle Scholar
  287. Levin, W., Jacobson, M., Sernatinger, E., Kuntzman, R.: Breakdown of cytochrome P-450 heme by secobarbital and other allyl-containing barbiturates. Drug Metab. Dispos. 1, 275–285 (1973)PubMedGoogle Scholar
  288. Levin, W., Kuntzman, R.: Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding particles. Effect of 3-methylcholanthrene. J. biol. Chem. 244, 3671–3676 (1969)PubMedGoogle Scholar
  289. Levine, B.B.: Immunochemical mechanisms of drug allergy. Ann. Rev. Med. 17, 23–38 (1966)PubMedGoogle Scholar
  290. Levine, R.I., Reyes, H., Levi, A.J., Gatmaitan, Z., Arias, I.M.: Phylogenetic study of organic anion transfer from plasma into the liver. Nature (Lond.) New Biol. 231, 277–279 (1971)Google Scholar
  291. Levitt, M., Schacter, B.A., Zipursky, A., Israels, L.G.: The non-erythropoietic component of early bilirubin. J. clin. Invest. 47, 1281–1294 (1968)PubMedGoogle Scholar
  292. Levy, G., Ertel, I.J.: Effect of bilirubin on drug conjugations in children. Pediatrics 47, 811–817 (1971)PubMedGoogle Scholar
  293. Levy, M., Lester, R., Levinsky, N.G.: Renal excretion of urobilinogen in the dog. J. clin. Invest. 47, 2117–2124 (1968)PubMedGoogle Scholar
  294. Lightner, D.A.: In vitro photooxidation products of bilirubin. In: Phototherapy in the Newborn. An Overview. Odell, G.B., R. Shaffer and A.P. Simopoulos (eds.), pp. 34–35. Washington, D.C.: U.S. National Academy of Sciences 1974Google Scholar
  295. Lightner, D.A., Crandall, D.C.: Biliverdin photo-oxidation. In vitro formation of methylvinyl-maleimide. FEBS Lett. 20, 53–56 (1972)PubMedGoogle Scholar
  296. Lightner, D.A., Crandall, D.C., Gertler, S., Quistad, G.B.: On the formation of biliverdin during photooxygenation of bilirubin in vitro. FEBS Lett. 30, 309–312 (1973)PubMedGoogle Scholar
  297. Lightner, D.A., Quistad, G.B.: Methylvinylmaleimide from bilirubin photo-oxidation. Science 175, 324 (1972)PubMedGoogle Scholar
  298. Lightner, D.A., Quistad, G.B.: Hematinic acid and propentdyopents from bilirubin photo-oxidation in vitro. FEBS Lett. 25, 94–96 (1972b)PubMedGoogle Scholar
  299. Linberg, L.G., Norden, A.: Severe hemolytic reaction to chlorpromazine. Acta med. scand. 170, 195–199 (1961)Google Scholar
  300. Linhart, P.: Affinity of UDP-glucuronyl-transferase for several substrates and for chloramphenicol. Res. exp. Med. 163, 241–249 (1974)Google Scholar
  301. Litwack, G., Ketterer, B., Arias, I.M.: Ligandin: A hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous anions. Nature (Lond.) 234, 466–467 (1971)Google Scholar
  302. Lokietz, H., Dowben, R.M., Hsia, D.Y.: Studies on the effect of novobiocin on glucuronyl transferase. Pediatrics 32, 47–51 (1963)Google Scholar
  303. London, I.M., West, R., Shemin, D., Rittenberg, D.: On the origin of bile pigment in normal man. J. biol. Chem. 184, 351–358 (1950)PubMedGoogle Scholar
  304. Lottsfeldt, F.I., Krivit, W., Aust, J.B., Carey, J.B.: Cholestyramine therapy in intrahepatic biliary atresia. New Engl. J. Med. 269, 186–189 (1963)Google Scholar
  305. Lucey, J.F.: Phototherapy of jaundice. In: Bilirubin Metabolism in the Newborn. D. Bergsma, D.Y.Y. Hsia, and C. Jackson (eds.), pp. 63–70. New York: National Foundation for Birth Defects (Original article series) 1970Google Scholar
  306. Lucey, J.F.: Neonatal phototherapy: Uses, problems and questions. Semin. Hematol. 9, 127–135 (1972)PubMedGoogle Scholar
  307. Lucey, J.F., Ferreiro, M., Hewitt, J.: Prevention of hyperbilirubinemia of prematurity by phototherapy. Pediatrics 41, 1047–1054 (1968)PubMedGoogle Scholar
  308. Lucier, G.W., McDaniel, O.S.: Alterations in rat liver microsomal and lysosomal β-glucuronidase by compounds which induce hepatic drug metabolizing enzymes. Biochim. biophys. Acta (Amst.) 261, 168–176 (1972)Google Scholar
  309. Luders, D.: Einfluss von phenobarbital auf den BiUrubinstoffwechsel bei Gunnratten. Versuche mit inaktivem und 14C-markiertem Bilirubin. Z. Kinderheilk. 109, 149–168 (1970)PubMedGoogle Scholar
  310. Lund, H.T., Jacobsen, J.: Influence of phototherapy on unconjugated bilirubin in duodenal bile of newborn infants with hyperbilirubinemia. Acta paediat. scand. 61, 693–696 (1972)PubMedGoogle Scholar
  311. Lund, H.T., Jacobsen, J.: Influence of phototherapy on the biliary bilirubin excretion pattern in newborn infants with hyperbilirubinemia. Pediatrics 85, 262–267 (1974)Google Scholar
  312. Lundh, B., Cavallin-Stahl, E., Mercke, C.: Nicotinic acid and the endogenous production of carbon monoxide. Acta med. scand. 197, 173–176 (1975)PubMedGoogle Scholar
  313. Macarol, V., Morris, T.Q., Baker, K.J., Bradley, S.E.: Hydrocortisone choleresis in the dog. J. clin. Invest. 49, 1714–1723 (1970)PubMedGoogle Scholar
  314. MacGibbon, B.H., Loughbridge, L.W., Hourihane, D.O., Boyd, D.W.: Autoimmune haemolytic anemia with acute renal failure due to phenacetin and p-aminosalicylic acid. Lancet 1960 I, 7Google Scholar
  315. Machinist, J.M., Ahn, K., Becker, B.A.: The induction of hepatic Z cytoplasmic protein by hypolipidemic drugs. Gastroenterology 69, 843 (1975) (Abstract)Google Scholar
  316. Maines, M.D., Kappas, A.: Cobalt induction of hepatic heme oxygenase; with evidence that cytochrome P-450 is not essential for this enzyme activity. Proc. nat. Acad. Sci. (Wash.) 71, 4293–4297 (1974)Google Scholar
  317. Maiseis, M.J.: Bilirubin. On understanding and influencing its metabolism in the newborn infant. Pediat. Clin. N. Amer. 19, 447–501 (1972)Google Scholar
  318. Mann, F.C., Sheard, C., Bollman, J.L., Blades, E.J.: The formation of bile pigment from hemoglobin. Amer. J. Physiol. 76, 306–315 (1926)Google Scholar
  319. Mannering, G.J.: Inhibition of drug metabolism. In: Handbook Exp. Pharmacol., Vol. XXVIII/2, pp. 452–476. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  320. Marniemi, J.: Bilirubin UDP-glucosyl and UDP-glucuronosytransferase of rat liver. A comparative study of the effects of membrane perturbants in vitro and of chrysene administration in vivo. Chem. biol. Interact. 9, 135–145 (1974)PubMedGoogle Scholar
  321. Martin, J.F., Vierling, J.M., Wolkoff, A.W., Scharschmidt, B.F., Vergalla, J., Waggoner, J.G., Berk, P.D.: Abnormal hepatic transport of indocyanine green in Gilbert’s syndrome. Gastroenterology 70, 385–391 (1976)PubMedGoogle Scholar
