Advertisement

The Biosynthesis and Degradation of Heme

  • George H. Tait
Chapter
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 44)

Abstract

Research on the biosynthesis and degradation of heme and hemoproteins was and still is stimulated by the need to understand the nature of the many diseases where these orderly processes are disturbed. In the anemias, the body is unable to synthesize enough hemoglobin either because it cannot make erythrocytes fast enough, or because heme or globin synthesis is defective. By contrast, in the porphyrias heme and hemoproteins are synthesized at almost normal rates, but in the process excessive amounts of porphyrins and their precursors are formed. In jaundice, bilirubin accumulates because of excessive breakdown of erythrocytes and catabolism of their hemoglobin, or because of inability of the liver to take up, conjugate, or excrete bilirubin. Many of these disorders are genetically determined, but disorders of heme biosynthesis and degradation also occur when the diet is deficient in one or more of a number of constituents, or during the course of a number of diseases which are not of genetic origin. In addition, disturbances of these pathways can be produced in man and animals by a variety of inorganic and organic compounds; some of these are used therapeutically, and others can be absorbed accidentally from the environment.

Keywords

Heme Biosynthesis Acute Intermittent Porphyria Heme Oxygenase Activity Globin Synthesis Coproporphyrinogen Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, M.M., Jordan, P.M., Akhtar, M.: Biosynthesis of 5-aminolevulinic acid. Involvement of a retention-inversion mechanism. J. chem. Soc. chem. Commun. 643–644 (1974)Google Scholar
  2. Åkeson, Å., Ehrenstein, G.v., Hevesy, G., Theorell, H.: Life span of myoglobin. Arch. Biochem. Biophys. 91, 310–318 (1960)PubMedGoogle Scholar
  3. Aoki, Y., Urata, G., Wada, O., Takaku, F.: Measurement of δ-aminolevulinic acid synthetase in human erythroblasts. J. clin. Invest. 53, 1326–1334 (1974)PubMedGoogle Scholar
  4. Aoki, Y., Wada, O., Urata, G., Takaku, F., Nakao, K.: Purification and some properties of (δ-aminolevulinate (ALA) synthetase in rabbit reticulocytes. Biochem. biophys. Res. Commun. 42, 568–575 (1971)PubMedGoogle Scholar
  5. Aschenbrenner, V., Druyan, R., Albin, R., Rabinowitz, M.: Heme a, cytochrome c and total protein turnover in mitochondria of rat heart and liver. Biochem. J. 119, 157–160 (1970)PubMedGoogle Scholar
  6. Bakken, A.F., Thaler, M.M., Schmid, R.: Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J. clin. Invest. 51, 530–536 (1972)PubMedGoogle Scholar
  7. Balkow, K., Mizuno, S., Rabinovitz, M.: Inhibition of an initiation codon function by hemin deficiency and the hemin-controlled translational repressor in the reticulocyte cell-free system. Biochem. biophys. Res. Commun. 54, 315–323 (1973)PubMedGoogle Scholar
  8. Barnes, R., Connelly, J.L., Jones, O.T.G.: The utilization of iron and its complexes by mammalian mitochondria. Biochem. J. 128, 1043–1055 (1972)PubMedGoogle Scholar
  9. Barnes, R., Jones, M.S., Jones, O.T.G., Porra, R.J.: Ferrochelatase and δ-aminolevulinate synthetase in brain, heart, kidney, and liver of normal and porphyric rats. Biochem. J. 124, 633–637 (1971)PubMedGoogle Scholar
  10. Baron, J., Tephly, T.R.: Further studies on the relationship of the stimulatory effects of phenobarbital and 3,4-benzpyrene on hepatic heme synthesis and their effects on hepatic microsomal drug oxidations. Arch. Biochem. Biophys. 139, 410–420 (1970)PubMedGoogle Scholar
  11. Batlle, A.M. del C., Benson, A., Rimington, C.: Purification and properties of coproporphyrinogenase. Biochem. J. 97, 731–740 (1965)PubMedGoogle Scholar
  12. Batlle, A.M. del C., Ferramola, A.M., Grinstein, M.: Purification and general properties of (δ-aminolevulate dehydratase of cow liver. Biochem. J. 104, 244–249 (1967)PubMedGoogle Scholar
  13. Batlle, A.M. del C., Grinstein, M.: Porphyrin biosynthesis. II. Phyriaporphyrinogen III., a normal intermediate in the biosynthesis of protoporphyrin 9. Biochim. biophys. Acta (Amst.) 82, 13–20 (1964)Google Scholar
  14. Battersby, A.R., Baldas, J., Collins, J., Grayson, D.H., James, K.J., McDonald, E.: Mechanism of biosynthesis of the vinyl groups of protoporphyrin IX. J. chem. Soc. chem. Commun. 1265–1266 (1972)Google Scholar
  15. Battersby, A.R., Hunt, E., McDonald, E.: Biosynthesis of type III porphyrins: nature of the rearrangement process. J. chem. Soc. chem. Commun. 442–443 (1973)Google Scholar
  16. Beattie, D.S., Patton, G.M., Rubin, E.: The control of δ-aminolevulinic acid synthetase in rat liver mitochondria. Effect of pyrazole on the apparent induction. Enzyme 16, 252–257 (1973)PubMedGoogle Scholar
  17. Ben-Bassat, I., Mozel, M., Ramot, B.: Globin synthesis in iron-deficiency anemia. Blood 44, 551–555 (1974)PubMedGoogle Scholar
  18. Berk, P.D., Howe, R.B., Berlin, N.I.: Disorders of bilirubin metabolism. In: Duncan’s Diseases of Metabolism. Genetics and Metabolism. 7th edn. Bondy, P.K., Rosenberg, L.E. (eds.), pp. 825–882. Philadelphia — London — Toronto: W.B. Saunders Company 1974aGoogle Scholar
  19. Berk, P.D., Rodkey, F.L., Blaschke, T.F., Collison, H.A., Waggoner, J.G.: Comparison of plasma bilirubin turnover and carbon monoxide production in man. J. Lab. clin. Med. 83, 29–37 (1974b)PubMedGoogle Scholar
  20. Beuzard, Y., London, I.M.: The effects of hemin and double-stranded RNA on α and β globin synthesis in reticulocytes and Krebs II ascites cell-free systems and the relationship of these effects to an initiation factor preparation Proc. nat. Acad. Sci. (Wash.) 71, 2863–2866 (1974)Google Scholar
  21. Billing, B.H., Cole, P.G., Lathe, G.H.: The excretion of bilirubin as a diglucuronide giving the direct van den Bergh reaction. Biochem. J. 65, 774–784 (1957)PubMedGoogle Scholar
  22. Bissell, D.M., Hammaker, L., Schmid, R.: Cellular sites of erythrocyte and hemoglobin catabolism in the liver. Blood 38, 789 (1971)Google Scholar
  23. Bissell, D.M., Hammaker, L., Schmid, R.: Hemoglobin and erythrocyte catabolism in rat liver: The separate roles of parenchymal and sinusoidal cells. Blood 40, 812–822 (1972)PubMedGoogle Scholar
  24. Bock, K.W., Fröhling, W., Remmer, H., Rexer, B.: Effects of phenobarbital and 3-methylcholanthrene on substrate specificity of rat liver microsomal UDP-glucuronytransferase. Biochim. biophys. Acta (Amst.) 327, 46–56 (1973)Google Scholar
  25. Bock, K.W., Krauss, E., Fröhling, W.: Regulation of δ-aminolevulinic acid synthetase by drugs and steroids in vivo and in isolated perfused rat liver. Europ. J. Biochem. 23, 366–371 (1971)PubMedGoogle Scholar
  26. Bogorad, L.: The enzymatic synthesis of porphyrins from porphobilinogen. I. Uroporphyrin I. J. biol. Chem. 233, 501–509 (1958a)PubMedGoogle Scholar
  27. Bogorad, L.: The enzymatic synthesis of porphyrins from porphobilinogen. II. Uroporphyrin III. J. biol. Chem. 233, 510–515 (1958b)PubMedGoogle Scholar
  28. Bottomley, S.S.: Characterization and measurement of heme synthetase in normal human bone marrow. Blood 31, 314–322 (1968)PubMedGoogle Scholar
  29. Bottomley, S.S., Smithee, G.A.: Effect of erythropoietin on bone marrow Δ-aminolevulinic acid synthetase and heme synthetase. J. Lab. clin. Med. 74, 445–452 (1969)PubMedGoogle Scholar