  322. Marver, H.S.: The role of heme in the synthesis and repression of microsomal protein. In: Microsomes and Drug Oxidations (eds. J.R. Gillette, A.H. Conney, G.J. Cosmides, R.W. Estabrook, J.R. Fouts, and G.J. Mannering), pp. 495–511. New York: Academic Press 1969Google Scholar
  323. Marver, H.S., Collins, A., Tschudy, D.P., Rechcigl, J. Jr.: Delta-aminolevulinic acid synthetase. II. Induction in rat liver. J. biol. Chem. 241, 4323–4329 (1966)PubMedGoogle Scholar
  324. Marver, H.S., Schmid, R., Schutzel, H.: Heme and methemoglobin: Naturally occurring repressors of microsomal cytochrome. Biochem. biophys. Res. Commun. 33, 969–974 (1968)Google Scholar
  325. Masters, B.S.S., Schacter, B.A.: Catalysis of heme degradation by purified NADPH-cytochrome c reductase in the absence of other microsomal proteins. Ann. clin. Res. 8, Suppl. 17, 18–27 (1976)Google Scholar
  326. Matsuda, I., Shirahata, T.: Effects of aspartic acid and orotic acid upon serum bilirubin level in newborn infants. Tohuku J. exp. Med. 90, 133–136 (1966)Google Scholar
  327. Maurer, H.M., Shumway, C.N., Draper, D.A., Hossaini, A.A.: Controlled trial comparing agar, intermittent phototherapy, and continuous phototherapy for reducing neonatal hyperbilirubinemia. J. Pediat. 82, 73–76 (1973)PubMedGoogle Scholar
  328. Maxwell, J.D., Hunter, J., Stewart, D.A., Carrella, M., Williams, R.: Effect of phenobarbitone on bile flow and bilirubin metabolism in man and the rat. Digestion 9, 138–148 (1973)PubMedGoogle Scholar
  329. McDonagh, A.F.: The role of singlet oxygen in bilirubin photo-oxidation. Biochem. biophys. Res. Commun. 44, 1306–1311 (1971)Google Scholar
  330. McDonagh, A.F.: Evidence for singlet oxygen quenching by biliverdin IX-α dimethyl ester and its relevance to bilirubin photo-oxidation. Biochem. biophys. Res. Commun. 48, 408–415(1972)PubMedGoogle Scholar
  331. McDonagh, A.F.: Thermal and photochemical reactions of bilirubin IX-α. Conference on the biological role of porphyrins and related structures. Ann. N.Y. Acad. Sci. 244, 553–569 (1973)Google Scholar
  332. McDonagh, A.F.: The photochemistry and photometabolism of bilirubin. In: Phototherapy in the Newborn. An Overview. Odell, G.B., Schaffer, R., and Simopoulos, A.P. (eds.), pp. 56–73. Washington, D.C.: U.S. National Acad. Sci. 1974Google Scholar
  333. McDonagh, A.F.: Phototherapy and hyperbilirubinemia. Lancet 1975 I, 339Google Scholar
  334. McNee, N.W.: Jaundice: a review of recent work. Quart. J. Med. 16, 390–420 (1923)Google Scholar
  335. Metge, W.R., Owen, C.A., Foulk, W.T., Hoffman, H.N.: Bilirubin glucuronyl transferase activity in liver disease. J. Lab. clin. Med. 64, 89–98 (1964)PubMedGoogle Scholar
  336. Meyer, M.C., Guttman, D.E.: The binding of drugs by plasma proteins. J. pharm. Sci. 57, 895–918 (1968)PubMedGoogle Scholar
  337. Meyer, U., Marver, H.S.: Chemically induced porphyria. Increased microsomal heme turnover after treatment with allylisopropylacetamide. Science 171, 64–66 (1971)PubMedGoogle Scholar
  338. Mia, A.S., Gronwall, R.R., Cornelius, C.E.: Bilirubin-14C turnover. Studies in normal and mutant Southdown sheep with congenital hyperbilirubinemia. Proc. Soc. exp. Biol. (N.Y.) 133, 955–959 (1970)Google Scholar
  339. Millar, J., Peloquin, R., De Leeuw, N.K.M.: Phenacetin-induced hemolytic anemia. Canad. med. Ass. J. 106, 770–775 (1972)PubMedGoogle Scholar
  340. Mishkin, S., Stein, L., Fleischner, G., Gatmaitan, Z., Arias, I.M.: Z protein in hepatic uptake and esterification of long-chain fatty acids. Amer. J. Physiol. 228, 1634–1640 (1975)PubMedGoogle Scholar
  341. Mohler, D.N., Majerus, P.W., Minnich, V., Hess, C.E., Garrick, M.D.: Glutathione synthetase deficiency as a cause of hereditary hemolytic disease. New Engl. J. Med. 283, 1253–1257 (1970)PubMedGoogle Scholar
  342. Moller, J.: Agar ingestion and serum bilirubin values in newborn infants. Acta obstet. gynec. scand. 53, 61–63 (1974)Google Scholar
  343. Morris, T.Q.: Choleretic responses to cyclic AMP and theophylline in the dog. Gastroenterology. 62, 187 (1971) (Abstract)Google Scholar
  344. Muirhead, E.E., Groves, M., Guy, R., Halden, E.R., Bass, R.K.: Acquired hemolytic anemia, exposures to insecticides and positive Coombs test dependent on insecticide preparations. Vox Sang. (Basel) 4, 277–292 (1959)Google Scholar
  345. Muirhead, E.E., Halden, E.R., Groves, M.P.: Drug-dependent Coombs (antiglobulin) test and anemia. Observations on quinine and acetophenetidin. Arch. intern. Med. 101, 87–96 (1958)Google Scholar
  346. Mulder, G.J.: The effect of phenobarbital on the submicrosomal distribution of uridine diphosphate glucuronyl transferase from rat liver. Biochem. J. 117, 319–324 (1970)PubMedGoogle Scholar
  347. Mulder, G.J.: Bilirubin and the heterogeneity of microsomal uridine diphosphate glucuronyl transferase from rat liver. Biochim. biophys. Acta (Amst.) 289, 284–292 (1972)Google Scholar
  348. Mulder, G.J.: The rate-limiting step in the biliary elimination of some substrates of uridine diphosphate glucuronyl transferase in the rat. Biochem. Pharmacol. 22, 1751–1763 (1973)PubMedGoogle Scholar
  349. Mulder, G.J.: On nonspecific inhibition of rat liver microsomal UDP-glucuronyl transferase by some drugs. Biochem. Pharmacol. 23, 1283–1291 (1974)PubMedGoogle Scholar
  350. Mulder, G.J., Pilon, A.H.E.: UDP glucuronyltransferase and phenolsulfotransferase from rat liver in vivo and in vitro. III. The effect of Phenolphthalein and its sulfate and glucuronide conjugate on conjugation and biliary excretion of harmol. Biochem. Pharmacol. 24, 517–521 (1975)PubMedGoogle Scholar
  351. Nagel, R.L., Ranney, H.M.: Drug induced oxidative denaturation of hemoglobin. Semin. Hematol 10, 269–278 (1973)PubMedGoogle Scholar
  352. Nathenson, G., Cohen, M.I., Litt, I.F., McNamara, H.: The effect of maternal heroin addiction on neonatal jaundice. J. Pediat. 81, 899–903 (1972)PubMedGoogle Scholar
  353. Nathenson, G., Cohen, M.I., McNamara, H.: The effect of Na benzoate on serum bilirubin of the Gunn rat. J. Pediat. 86, 799–803 (1975)PubMedGoogle Scholar
  354. Nelson, T., Jacobsen, J., Wennberg, R.P.: Effect of pH on the interaction of bilirubin with albumin and tissue culture cells. Pediat. Res. 8, 963–967 (1974)PubMedGoogle Scholar
  355. Neuberger, J.A., Scott, J.J.: Aminolevulinic acid and porphyrin biosynthesis. Nature (Lond.) 172, 1093–1094 (1953)Google Scholar
  356. Noir, B.A., Dewalz, A.T., Rodriguez-Garay, E.A.: Studies on the bilirubin sulphate conjugate excreted in human bile. Biochim. biophys. Acta (Amst.) 222, 15–27 (1970)Google Scholar