  30. Boveris, A., Chance, B.: The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134, 707–716 (1973)PubMedGoogle Scholar
  31. Bugany, H., Flothe, L., Weser, U.: Kinetics of metal chelatase of rat liver mitochondria. FEBS Lett. 13, 92–94 (1971)PubMedGoogle Scholar
  32. Calissano, P., Cartasegna, C., Matteini, M.: Purificazione e proprieta dell’ ALA deidratasi eritrocitaria umana. G. Biochim. 15, 18–29 (1966)Google Scholar
  33. Cavaleiro, J.A.S., Kenner, G.W., Smith, K.M.: Pyrroles and related compounds. Part XXXII. Biosynthesis of protoporphyrin IX from coproporphyrinogen III. J. chem. Soc. (Perkin I) 1188–1194 (1974)Google Scholar
  34. Cheh, A., Neilands, J.B.: Zinc, an essential metal ion for beef liver δ-aminolevulinate dehydratase. Biochem. biophys. Res. Commun. 55, 1060–1063 (1973)PubMedGoogle Scholar
  35. Coleman, D.L.: Purification and properties of δ-aminolevulinate dehydratase from tissues of two strains of mice. J. biol. Chem. 241, 5511–5517 (1966)PubMedGoogle Scholar
  36. Colleran, E., Ó Carra, P.: Specificity of biliverdin reductase. Biochem. J. 119, 16P–17P (1970)PubMedGoogle Scholar
  37. Comai, K., Gaylor, J.L.: Existence and separation of three forms of cytochrome P-450 in rat liver microsomes. J. biol. Chem. 248, 4947–4955 (1973)PubMedGoogle Scholar
  38. Compernolle, F., Jansen, F.H., Heirwegh, K.P.M.: Mass-spectrometric study of the azopigments obtained from bile pigments with diazotised ethyl anthranilate. Biochem. J. 120, 891–894 (1970)PubMedGoogle Scholar
  39. Compernolle, F., Van Hees, G.P., Fevery, F., Heirwegh, K.P.M: Mass-spectrometric structure elucidation of dog bile azopigments as the acyl glycosides of glucopyranose and xylopyranose. Biochem. J. 125, 811–819 (1971)PubMedGoogle Scholar
  40. Cooper, J.M., Thomas, P.: Cytochromes of ovary mitochondria: effect of human chorionic gonadotrophin. Biochem. J. 117, 24P–25P (1970)PubMedGoogle Scholar
  41. Cornford, P.: Transformation of porphobilinogen into porphyrins by preparations from human erythrocytes. Biochem. J. 91, 64–73 (1964)PubMedGoogle Scholar
  42. Cowger, M.L., Labbe, R.F., Sewell, M.: Oxidative metabolism of tissue culture cells in the presence of porphyria inducing drugs. Arch. Biochem. Biophys. 101, 96–102 (1963)PubMedGoogle Scholar
  43. Dailey, H.A., Lascelles, J.: Ferrochelatase activity in wild type and mutant strains of Spirillum itersonii. Solubilization with chaotropic agents. Arch. Biochem. Biophys. 160, 523–529 (1974)PubMedGoogle Scholar
  44. Daly, J.S.F., Little, J.M., Troxler, R.F., Lester, R.: Metabolism of 3H-myoglobin. Nature (Lond.) 216, 1030–1031 (1967)Google Scholar
  45. Davies, R.C., Gorchein, A., Neuberger, A., Sandy, J.D., Tait, G.H.: Biosynthesis of bacterio-chlorophyll. Nature (Lond.) 245, 15–19 (1973)Google Scholar
  46. Davies, R.C., Neuberger, A.: Polypyrroles formed from porphobilinogen and amines by uroporphyrinogen synthetase of Rhodopseudomonas spheroides. Biochem. J. 133, 471–492 (1973)PubMedGoogle Scholar
  47. De Matteis, F.: Loss of heme in rat liver caused by the porphyrinogenic agent 2-allyl-2-iso-propylacetamide. Biochem. J. 124, 767–777 (1971)PubMedGoogle Scholar
  48. De Matteis, F.: The effects of drugs on the activities of 5-aminolevulinate synthetase and other enzymes in the pathway of heme biosynthesis. Biochem. J. 130, 52P–53P (1972)PubMedGoogle Scholar
  49. De Matteis, F.: Drug interactions in experimental hepatic porphyria. A model for the exacerbation by drugs of human variegate porphyria. Enzyme 16, 266–275 (1973)PubMedGoogle Scholar