  357. Nosslin, B.: The direct diazo reaction of bile pigments in serum. Experimental and clinical studies. Scand. J. clin. Lab. Invest. 12, Suppl. 49, pp. 1–176 (1960)Google Scholar
  358. Nosslin, B.: Bromsulphalein retention and jaundice due to unconjugated bilirubin following treatment with male fern extract. Scand. J. clin. Lab. Invest. 15, Suppl. 69, 206–212 (1963)PubMedGoogle Scholar
  359. Nosslin, B., Morgan, E.H.: The effect of phloroglucinol derivatives from male fern on dye excretion by the liver in the rabbit and rat. J. Lab. clin. Med. 65, 891–902 (1965)PubMedGoogle Scholar
  360. Nymand, G.: Maternal smoking and neonatal hyperbilirubinemia. Lancet 1974 II, 173Google Scholar
  361. Obes-Polleri, J.: Phototherapy in neonatal hyperbilirubinemia. Arch. Pediat. Urug. 38, 77–81 (1967)Google Scholar
  362. Ockner, R.K., Isselbacher, K.J.: Recent concepts of intestinal fat absorption. Rev. Physiol. Biochem. Pharmacol. 71, 107–146 (1974)PubMedGoogle Scholar
  363. Odell, G.B.: The dissociation of bilirubin from albumin and its clinical implications. J. Pediat. 55, 268–279 (1959)PubMedGoogle Scholar
  364. Odell, G.B.: The distribution of bilirubin between albumin and mitochondria. J. Pediat. 68, 165–180 (1966)Google Scholar
  365. Odell, G.B.: Influence of binding on the toxicity of bilirubin. Ann. N.Y. Acad. Sci. 226, 225–237 (1973)PubMedGoogle Scholar
  366. Odell, G.B., Bolen, J.L., Poland, R.L., Seungdamrong, S., Cukier, J.O.: Protection from bilirubin nephropathy in jaundiced Gunn rats. Gastroenterology 66, 1218–1224 (1974)PubMedGoogle Scholar
  367. Odell, G.B., Brown, R.S., Holtzmann, N.A.: Dye-sensitized photo-oxidation of albumin associated with a decreased capacity for protein-binding of bilirubin. In: Bilirubin Metabolism in the Newborn. D. Bergsma, D.Y.Y. Hsia, and C. Jackson (eds.), pp. 31–36. New York: National Foundation for Birth Defects (Original Article Series) 1970Google Scholar
  368. Odell, G.B., Cohen, S.N., Kelly, P.C.: Studies in kemicterus. II. The determination of the saturation of serum albumin with bilirubin. J. Pediat. 74, 214–230 (1969)PubMedGoogle Scholar
  369. Odell, G.B., Cukier, J.O., Maglalang, A.C.: Commentary: Albumin binding of bilirubin. J. Pediat. 86, 614 (1975)PubMedGoogle Scholar
  370. O’Doherty, P.J.A., Kuksis, A.: Stimulation of triacylglycerol synthesis by Z protein in rat liver and intestinal mucosa. FEBS Lett. 60, 256–258 (1975)PubMedGoogle Scholar
  371. Ohnhaus, E.E., Locher, J.T.: Liver blood flow and blood volume following chronic pheno-barbitone administration. Europ. J. Pharmacol. 31, 161–165 (1975)Google Scholar
  372. Okolicsanyi, L., Cartei, G., Naccarato, R.: Effects of ethanol on Gilbert’s hyperbilirubinemia. Lancet 1972 I, 450Google Scholar
  373. Okolicsanyi, L., Cortelazzo, S., Carluccio, A., Naccarato, R.: Effects of rifampicin, UDPG and phenobarbital on bilirubin metabolism in Gilbert’s syndrome. Digestion 6, 295 (1972) (Abstract)Google Scholar
  374. Okolicsanyi, L., Frei, J., Magnenat, P.: Multiplicity and specificity of UDP glucuronyl transferase. II. Influence of phenobarbital and cholestasis on the activity of glucuronyl transferase and beta glucuronidase in rat liver. Enzym. biol. clin. 11, 402–411 (1970)Google Scholar
  375. Okolicsanyi, L., Frei, J., Magnenat, P., Naccarato, R.: Multiplicity and specificity of UDP glucuronyl transferase. 3. UDP-glucuronyl transferase and β-glucuronidase activities assayed with different substrates in inherited and acquired human liver diseases. Enzyme 12, 658–673 (1971)PubMedGoogle Scholar
  376. Orme, M.L’E., Davies, L., Breckenridge, A.: Increased glucuronidation of bilirubin in man and rat by administration of antipyrine (phenazone). Clin. Sci. molec. Med. 46, 511–518 (1974)Google Scholar
  377. Ostrow, J.D.: Photo-oxidation derivatives of 14C-bilirubin and their excretion by the Gunn rat. In: Bilirubin Metabolism. I.A.D. Bouchier and B.H. Billing (eds.), pp. 117–127. Oxford: Blackwell 1967Google Scholar
  378. Ostrow, J.D.: Photocatabolism of labeled bilirubin in the congenitally jaundiced Gunn rat. J. clin. Invest. 50, 707–718 (1971)PubMedGoogle Scholar
  379. Ostrow, J.D.: Mechanism of bilirubin photodegradation. Semin. Hematol. 9, 113–125 (1972a)PubMedGoogle Scholar
  380. Ostrow, J.D.: Photochemical and biochemical basis of the treatment of neonatal jaundice. Progr. Liver Dis. IV, 447–462 (1972b)Google Scholar
  381. Ostrow, J.D., Berry, C.S.: Characterization of bilirubin photoderivatives in Gunn rat bile. J. clin. Invest. 51, 71a (1972a) (Abstract)Google Scholar
  382. Ostrow, J.D., Berry, C.S.: Effect of phototherapy on hepatic excretory function in normal and Gunn rats. Gastroenterology 62, 168 (1972b) (Abstract)Google Scholar
  383. Ostrow, J.D., Branham, R.V.: Photodecomposition of bilirubin and biliverdin in vitro. Gastroenterology 58, 15–25 (1970)PubMedGoogle Scholar
  384. Ostrow, J.D., Murphy, N.H.: Isolation and properties of conjugated bilirubin from bile. Biochem. J. 120, 311–327(1970)PubMedGoogle Scholar
  385. Ostrow, J.D., Nicholson, D.C., Stoll, M.S.: Derivatives of the alkaline degradation of bilirubin. Gastroenterology 60, 186 (1971) (Abstract)Google Scholar
  386. Patrignani, A., Sternieri, E., Perugini, S.: Ricerche sulla bilirubina precocemente marcata: II. Incorporazione della glicina-2-14C e del Δ-ALA-3,5–3H nella bilirubina del plasma, nell emina e nella globina degli eritrociti in pazienti affetti de aplasia midollare. Haematologica 56, 65–72 (1971)PubMedGoogle Scholar
  387. Paumgartner, G.: The handling of indocyanine green by the liver. Schweiz. med. Wschr. 105, Supplement (1975)Google Scholar
  388. Paumgartner, G., Probst, P., Kraines, R., Leevy, C.M.: Kinetics of indocyanine green removal from the blood. Ann. N.Y. Acad. Sci. 170, 134–147 (1970)Google Scholar
  389. Perez, V., Schaffner, F., Popper, H.: Hepatic drug reactions. Progr. Liver Dis. IV, 597–625 (1972)Google Scholar
  390. Perugini, S., Patrignani, A., Sternieri, E., Mucci, P.: Ricerche sulla bilirubina precocemente marcata: I. Incorporazione delia glicina-2-14C e del Δ-ALA-3,5–3H nella bilirubina del plasma, nell emina e nella globinadegli eritrociti, in condizioni di eritropoiesi normale e stimolata. Haematologica 56, 21–35 (1971)PubMedGoogle Scholar