  50. De Matteis, F., Abbritti, G., Gibbs, A.H.: Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-l,4-dihydrocollidine. Biochem. J. 134, 717–727 (1973)PubMedGoogle Scholar
  51. De Matteis, F., Gibbs, A.: Stimulation of liver 5-aminolevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Studies with phenylbutazone and 3,5-diethoxycarbonyl-l,4-dihydrocollidine. Biochem. J. 126, 1149–1160 (1972)PubMedGoogle Scholar
  52. Denton, M.J., Spencer, N., Arnstein, H.R.V.: Biochemical and enzymie changes during erythrocyte differentiation: The significance of the final cell division. Biochem. J. 146, 205–211 (1975)PubMedGoogle Scholar
  53. Doyle, D.: Subunit structure of δ-aminolevulinate dehydratase from mouse liver. J. biol. Chem. 246, 4965–4972 (1971)PubMedGoogle Scholar
  54. Doyle, D., Schimke, R.T.: The genetic and developmental regulation of hepatic δ-aminolevulinate dehydratase in mice. J. biol. Chem. 244, 5449–5459 (1969)PubMedGoogle Scholar
  55. Druyan, R., De Bernard, B., Rabinowitz, M.: Turnover of cytochromes labeled with δ-aminolevulinic acid — 3H in rat liver. J. biol. Chem. 244, 5874–5878 (1969)PubMedGoogle Scholar
  56. Druyan, R., Kelly, A.: The effect of exogenous δ-aminolevulinate on rat liver heme and cytochromes. Biochem. J. 129, 1095–1099 (1972)PubMedGoogle Scholar
  57. Duvaldestin, P., Mahu, J.-L., Berthelot, P.: Effect of fasting on substrate specificity of rat liver UDP-glucuronyltransferase. Biochim. biophys. Acta (Amst.) 384, 81–86 (1975)Google Scholar
  58. Ebert, P.S., Tschudy, O.P., Choudhry, J.N., Chirigos, M.A.: A simple micro method for the direct determination of δ-amino[14C]levulinic acid production in murine spleen and liver homogenates. Biochim. biophys. Acta (Amst.) 208, 236–250 (1970)Google Scholar
  59. Falk, J.E.: Porphyrins and Metalloporphyrins. Amsterdam — London — New York: Elsevier Publishing Co., 1964Google Scholar
  60. Fanica-Gaignier, M., Clement-Metral, J.: 5-Aminolevulinic acid synthetase of Rhodopseudomonas spheroides Y. Purification and some properties. Europ. J. Biochem. 40, 13–18 (1973a)PubMedGoogle Scholar
  61. Fanica-Gaignier, M., Clement-Metral, J.: 5-Aminolevulinic acid synthetase of Rhodopseudomonas spheroides Y. Kinetic mechanism and inhibition by ATP. Europ. J. Biochem. 40, 19–24 (1973b)PubMedGoogle Scholar
  62. Feigelson, P., Dashman, T., Margolis, F.: The half-life time of induced tryptophan peroxidase in vivo. Arch. Biochem. Biophys. 85, 478–482 (1959)PubMedGoogle Scholar
  63. Fevery, J., Van Damme, B., Michiels, R., De Groote, J., Heirwegh, K.P.M.: Bilirubin conjugates in bile of man and rat in the normal state and in liver disease. J. clin. Invest. 51, 2482–2492 (1972a)PubMedGoogle Scholar
  64. Fevery, J., Van Hees, G.P., Leroy, P., Compernolle, F., Heirwegh, K.P.M.: Excretion in dog bile of glucose and xylose conjugates of bilirubin. Biochem. J. 125, 803–810 (1971)PubMedGoogle Scholar
  65. Fevery, J., Leroy, P., Heirwegh, K.P.M.: Enzymie transfer of glucose and xylose from uridine diphosphate glucose and uridine diphosphate xylose to bilirubin by untreated and digitonin-activated preparations from rat liver. Biochem. J. 129, 619–633 (1972b)PubMedGoogle Scholar
  66. Fevery, J., Leroy, P., Van de Vijver, M., Heirwegh, K.P.M.: Structures of bilirubin conjugates synthesised in vitro from bilirubin and uridine diphosphate glucuronic acid, undine diphosphate glucose or uridine disphosphate xylose by preparations from rat liver Biochem J. 129, 635–644 (1972c)PubMedGoogle Scholar
  67. Finelli, V.N., Murthy, L., Peirano, W.B., Petering, H.G.: δ-Aminolevulinate dehydratase, a zinc dependent enzyme. Biochem. biophys. Res. Commun. 60, 1418–1424 (1974)PubMedGoogle Scholar