  391. Pimstone, N.R., Engel, P., Tenhunen, R., Seitz, P.T., Marver, H.S., Schmid, R.: Inducible heme oxygenase in the kidney: A model for the homeostatic control of hemoglobin catabolism. J. clin. Invest. 50, 2042–2050 (1971b)PubMedGoogle Scholar
  392. Pimstone, N.R., Tenhunen, R., Seitz, P.T., Marver, H.S., Schmid, R.: The enzymatic degradation of hemoglobin to bile pigments by macrophages. J. exp. Med. 133, 1264–1281 (1971a)PubMedGoogle Scholar
  393. Pinckard, R.N., Hawkins, D., Farr, R.S.: The influence of acetylsalicylic acid on the binding of acetrizoate to human albumin. Ann. N.Y. Acad. Sci. 226, 341–354 (1973)PubMedGoogle Scholar
  394. Ploussard, J.P., Foliot, A., Christoforov, B., Petite, J.P., Alison, F., Etienne, J.P., Housset, L.: Interet et limite de l’utilisation d’un capteur intestinal de la bilirubine non conjugée (polyvinylpyrrolidone) dans l’ictere du premature. Arch. Franç, Pediat. 29, 373–390 (1972)Google Scholar
  395. Polacek, K., Novak, M., Melichar, V.: Influence of free fatty acids on the distribution of bilirubin and its clinical significance in the newborn. Rev. Czech. Med. 11, 161–169 (1965)PubMedGoogle Scholar
  396. Poland, R.L., Odell, G.B.: Physiologic jaundice: the enterohepatic circulation of bilirubin. New Engl. J. Med. 284, 1–6 (1971)PubMedGoogle Scholar
  397. Poland, R.L., Odell, G.B.: The binding of bilirubin to agar. Proc. Soc. exp. Biol. (N.Y.) 146, 1114–1118 (1974)Google Scholar
  398. Porter, E.G., Waters, W.J.: A rapid micromethod for measuring the reserve albumin binding capacity in serum from newborn infants with hyperbilirubinemia. J. Lab. clin. Med. 67, 660–668 (1966)Google Scholar
  399. Porto, S.O.: In vitro and in vivo studies on the effect of phototherapy upon bilirubin. In: Bilirubin metabolism in the newborn. D. Bergsma, D.Y.Y. Hsia, and C. Jackson (eds.), pp. 83–89. New York: National Foundation for Birth Defects (Original Article Series) 1970Google Scholar
  400. Porto, S.O., Pildes, R.S., Goodman, H.: Studies on the effect of phototherapy on neonatal hyperbilirubinemia among low birthweight infants. II. Protein binding capacity. J. Pediat. 75, 1048–1050 (1969)PubMedGoogle Scholar
  401. Potrepka, R.F., Spratt, J.L.: Effect of phenobarbital and 3-methylcholanthrene pretreatment on guinea pig hepatic microsomal bilirubin glucuronyl transferase activity. Biochem. Pharmacol. 20, 861–867 (1971)PubMedGoogle Scholar
  402. Potrepka, R.F., Spratt, J.L.: A study on the enzymatic mechanism of guinea pig hepatic microsomal bilirubin glucuronyl transferase. Europ. J. Biochem. 29, 433–439 (1972)PubMedGoogle Scholar
  403. Prato, V., Gallo, E., Ricco, G., Mazza, H., Bianco, G., Lehmann, H.: Haemolytic anemia due to hemoglobin Torino. Brit. J. Haemat. 19, 105–115 (1970)PubMedGoogle Scholar
  404. Preisig, R., Bucher, H., Stirnemann, H., Tauber, J.: Postoperative choleresis following bile duct obstruction in man. Rev. franç. Ét. clin. biol. 14, 151–158 (1969)Google Scholar
  405. Preisig, R., Cooper, H.L., Wheeler, H.O.: The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholinergic blockade and during secretin administration. J. clin. Invest. 41, 1152–1162 (1962)PubMedGoogle Scholar
  406. Radzialowski, F.M.: Effect of spironolactone and pregnenolone—16-α carbonitrile on bilirubin metabolism and plasma levels in male and female rats. Biochem. Pharmacol. 22, 1607–1611 (1973)PubMedGoogle Scholar
  407. Raffin, S.B., Woo, C.H., Roost, K.T., Price, D.C., Schmid, R.: Intestinal absorption of hemoglobin iron—heme cleavage by mucosal heme oxygenase. J. clin. Invest. 54, 1344–1352 (1974)PubMedGoogle Scholar
  408. Ramos, A., Silverberg, M., Stern, L.: Pregnanediols and neonatal hyperbilirubinemia. Amer. J. Dis. Child. 111, 353–356 (1966)PubMedGoogle Scholar
  409. Rane, A., Lunde, P.K.M., Jailing, B., Yaffe, S.J., Sjoqvist, F.: Plasma protein binding of diphenylhydantoin in normal and hyperbilirubinemic infants. J. Pediat. 78, 877–882 (1971)PubMedGoogle Scholar
  410. Raymond, G.D., Galambos, J.T.: Hepatic storage and excretion of bilirubin in man. Amer. J. Gastroent. 55, 135–144 (1971)PubMedGoogle Scholar
  411. Reinicke, C., Rogner, G., Frenzel, J., Maak, B., Klinger, W.: The effect of phenylbutazone and phenobarbital on the elimination of amidopyrine, the concentration of bilirubin in blood serum and various blood clotting factors in the newborn. Pharmacol. Clin. 2, 167–172 (1970)Google Scholar
  412. Remmer, H., Merker, J.: Drug-induced changes in the liver endoplasmic reticulum: Association with drug metabolizing enzymes. Science 142, 1657–1658 (1963)PubMedGoogle Scholar
  413. Remmer, H., Merker, H.J.: Effect of drugs on the formation of smooth endoplasmic reticulum and drug metabolizing enzymes. Ann. N.Y. Acad. Sci. 123, 79–97 (1965)PubMedGoogle Scholar
  414. Reyes, H., Levi, A.J., Gatmaitan, Z., Arias, I.M.: Organic anion-binding protein in rat liver: drug induction and its physiologic consequence. Proc. nat. Acad. Sci. (Wash.) 64, 168–170 (1969)Google Scholar
  415. Reyes, H., Levi, A.J., Gatmaitan, Z., Arias, I.M.: Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins: Effect of drugs, chemicals, hormones, and cholestasis. J. clin. Invest. 50, 2242–2252 (1971)PubMedGoogle Scholar
  416. Rich, A.R.: The formation of bile pigment. Physiol. Rev. 5, 182–224 (1925)Google Scholar
  417. Roberts, R.J., Plaa, G.L.: Potentiation and inhibition of α-naphthylisothiocyanate-induced hyperbilirubinemia and cholestasis. J. Pharmacol. exp. Ther. 150, 499–506 (1965)PubMedGoogle Scholar
  418. Roberts, R.J., Plaa, G.L.: Effect of phenobarbital on the excretion of an exogenous bilirubin load. Biochem. Pharmacol. 16, 827–835, (1967)PubMedGoogle Scholar
  419. Roberts, R.J., Plaa, G.L.: Alteration in biliary bilirubin content and non-erythropoietically-derived bilirubin synthesis in rats after alpha-naphthylisothiocyanate administration. J. Pharmacol. exp. Ther. 161, 382–388 (1968)PubMedGoogle Scholar
  420. Robertson, D.H.H.: Nitrofurazone-induced hemolytic anemia in a refractory case of trypano-soma rhodesiense sleeping sickness: The hemolytic trait and self-limiting hemolytic anemia. Ann. trop. Med. Parasit. 55, 49–64 (1961)PubMedGoogle Scholar
  421. Robinson, M.G., Foadi, M.: Hemolytic anemia with positive Coombs test. Association with isoniazid therapy. J. Amer. med. Ass. 208, 656–658 (1969)Google Scholar
  422. Robinson, S.H.: Increased bilirubin formation from nonhemoglobin sources in rats with disorders of the liver. J. Lab. clin. Med. 73, 668–676 (1969)PubMedGoogle Scholar
  423. Robinson, S.H.: Production and excretion of bilirubin in Gunn rats treated with phenobarbital. Proc. Soc. exp. Biol. (N.Y.) 138, 281–284 (1971)Google Scholar
  424. Robinson, S.H., Koeppel, E.: Preferential hemolysis of immature erythrocytes in experimental iron deficiency anemia: source of erythropoietic bilirubin formation. J. clin. Invest. 50, 1847–1853 (1971)PubMedGoogle Scholar
  425. Robinson, S.H., Owen, C.A. Jr., Flock, E.V., Schmid, R.: Bilirubin formation in the liver from non-hemoglobin sources. Blood 26, 825–829 (1965)Google Scholar
  426. Robinson, S.H., Rugstad, H.E., Yannoni, C., Tashijian, A.H., Jr.: Labeled bilirubin production by a clonal strain of rat hepatoma cells. Proc. Soc. exp. Biol. (N.Y.) 136, 684–686 (1971a)Google Scholar
  427. Robinson, S.H., Tsong, M.: Hemolysis of stress reticulocytes: A source of erythropoietic bilirubin formation. J. Clin. Invest. 49, 1025–1035 (1970)PubMedGoogle Scholar
  428. Robinson, S.H., Tsong, M., Brown, B.W., Schmid, R.: The sources of bile pigment in the rat: studies of the “early-labeled” fraction. J. clin. Invest. 45, 1569–1586 (1966)PubMedGoogle Scholar
  429. Robinson, S.H., Yannoni, C., Nagasawa, S.: Bilirubin excretion in rats with normal and impaired bilirubin conjugation. Effect of phenobarbital. J. clin. Invest. 50, 2606–2613 (1971b)PubMedGoogle Scholar
  430. Roerig, D.L., Hasegawa, A.T., Peterson, R.E., Wang, R.I.H.: Effect of chloroquine and phenobarbital on morphine glucuronidation and biliary excretion in the rat. Biochem. Pharmacol. 23, 1331–1339 (1974)PubMedGoogle Scholar
  431. Romagnoli, G., Polidori, G., Foschini, M., Cataldi, L., De Turris, P., Tortorolo, G., Mastrangelo, R.: Agar in the management of hyperbilirubinemin in the premature baby. Arch. Dis. Childh. 50, 202–204 (1975)PubMedGoogle Scholar
  432. Rothwell, J.D., Lacroix, S., Sweeney, G.D.: Evidence against a regulatory role for heme oxygenase in hepatic heme synthesis. Biochim. biophys. Acta (Amst.) 304, 871–874 (1973)Google Scholar
  433. Rubin, F., Lieber, C.S.: The effects of alcohol on the human liver. In: The Liver and its Diseases. Schaffner, F., Sherlock, S., and Leevy, C.M. (eds.), pp. 236–244. New York: Intercontinental Med. Book Corp. 1974Google Scholar
  434. Rudman, D., Bixler, T.J., Del Rio, A.E.: Effect of free fatty acids on binding of drugs by bovine serum albumin, by human serum albumin and by rabbit serum. J. Pharmacol. exp. Ther. 176, 261–272 (1971)PubMedGoogle Scholar
  435. Rugstad, H.E., Bratlid, D.: The effect of sulfisoxazole (Gantrisin) and albumin on bilirubin conjugation in cultures of a clonal cell line with liver like functions. Biochem. Pharmacol. 23, 1432–1436 (1974)PubMedGoogle Scholar
  436. Rugstad, H.E., Dybing, E.: Competition between p-aminophenol, p-nitrophenol and bilirubin for glucuronidation in cultures of rat hepatoma cells and homogenates of the same cells. Acta Pharmacol. (Kbh.) 34, 65–75 (1974)Google Scholar
  437. Sanchez, E., Tephly, T.R.: Activation of hepatic microsomal glucuronyl transferase by bilirubin. Life Sci. 13, 1483–1490 (1973)PubMedGoogle Scholar
  438. Sausville, J.W., Sisson, T.R.C., Berger, D.: Blue lamps in phototherapy of hyperbilirubinemia. J. Ilium Engin. Soc. 1, 112–118 (1972)Google Scholar
  439. Schacter, B.A.: Induction mechanisms for bile pigment formation. In: Jaundice. Goresky, C.A., and Fisher, M.M. (eds.), pp. 85–102. New York: Plenum Press 1975Google Scholar
  440. Schacter, B.A., Mason, J.I.: The effect of phenobarbital, 3-methylcholanthrene, 3,4-benzyprene, and pregnenolone-16α carbonitrile on microsomal heme oxygenase and splenic cytochrome P-450. Arch. Biochem. Biophys. 160, 274–278 (1974)PubMedGoogle Scholar
  441. Schacter, B.A., Nelson, E.B., Marver, H.S., Masters, B.S.S.: Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J. biol. Chem. 247, 3601–3607 (1972)PubMedGoogle Scholar
  442. Schacter, B.A., Waterman, M.R.: Activity of various metalloporphyrin protein complexes with microsomal heme oxygenase. Life Sci. 14, 47–53 (1974)PubMedGoogle Scholar
  443. Scharschmidt, B.F., Waggoner, J.G., Berk, P.D.: Hepatic organic anion uptake in the rat. J. clin. Invest. 56, 1280–1292 (1975)PubMedGoogle Scholar
  444. Schersten, T., Nilsson, S., Cahlin, E., Filipson, M., Brodina-Persson, G.: Relationship between the biliary excretion of bile acids and the excretion of water, lecithin and cholesterol in man. Europ. J. clin. Invest. 1, 242–247 (1971)PubMedGoogle Scholar
  445. Schiff, D., Chan, G., Stern, L.: Fixed drug combinations and the displacement of bilirubin from albumin. Pediatrics 48, 139–141 (1971)PubMedGoogle Scholar
  446. Schmid, R.: Direct-reacting bilirubin, bilirubin glucuronide in serum bile and urine. Science 124, 76 (1956)PubMedGoogle Scholar
  447. Schmid, R.: The identification of “direct-reacting” bilirubin as bilirubin glucuronide. J. biol. Chem. 229, 881–888 (1957)PubMedGoogle Scholar
  448. Schmid, R.: Discussion of Grodsky, G. Studies in the uptake and intrahepatic transport of 3H-bilirubin. In: Bilirubin Metabolism. I.A.D. Bouchier and B.H. Billing (eds.), p. 171. Oxford: Blackwell Scientific Publications 1967Google Scholar
  449. Schmid, R., Axelrod, J., Hammaker, L., Swarm, R.L.: Congenital jaundice in rats due to a defect in glucuronide formation. J. clin. Invest. 37, 1123–1130 (1958)PubMedGoogle Scholar
  450. Schmid, R., Forbes, A., Rosenthal, I.M., Lester, R.: Lack of effect of cholestyramine resin on hyperbilirubinemia of premature infants. Lancet 1963 II, 938–939Google Scholar
  451. Schmid, R., Hammaker, L.: Metabolism and disposition of 14C-bilirubin in congenital nonhemolytic jaundice. J. clin. Invest. 42, 1720–1734 (1963)PubMedGoogle Scholar
  452. Schmid, R., Hammaker, L., Axelrod, J.: The enzymatic formation of bilirubin glucuronide. Arch. Biochem. Biophys. 70, 285–288 (1957)PubMedGoogle Scholar
  453. Schmid, R., Marver, H.S., Hammaker, L.: Enhanced formation of rapidly labeled bilirubin by phenobarbital: Hepatic microsomal cytochromes as a possible source. Biochem. biophys. Res. Commun. 24, 319–328 (1966)PubMedGoogle Scholar
  454. Schoenfield, L.J., Bollman, J.L., Hoffman, H.N.: Sulphate and glucuronide conjugates of bilirubin in experimental liver injury. J. clin. Invest. 41, 133–140 (1962)PubMedGoogle Scholar