  68. Fleischmann, R., Mattenheimer, H., Holmes, A.W., Remmer, H.: Micromethod for the preparation of a microsomal fraction from rat and human liver by differential sedimentation. Biochem. biophys. Res. Commun. 62, 289–295 (1975)PubMedGoogle Scholar
  69. Franco, D., Preaux, A.-M., Bismuth, H., Berthelot, P.: Extra hepatic formation of bilirubin glucuronides in the rat. Biochim. biophys. Acta (Amst.) 286, 55–61 (1972)Google Scholar
  70. Freedman, M.L., Geraghty, M., Rosman, J.: Hemin control of globin synthesis. Isolation of a hemin-reversible translational repressor from human mature erythrocytes. J. biol. Chem. 249, 7290–7294 (1974)PubMedGoogle Scholar
  71. Freshney, R.I., Paul, J.: Measurement of aminolevulinate synthetase activity in normal mouse liver with [2–14C]-glycine. Biochim. biophys. Acta (Amst.) 220, 594–601 (1970)Google Scholar
  72. Freshney, R.I., Paul, J.: The activities of three enzymes of heme synthesis during hepatic erythropoiesis in the mouse embryo. J. Embryol. exp. Morph. 26, 313–322 (1971)PubMedGoogle Scholar
  73. Frydman, R.B., Feinstein, G.: Studies on porphobilinogen deaminase and uroporphyrinogen III cosynthetase from human erythrocytes. Biochim. biophys. Acta (Amst.) 350, 358–373 (1974)Google Scholar
  74. Frydman, R.B., Tomaro, M.L., Frydman, B., Wanschelbaum, A.: Porphobilinogen excretion in chemical induced porphyria: Reversal by induction of porphobilinogen oxygenase. FEBS Lett. 51, 206–210 (1975)PubMedGoogle Scholar
  75. Frydman, R.B., Tomaro, M.L., Wanschelbaum, A., Andersen, E.M., Awruch, J., Frydman, B.: Porphobilinogen oxygenase from wheat germ: Isolation, properties and products formed. Biochem. 12, 5253–5262 (1973a)Google Scholar
  76. Frydman, R.B., Valasinas, A., Frydman, B.: Mechanism of uroporphyrinogen biosynthesis from porphobilinogen. Enzyme 16, 151–159 (1973b)PubMedGoogle Scholar
  77. Gajdos, A., Gajdos-Török, M.: Porphyrines et Porphyries. Biochemie et clinique. Paris: MassonetCie. 1969aGoogle Scholar
  78. Gajdos, A., Gajdos-Török, M.: The quantitative regulation of the biosynthesis of porphyrins by intracellular ATP concentration. Biochem. Med. 2, 372–388 (1969b)Google Scholar
  79. Garcia, R.C., San Martin de Viale, L.C., Tomio, J.M., Grinstein, M.: Porphyrin biosynthesis. X. Porphyrinogen carboxylase from avian erythrocytes. Further properties. Biochim. biophys. Acta (Amst.) 309, 203–210 (1973)Google Scholar
  80. Gayathri, A.K., Rao, M.R.S., Padmanaban, G.: Studies on the induction of δ-aminolevulinic acid synthetase in mouse liver. Arch. Biochem. Biophys. 155, 299–306 (1973)PubMedGoogle Scholar
  81. Ghazarian, J.G., Jefcoate, C.R., Knutson, J.C., Orme-Johnson, W.H., De Luca, H.F.: Mitochondrial cytochrome P-450. A component of chick kidney 25-hydroxycholecalciferol-la-hydroxylase. J. biol. Chem. 249, 3026–3033 (1974)PubMedGoogle Scholar
  82. Gibson, K.D., Neuberger, A., Scott, J.J.: The purification and properties of δ-aminolevulic acid dehydrase. Biochem. J. 61, 618–629 (1955)PubMedGoogle Scholar
  83. Gibson, S.L.M., Goldberg, A.: Defects in heme synthesis in mammalian tissues in experimental lead poisoning and experimental porphyria. Clin. Sci. 38, 63–72 (1970)PubMedGoogle Scholar
  84. Giglioni, B., Gianni, A.M., Comi, P., Ottolenghi, S., Rungger, D.: Translational control of globin synthesis by hemin in Xenopus oocytes. Nature (Lond.) (New. Biol.) 246, 99–103 (1973)Google Scholar
  85. Goldberg, A.L., Howell, E.M., Li, J.B., Martel, S.B., Prouty, W.F.: Physiological significance of protein degradation in animal and bacterial cells. Fed. Proc. 33, 1112–1120 (1974)PubMedGoogle Scholar
  86. González-Cadavid, N.F., Ortega, J.P., González, M.: The cell-free synthesis of cytochrome c by a microsomal fraction from rat liver. Biochem. J. 124, 685–694 (1971)PubMedGoogle Scholar
  87. Gordon, A.S., Zanjani, E.D., Levere, R.D., Kappas, A.: Stimulation of mammalian erythropoiesis by 5βH steroid metabolites. Proc. nat. Acad. Sci. (Wash.) 65, 919–924 (1970)Google Scholar
  88. Gordon, E.R., Dadoun, M., Goresky, C.A., Chan, T.-H., Perlin, A.S.: The isolation of an azobilirubin β-D-monoglucoside from dog gall-bladder bile. Biochem. J. 143, 97–105 (1974)PubMedGoogle Scholar
  89. Gorshein, D., Gardner, F.H.: Erythropoietic activity of steroid metabolites in mice. Proc. nat. Acad. Sci. (Wash.) 65, 564–568 (1970)Google Scholar
  90. Granick, J.L., Sassa, S., Granick, S., Levere, R.D., Kappas, A.: Studies in lead poisoning. II. Correlations between the ratio of activated and inactivated δ-aminolevulinic acid dehydratase of whole blood and the blood lead level. Biochem. Med. 8, 149–159 (1973)PubMedGoogle Scholar
  91. Granick, S.: The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: A response to certain drugs, sex hormones and foreign chemicals. J. biol. Chem. 241, 1359–1375 (1966)PubMedGoogle Scholar
  92. Granick, S., Gilder, H.: Distribution, structure, and properties of the tetrapyrroles. Advanc. Enzymol. 7, 305–368 (1947)Google Scholar
  93. Granick, S., Mauzerall, D.: The metabolism of heme and chlorophyll. In: Metabolic Pathways. Greenberg, D.M. (ed.), 2nd ed., Vol. II, pp. 525–616. New York — London: Academic Press 1961Google Scholar
  94. Granick, S., Sano, S.: Mitochondrial coproporhyrinogen oxidase and the formation of protoporphyrin. Fed. Proc. 20, 376 (1961)Google Scholar
  95. Granick, S., Sassa, S.: δ-Aminolevulinic acid synthetase and the control of heme and chlorophyll synthesis. In: Metabolic Pathways. Vogel, H.J. (ed.), 3rd ed., Vol. V, pp. 77–141. New York — London: Academic Press 1971Google Scholar
  96. Granick, S., Urata, G.: Increase in activity of δ-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-l,4-dihydrocollidine. J. biol. Chem. 238, 821–827 (1963)PubMedGoogle Scholar
  97. Grassl, M., Augsburg, G., Coy, U., Lynen, F.: Zur chemischen Konstitution des Cytohämins. Biochem. Z. 337, 35–47 (1963a)PubMedGoogle Scholar
  98. Grassl, M., Coy, U., Seyffert, R., Lynen, F.: Die chemische Konstitution des Cytohämins. Biochem. Z. 338, 771–795 (1963b)PubMedGoogle Scholar
  99. Gray, C.H., Neuberger, A., Sneath, P.H.A.: Studies in congenital porphyria. 2. Incorporation of 15N in the stercobilin in the normal and in the porphyria Biochem. J. 47, 87–92 (1950)PubMedGoogle Scholar
  100. Grayzel, A.I., Fuhr, J.E., London, I.M.: The effects of inhibitors of protein synthesis on the synthesis of heme in rabbit reticulocytes. Biochem. biophys. Res. Commun. 28, 705–710 (1967)PubMedGoogle Scholar
  101. Gregory, D.H. II, Strickland, R.D.: Solubilization and characterization of hepatic bilirubin UDP-glucuronyltransferase. Biochim. biophys. Acta (Amst.) 327, 36–45 (1973)Google Scholar
  102. Gross, M.: Control of globin synthesis by hemin. Regulation by hemin of the formation and inactivation of a translational repressor of globin synthesis in rabbit reticulocyte lysates. Biochim. biophys. Acta (Amst.) 340, 484–497 (1974a)Google Scholar
  103. Gross, M.: Control of globin synthesis by hemin. An intermediate form of the translational repressor in rabbit reticulocyte lysates. Biochim. biophys. Acta (Amst.) 366, 319–332 (1974b)Google Scholar
  104. Gross, M., Rabinovitz, M.: Control of globin synthesis in cell-free preparations of reticulocytes by formation of a translational repressor that is inactivated by hemin. Proc. nat. Acad. Sci. (Wash.) 69, 1565–1568 (1972)Google Scholar