  455. Schwartz, S., Ikeda, K.: Studies of porphyrin synthesis and interconversion with special reference to certain green porphyrins in animals with experimental hepatic porphyria. In: Ciba Foundation Symposium on porphyrin biosynthesis and metabolism. G.E.W. Wolstenholme and E.C.P. Millar (eds.), p. 209. London: J & A Churchill 1955Google Scholar
  456. Schwarze, R., Kintzel, H.W., Hinkel, G.K.: The influence of orotic acid on the serum bilirubin level of mature newborn. Acta pediat. scand. 60, 705–708 (1971)Google Scholar
  457. Scott, C.L., Myles, A.B., Bacon, P.A.: Autoimmune hemolytic anemia and mefenamic acid therapy. Brit. med. J. 3, 534–535 (1968)PubMedGoogle Scholar
  458. Sereni, F., Perletti, L., Marini, A.: Influence of diethylnicotinamide on the concentration of serum bilirubin of newborn infants. Pediatrics 40, 446–449 (1967)PubMedGoogle Scholar
  459. Serrani, R.E., Corchs, J.L., Rodriguez Garay, E.A.: Sodium effect on bilirubin uptake by the rat intestinal mucosa. Biochim. biophys. Acta (Amst.) 330, 186–191 (1973)Google Scholar
  460. Shani, M., Seligsohn, U., Ben-Ezzer, J.: Effect of phenobarbital on liver functions in patients with Dubin-Johnson syndrome. Gastroenterology 67, 303–308 (1974)PubMedGoogle Scholar
  461. Shotton, D., Carpenter, M., Rinehart, W.B.: Bromsulfalein retention due to administration of gall-bladder dye (Bunamiodyl). New Engl. J. Med. 264, 550–552 (1961)Google Scholar
  462. Silverberg, M., Desforges, J., Gellis, S.: Mechanisms underlying vitamin K induced hyperbilirubinemia in premature infants. Ann. N.Y. Acad. Sci. 111, 472–482 (1963)PubMedGoogle Scholar
  463. Silverman, W.A., Anderson, D.H., Blanc, W.A., Crozier, D.N.: A difference in mortality rate and incidence of kernicterus among premature infants alloted to two prophylactic antibacterial regimens. Pediatrics 18, 614–625 (1956)PubMedGoogle Scholar
  464. Smith, D.S., Fujimoto, J.M.: Alterations produced by novobiocin during biliary excretion of morphine, morphine-3-glucuronide and other compounds. J. Pharmacol. exp. Ther. 188, 504–515 (1974)PubMedGoogle Scholar
  465. Snyder, A.L., Satterlee, W., Robinson, S.H., Schmid, R.: Conjugated plasma bilirubin in jaundice caused by pigment overload. Nature (Lond.) 213, 93 (1967)Google Scholar
  466. Solomon, H.M.: Competition between drugs and normal substrates for plasma and tissue binding sites. In: Handbook of Experimental Pharmacology, Vol. 28, part 1, pp. 234—239. Berlin–Heidelberg–New York: Springer 1971Google Scholar
  467. Solymoss, B., Zsigmond, G.: Effect of various steroids on the hepatic glucuronidation and biliary excretion of bilirubin. Canad. J. Physiol. Pharmacol. 51, 319–323 (1973)Google Scholar
  468. Spector, A.A., Santos, E.C., Ashbrook, J.D., Fletcher, J.E.: Influence of free fatty acid concentration on drug binding to plasma albumin. Ann. N.Y. Acad. Sci. 226, 247–258 (1973)PubMedGoogle Scholar
  469. Sperber, I.: Secretion of organic anions in the formation of urine and bile. Pharmacol. Rev. 11, 109–134 (1959)PubMedGoogle Scholar
  470. Spiegel, E.L., Schubert, W., Perrin, E., Schiff, L.: Benign recurrent intrahepatic cholestasis with response to cholestyramine. Amer. J. Med. 39, 682–688 (1965)PubMedGoogle Scholar
  471. Starinsky, R., Shafrir, E.: Displacement of albumin-bound bilirubin by free fatty acids. Implications for neonatal hyperbilirubinemia. Clin. chim. Acta 29, 311–318 (1970)PubMedGoogle Scholar
  472. Stern, L.: Drugs, the newborn infant, and the binding of bilirubin to albumin. Pediatrics 49, 916–918 (1972)PubMedGoogle Scholar
  473. Stiehl, A., Thaler, M.M., Admirand, W.H.: The effects of phenobarbital on bile salts and bilirubin in patients with intrahepatic and extrahepatic cholestasis. New Engl. J. Med. 286, 858–866 (1972)PubMedGoogle Scholar
  474. Stiehl, A., Thaler, M.M., Admirand, W.H.: Effects of phenobarbital on bile salt metabolism in cholestasis due to intrahepatic bile duct hypoplasia. Pediatrics 51, 992–997 (1973)PubMedGoogle Scholar
  475. Strebel, L., Odell, G.B.: UDP glucuronyl transferase in rat liver. Genetic variation and maturation. Pediat. Res. 3, 351–352 (1969)Google Scholar
  476. Strebel, L., Odell, G.B.: Bilirubin uridine diphosphoglucuronyl transferase in rat liver microsomes: genetic variation and maturation. Pediat. Res. 5, 548–559 (1971)Google Scholar
  477. Stumpf, W.E., Lester, R.: Secretion and absorption of mesobilirubinogen-3H studied by autoradiography. Lab. Invest. 15, 1156–1162 (1966)PubMedGoogle Scholar
  478. Sutherland, J.M., Keller, H.H.: Novobiocin and neonatal hyperbilirubinemia. Amer. J. Dis. Child. 101, 447–453 (1961)Google Scholar
  479. Swanson, M.A., Chanmougan, D., Schwartz, R.S.: Immunohemolytic anemia due to anti-penicillin antibodies: report of a case. New Engl. J. Med. 274, 178–181 (1966)PubMedGoogle Scholar
  480. Takemori, A.E.: Enzymic studies on morphine glucuronide synthesis in acutely and chronically morphinized rats. J. Pharmacol. exp. Ther. 130, 370–374 (1960)PubMedGoogle Scholar
  481. Talafant, E.: Properties and composition of the bile pigment giving a direct diazo reaction. Nature (Lond.) 178, 312 (1956)Google Scholar
  482. Tarchanoff, J.F.: Über die Bildung von Gallenpigment aus Bluifarbstoff im Thierkoerper. Arch. ges. Physiol. 9, 53 (1874)Google Scholar
  483. Tenhunen, R.: Studies on bilirubin and its metabolism. Ann. Med. exp. Fenn. 43, Suppl. 6, 1–45 (1965)PubMedGoogle Scholar
  484. Tenhunen, R.: The enzymatic degradation of heme. Semin. Hematol. 9, 19–29 (1972)PubMedGoogle Scholar
  485. Tenhunen, R., Marver, H., Pimstone, N.R., Trager, W.F., Cooper, D.Y., Schmid, R.: Enzymatic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochemistry 11, 1716–1720 (1972)PubMedGoogle Scholar
  486. Tenhunen, R., Marver, H.S., Schmid, R.: The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc. nat. Acad. Sci. (Wash.) 61, 748–755 (1968)Google Scholar
  487. Tenhunen, R., Marver, H.S., Schmid, R.: Microsomal heme oxygenase: Characterization of the enzyme. J. biol. Chem. 244, 6388–6394 (1969)PubMedGoogle Scholar
  488. Tenhunen, R., Marver, H.S., Schmid, R.: The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J. Lab. clin. Med. 75, 410–421 (1970a)PubMedGoogle Scholar
  489. Tenhunen, R., Ross, M., Marver, H.S., Schmid, R.: Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: Partial purification and characterization. Biochemistry 9, 298–303 (1970b)PubMedGoogle Scholar