  105. Gross, S.R., Hutton, J.J.: Induction of hepatic δ-aminolevulinic acid synthetase activity in strains of inbred mice. J. biol. Chem. 246, 606–614 (1971)PubMedGoogle Scholar
  106. Gurba, P.E., Sennett, R.E., Kobes, R.D.: Studies on the mechanism of action of δ-aminolevulinate dehydratase from bovine and rat liver. Arch. Biochem. Biophys. 150, 130–136 (1972)PubMedGoogle Scholar
  107. Halac, E., Dipiazza, M., Detwiler, P.: The formation of bilirubin mono and diglucuronide by rat liver microsomal fractions. Biochim. biophys. Acta (Amst.) 279, 544–553 (1972)Google Scholar
  108. Hammel, C.L., Bessman, S.P.: Control of hemoglobin synthesis by oxygen tension in a cell-free system. Arch. Biochem. Biophys. 110, 622–627 (1965)PubMedGoogle Scholar
  109. Harding, B.W., Wong, S.H., Nelson, D.H.: Carbon monoxide-combining substances in rat adrenal. Biochim. biophys. Acta (Amst.) 92, 415–417 (1964)Google Scholar
  110. Hartz, J.W., Funakoshi, S., Deutsch, H.F.: The levels of superoxide dismutase and catalase in human tissues as determined immunochemically. Clin. chim. Acta 46, 125–132 (1973)PubMedGoogle Scholar
  111. Hasegawa, E., Smith, C., Tephly, T.R.: Induction of hepatic mitochondrial ferrochelatase by phenobarbital. Biochem. biophys, Res. Commun. 40, 517–523 (1970)Google Scholar
  112. Hayasaka, S., Tuboi, S.: Control of δ-aminolevulinate synthetase activity in Rhodopseudomonas spheroides. J. Biochem. (Tokyo) 76, 157–168 (1974)Google Scholar
  113. Hayashi, N., Kurashima, Y., Kikuchi, G.: Mechanism of allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in liver mitochondria. V. Mechanism of regulation by hemin of the level of δ-aminolevulinate synthetase in rat liver mitochondria. Arch. Biochem. Biophys. 148, 10–21 (1972)PubMedGoogle Scholar
  114. Hayashi, N., Yoda, B., Kikuchi, G.: Mechanism of allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in liver mitochondria. IV. Accumulation of the enzyme in the soluble fraction of rat liver. Arch. Biochem. Biophys. 131, 83–91 (1969)PubMedGoogle Scholar
  115. Hayashi, N., Yoda, B., Kikuchi, G.: Differences in molecular sizes of δ-aminolevulinate synthetases in the soluble and mitochondrial fractions of rat liver. J. Biochem. (Tokyo) 67, 859–861 (1970)Google Scholar
  116. Heirwegh, K.P.M., Van Hees, G.P., Leroy, P., Van Roy, F.P., Jansen, F.H.: Heterogeneity of bile pigment conjugates as revealed by chromatography of their ethyl anthranilate azo-pigments. Biochem. J. 120, 877–890 (1970)PubMedGoogle Scholar
  117. Heirwegh, K.P.M., Van de Vijver, M., Fevery, J.: Assay and properties of digitonin-activated bilirubin uridine diphosphate glucuronyltransferase from rat liver. Biochem. J. 129, 605–618 (1972)PubMedGoogle Scholar
  118. Hickman, R., Saunders, S.J., Dowdle, E., Eales, L.: The effect of carbohydrate on δ-aminolevulinate synthetase: The role of ribonucleic acid. Biochim. biophys. Acta (Amst.) 161, 197–204 (1968)Google Scholar
  119. Hoare, D.S., Heath, H.: Intermediates in the biosynthesis of porphyrins from porphobilinogen by Rhodopseudomonas spheroides. Nature (Lond.) 181, 1592–1593 (1958)Google Scholar
  120. Holzer, H.: Regulation of enzymes by enzyme-catalyzed chemical modification. Advanc. Enzymol. 32, 297–326 (1969)Google Scholar
  121. Hsu, W.P., Miller, G.W.: Coproporphyrinogenase in tobacco (Nicotiana tabacum L). Biochem. J. 117, 215–220 (1970)PubMedGoogle Scholar
  122. Hutchinson, D.W., Johnson, B., Knell, A.J.: The reaction between bilirubin and aromatic diazo compounds. Biochem. J. 127, 907–908 (1972)PubMedGoogle Scholar