  490. Tephly, T.R., Hasegawa, E., Baron, J.: Effect of drugs on heme synthesis in the liver. Metabolism 20, 200–214 (1971)PubMedGoogle Scholar
  491. Territo, M.C., Peters, R.W., Tanaka, K.P.: Autoimmune hemolytic anemia due to levodopa therapy. J. Amer. med. Ass. 226, 1347–1348 (1973)Google Scholar
  492. Thaler, M.M.: Perinatal bilirubin metabolism. Advanc. Pediat. 19, 215–235 (1972)Google Scholar
  493. Thaler, M.M., Dawber, N.H., Krasner, J., Mosovich, L., Yaffe, S.: Effects of phototherapy on bilirubin (B) metabolism and sulfobromphthalein (BSP) excretion in unconjugated hyperbilirubinemia. Pediat. Res. 7, 34 (1973) (Abstract)Google Scholar
  494. Thiessen, H., Jacobsen, J., Brodersen, R.: Displacement of albumin bound-bilirubin by fatty acids. Acta paediat. scand. 61, 285–288 (1972)PubMedGoogle Scholar
  495. Thompson, R.P.H., Stathers, G.M., Pilcher, C.W.T., McLean, A.E.M., Robinson, J., Williams, R.: Treatment of unconjugated jaundice with dicophane. Lancet 1969 II, 4–6Google Scholar
  496. Tomlinson, G.A., Yaffe, S.J.: The formation of bilirubin and p-nitrophenyl glucuronides by rabbit liver. Biochem. J. 99, 507–512 (1966)PubMedGoogle Scholar
  497. Topham, J.C., Broad, R.D.: Persistent reduction of serum bilirubin levels after treatment of Gunn rats with some acidic compounds. Biochem. Pharmacol. 20, 718–720 (1971)PubMedGoogle Scholar
  498. Traiger, G.J., Derepentigny, L., Plaa, G.L.: Effect of inhibitors of protein and ribonucleic acid synthesis on the alteration in biliary bilirubin excretion and non-erythropoietically derived bilirubin synthesis in rats after α-naphthylisothiocyanate administration. Biochem. Pharmacol. 23, 2845–2856 (1974)PubMedGoogle Scholar
  499. Troxler, R.F., Dawber, N.H., Lester, R.: Synthesis of urobilinogen by broken cell preparation of intestinal bacteria. Gastroenterology 54, 568–574 (1968)PubMedGoogle Scholar
  500. Tuilié, M., Lardinois, R.: The binding of unconjugated bilirubin by human sera and purified albumins. Biol. Neonate 21, 447–462 (1972)PubMedGoogle Scholar
  501. Ulstrom, R.A., Eisenklam, E.: The enterohepatic shunting of bilirubin in the newborn infant. J.Pediat.65, 27–37(1964)PubMedGoogle Scholar
  502. Upson, D.W., Gronwall, R.R., Cornelius, C.E.: Maximal hepatic excretion of bilirubin in sheep. Proc. Soc. exp. Biol. (N.Y.) 134, 9–12 (1970)Google Scholar
  503. Vainio, H.: Enhancement of microsomal dmg oxidation and glucuronidation in rat liver by an environmental chemical, polychlorinated biphenyl. Chem. Biol. Interact. 9, 379–387 (1974a)PubMedGoogle Scholar
  504. Vainio, H.: Activation and inactivation of membrane-bound UDP-glucuronosyltransferase by organic solvents in vitro. Acta pharmacol. (Kbh.) 34, 152–156 (1974b)Google Scholar
  505. Vainio, H., Hietanen, E.: Drug metabolism in Gunn rats: Inability to increase bilirubin glucuronidation by phenobarbital treatment. Biochem. Pharmacol. 23, 3405–3512 (1974)PubMedGoogle Scholar
  506. Vaisman, S.L., Lee, K.S., Gartner, L.M.: Various bilirubin conjugates in pregnant and nonpregnant rats with and without phenobarbital treatment. Pediat. Res. 10, 111–113 (1976)PubMedGoogle Scholar
  507. Vanleusden, H.A.I.M., Bakkeren, J.A.J.M., Zilliken, F., Stolte, L.A.M.: p-Nitrophenyl- glucuronide formation by homozygous adult Gunn rats. Biochem. biophys. Res. Commun. 7, 67–69 (1962)Google Scholar
  508. Vanroy, F.P., Heirwegh, K.P.M.: Determination of bilirubin glucuronide and assay of glucu-ronyltransferase with bilirubin as acceptor. Biochem. J. 107, 507–518 (1968)Google Scholar
  509. Verschure, J.C.M., Mijnlieff, P.F.: The dominating macromolecular complex of human gallbladder bile. Clin. chim. Acta. 1, 154–166 (1956)PubMedGoogle Scholar
  510. Vessey, D.A., Goldenberg, J., Zakim, D.: Differentiation of homologous forms of hepatic microsomal UDP-glucuronyl transferase. II. Characterization of the bilirubin conjugating form. Biochim. biophys. Acta (Amst.) 309, 75–82 (1973a)Google Scholar
  511. Vessey, D.A., Goldenberg, J., Zakim, D.: Kinetic properties of microsomal UDP-glucuronyl-transferase. Evidence for cooperative kinetics and activation by UDP-N-acetylglucosamine. Biochim. biophys. Acta (Amst.) 309, 58–66 (1973b)Google Scholar
  512. Vessey, D.A., Zakim, D.: Regulation of microsomal enzymes by phospholipids II. Activation of hepatic uridine diphosphate-glucuronyltransferase. J. biol. Chem. 246, 4649–4656 (1971)PubMedGoogle Scholar
  513. Virchow, R.: Die pathologischen Pigmente. Arch. path. Anat. Physiol. klin. Med. 1, 379 (1847)Google Scholar
  514. Visintine, R.E., Michaels, G.D., Fukanama, G., Conklin, J., Kinsell, L.W.: Xanthomatous biliary cirrhosis treated with cholestyramine, a bile acid absorbing resin. Lancet 1961 II, 341–343Google Scholar
  515. Waitman, A.M., Dyck, W.P., Janowitz, H.D.: Effect of secretion and acetazolamide on the volume and electrolyte composition of hepatic bile in man. Gastroenterology 56, 286–294 (1969)PubMedGoogle Scholar
  516. Waller, H.D.: Glutathione reductase deficiency. In: Hereditary Disorders of Erythrocyte Metabolism. Beutler, E. (ed.), pp. 185–208. New York: Grune & Stratton 1968Google Scholar
  517. Waltman, R., Bonura, F., Nigrin, G., Pipat, C.: Ethanol in prevention of hyperbilirubinemia in the newborn. Lancet 1969 II, 1265–1267Google Scholar
  518. Warner, M., Neims, A.H.: Studies on Z-Fraction. I. Isolation and partial characterization of low molecular weight ligand—binding protein from rat hepatic cytosol. Canad. J. Physiol. Pharmacol. 53, 493–500 (1975)Google Scholar
  519. Waters, W.J., Dunham, R., Bowen, W.R.: Inhibition of bilirubin conjugation in vitro. Proc. Soc. exp. Biol. (N.Y.) 99, 175–177 (1958)Google Scholar
  520. Watson, C.J.: Recent studies of the urobilin problem. J. clin. Path. 16, 1–11 (1963)PubMedGoogle Scholar
  521. Watson, C.J., Campbell, M., Lowry, P.T.: Preferential reduction of conjugated bilirubin to urobilinogen by normal fecal flora. Proc. Soc. exp. Biol. (N.Y.) 98, 707–711 (1958)Google Scholar
  522. Weber, A.P., Schalm, L., Witmans, J.: Bilirubin monoglucuronide (pigment I): A complex. Acta med. scand. 173, 19–24(1963)PubMedGoogle Scholar
  523. Weinbren, K., Billing, B.H.: Hepatic clearance of bilirubin as an index of cellular function in the regenerating rat liver. Brit. J. exp. Path. 37, 199–204 (1956)PubMedGoogle Scholar
  524. Wennberg, R.P., Rasmussen, L.F.: Effects of gentamicin on albumin binding of bilirubin. J.Pediat.86, 611–613 (1975)PubMedGoogle Scholar
  525. Wheeler, H.O.: Principles of biliary secretion. In: Jaundice. Goresky, C.A. and Fisher, M.M. (eds.), pp. 195–215. New York: Plenum Press 1975Google Scholar
  526. Wheeler, H.O., Cranston, W.I., Meltzer, J.I.: Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc. Soc. exp. Biol. (N.Y.) 99, 11–14 (1958)Google Scholar
  527. Whelton, M.J., Krustev, L.P., Billing, B.H.: Reduction in serum bilirubin by phenobarbital in adult unconjugated hyperbilirubinemia. Amer. J. Med. 45, 160–164 (1968)PubMedGoogle Scholar
  528. Whipple, G.H., Hooper, C.W.: Bile pigment output influenced by hemoglobin injections, anemia and blood regeneration. Amer. J. Physiol. 43. 258–274 (1917)Google Scholar
  529. White, J.M., Brain, M.C., Lorkin, P.A., Lehmann, H., Smith, M.: Mild “unstable haemoglobin haemolytic anaemia” caused by haemoglobin Shepherds’ Bush. Nature (Lond.) 225, 939–941 (1970)Google Scholar
  530. White, P., Silvers, A.A., Rosher, M.L., Shafer, B.C., Williams, W.J.: Hepatic production of bilirubin and carbon monoxide in vitro. J. clin. Invest. 45, 1085–1086 (1966) (Abstract)Google Scholar
  531. Williams, R., Maxwell, J.D., Hunter, J.: Some clinical implications of hepatic enzyme induction, pp. 44–51. Proc. Europ. Soc. for the Study of Drug Toxicity, Vol. XIII. Amsterdam: Excerpta Medica 1972Google Scholar
  532. Wilson, J.T.: Developmental pharmacology: A review of its application to clinical and basic science. Ann. Rev. Pharmacol. 12, 423–450 (1972)PubMedGoogle Scholar
  533. Windorfer, A., Kunzer, W., Bolze, H., Ascher, K., Wilcken, F., Hoehne, K.: Studies on the effect of orally administered agar on the serum bilirubin level of premature infants and mature newborns. Acta paediat. scand. 64, 699–702 (1975)PubMedGoogle Scholar
  534. Winsnes, A.: Studies on the activation in vitro of glucuronyltransferase. Biochim. biophys. Acta (Amst.) 191, 279–291 (1969)Google Scholar
  535. Winsnes, A.: Age and sex dependent variability of the activation characteristics of UDP-glucuronyltransferase in vitro. Biochem. Pharmacol. 20, 1249–1258 (1971a)PubMedGoogle Scholar
  536. Winsnes, A.: Variable effect of phenobarbital treatment of mice on hepatic UDP-glucuronyl-transferase activity when judged by slightly different enzyme-assay techniques. Biochem. Pharmacol. 20, 1853–1857 (1971b)PubMedGoogle Scholar
  537. Winsnes, A., Dutton, G.J.: Comparison between o-aminophenol glucuronidation in liver slices and homogenates from control and phenobarbital treated Wistar and Gunn rats. Biochem. Pharmacol. 22, 1765–1771 (1973)PubMedGoogle Scholar
  538. Wong, K.P.: Formation of bilirubin glucoside. Biochem. J. 125, 929–934, (1971)PubMedGoogle Scholar
  539. Wong, K.P.: Bilirubin glucosyl and glucuronyltransferase. A comparative study and the effect of drugs. Biochem. Pharmacol. 21, 1485–1491 (1972)PubMedGoogle Scholar
  540. Woolley, P.V., Hunter, M.J.: Binding and circular dichroism data on bilirubin-albumin in the presence of oleate and salicylate. Arch. Biochem. Biophys. 140, 197–209 (1970)Google Scholar
  541. Worlledge, S.: Immune drug-induced hemolytic anemias. Semin. Hematol. 10, 327–344, (1973)PubMedGoogle Scholar
  542. Wosilait, W.D.: A theoretical analysis of the binding of bilirubin by human serum albumin: The contribution of the two binding sites. Life Sci. 14, 2189–2198 (1974)PubMedGoogle Scholar
  543. Wranne, L.: Congenital nonhaemolytic jaundice. Acta paediat. scand. 56, 552–556 (1967)PubMedGoogle Scholar
  544. Yaffe, S.J., Catz, C.S., Stern, L., Levy, G.: The use of phenobarbital in neonatal jaundice. In: Bilirubin Metabolism in the Newborn. D. Bergsma, D.Y.Y. Hsia, and C. Jackson (eds.), pp. 37–45. New York: National Foundation for Birth Defects, Original Article Series VI 1970Google Scholar
  545. Yaffe, S.J., Levy, G., Matsuzawa, T., Baliah, T.: Enhancement of glucuronide-conjugating capacity in a hyperbilirubinemic infant due to apparent enzyme induction by phenobarbital. New Engl. J. Med. 275, 1461–1466 (1966)PubMedGoogle Scholar
  546. Yamamoto, T., Skanderbeg, J., Zipursky, A., Israels, L.G.: The early appearing bilirubin: Evidence for two components. J. clin. Invest. 44, 31–41 (1965)PubMedGoogle Scholar
  547. Yeary, R.A., Davies, D.R.: Protein binding of bilirubin: Comparison of in vitro and in vivo measurements of bilirubin displacement by drugs. Toxicol. appl. Pharmacol. 28, 269–283 (1974)PubMedGoogle Scholar
  548. Yoshida, T., Takahashi, S., Kikuchi, G.: Partial purification and reconstitution of the heme oxygenase system from pig spleen microsomes. J. Biochem. (Tokyo) 75, 1187–1191 (1974)Google Scholar
  549. Zail, S.S., Charlton, R.W., Bothwell, T.H.: The hemolytic effect of certain drugs in Bantu subjects with a deficiency of glucose-6-phosphate dehydrogenase. S. Afr. J. med. Sci. 27, 95–99 (1962)Google Scholar
  550. Zakim, D., Goldenberg, J., Vessey, D.A.: Regulation of microsomal enzymes by phospholipids. VI. Abnormal enzyme lipid interactions in liver microsomes from Gunn Rats. Biochim. biophys. Acta (Amst.) 297, 497–502 (1973)Google Scholar
  551. Zakim, D., Vessey, D.A.: Techniques for the characterization of UDP-glucuronyltransferase, glucose-6-phosphatase and other tightly bound microsomal enzymes. In: Methods of Biochemical Analysis, Vol. 21. Glick, D. (ed.), New York: Interscience 1973, pp. 1–37Google Scholar
  552. Zatepka, S., Grossman, M.I.: The effect of gastrin and histamine on secretion of bile. Gastroenterology 50, 500–505 (1966)Google Scholar
  553. Zeidenberg, P., Orrenius, S., Ernster, L.: Increase in levels of glucuronylating enzymes and associated rise in activities of mitochondrial oxidative enzymes upon phenobarbital administration in the rat. J. Cell Biol. 32, 528–531 (1967)PubMedGoogle Scholar
  554. Zelson, C., Rubio, E., Wasserman, E.: Neonatal narcotic addiction: 10 year observation. Pediatrics 48, 178–189 (1971)PubMedGoogle Scholar
  555. Zinkam, W.H.: Peripheral blood and bilirubin values in normal full-term primaquine-sensitive Negro infants: Effect of Vitamin K. Pediatrics 31, 983–995 (1963)Google Scholar
  556. Zinkham, W.H., Childs, B.: A defect of glutathione metabolism in erythrocytes from patients with a naphthalene-induced hemolytic anemia. Pediatrics 22, 461–471 (1958)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • H. L. Rayner
  • B. A. Schacter
  • L. G. Israels

There are no affiliations available

Personalised recommendations