  123. Hutton, J.J., Gross, S.R.: Chemical induction of hepatic porphyria in inbred strains of mice. Arch. Biochem. Biophys. 141, 284–292 (1970)PubMedGoogle Scholar
  124. Incefy, G.S., Kappas, A.: Enhancement of RNA synthesis in avian liver cell cultures by a 5β-steroid metabolite during induction of δ-aminolevulinate synthase. Proc. nat. Acad. Sci. (Wash.) 71, 2290–2294 (1974)Google Scholar
  125. Incefy, G.S., Rifkind, A.B., Kappas, A.: Inhibition of δ-aminolevulinate synthetase induction by α-amanitin in avian liver cell cultures. Biochim. biophys. Acta (Amst.) 361. 331–344 (1974)Google Scholar
  126. Ip, M.M., Chee, P.Y., Swick, R.W.: Turnover of hepatic mitochondrial ornithine amino-transferase and cytochrome oxidase using [14C] carbonate as tracer. Biochim. biophys. Acta (Amst.) 354, 29–38 (1974)Google Scholar
  127. Irving, E.A., Elliott, W.H.: A sensitive radiochemical assay method for δ-aminolevulinic acid synthetase. J. biol. Chem. 244, 60–67 (1969)PubMedGoogle Scholar
  128. Israels, L.G., Schacter, B.A., Yoda, B., Goldenberg, G.J.: δ-Aminolevulinic acid transport, porphyrin synthesis and heme catabolism in chick embryo liver and heart cells. Biochim. biophys. Acta (Amst.) 372, 32–38 (1974)Google Scholar
  129. Jackson, A.H., Games, D.E., Couch, P., Jackson, J.R., Belcher, R.B., Smith, S.G.: Conversion of coproporphyrinogen III to protoporphyrin IX. Enzyme 17, 81–87 (1974)PubMedGoogle Scholar
  130. Jackson, A.H., Sancovich, H.A., Ferramola, A.M., Evans, N., Games, D.E., Matlin, S.A., Elder, G.H., Smith, S.G.: Macrocyclic intermediates in the biosynthesis of porphyrins. Phil. Trans. B 273, 119–134 (1975)Google Scholar
  131. Jansen, F.H., Billing, B.H.: The identification of monoconjugates of bilirubin in bile as amide derivatives. Biochem. J. 125, 917–919 (1971)PubMedGoogle Scholar
  132. Jansen, F.H., Stoli, M.S.: Separation and structural analysis of vinyl- and isovinyl-azobilirubin derivatives. Biochem. J. 125, 585–597 (1971)PubMedGoogle Scholar
  133. Jansen, P.L.M.: The enzyme-catalyzed formation of bilirubin diglucuronide by a solubilized preparation from cat liver microsomes. Biochim. biophys. Acta (Amst.) 338, 170–182 (1974)Google Scholar
  134. Jansen, P.L.M., Henderson, P.Th.: Influence of phenobarbital treatment on p-nitrophenol and bilirubin glucuronidation in Wistar rat, Gunn rat and cat. Biochem. Pharmacol. 21, 2457–2462 (1972)PubMedGoogle Scholar
  135. Johnson, A., Jones, O.T.G.: Enzymie formation of hemes and other metalloporphyrins. Biochim. biophys. Acta (Amst.) 93, 171–173 (1964)Google Scholar
  136. Jones, E.A., Bloomer, J.R., Berlin, N.I.: The measurement of the synthetic rate of bilirubin from hepatic hemes in patients with acute intermittent porphyria. J. clin. Invest. 50, 2259–2265 (1971)PubMedGoogle Scholar
  137. Jones, M.S., Jones, O.T.G.: The structural organization of heme synthesis in rat liver mitochondria. Biochem. J. 113, 507–514 (1969)PubMedGoogle Scholar
  138. Jones, M.S., Jones, O.T.G.: Permeability properties of mitochondrial membranes and the regulation of heme biosynthesis. Biochem. biophys. Res. Commun. 41, 1072–1079 (1970)PubMedGoogle Scholar
  139. Jordan, P.M., Shemin, D.: δ-Aminolevulinic acid synthetase. In: The Enzymes. Boyer, P.D. (ed.), 3rd ed., Vol. VII, pp. 339–356. New York — London: Academic Press 1972Google Scholar
  140. Kanai, Y., Sugimura, T., Matsushima, T., Kawamura, A.: Studies on in vivo degradation of rat hepatic catalase with or without modification by 3-amino-l,2,4-triazole. J. biol. Chem. 249, 6505–6511 (1974)PubMedGoogle Scholar
  141. Kaplan, B.H.: δ-Aminolevulinic acid synthetase from the particulate fraction of liver of Porphyrie rats. Biochim. biophys. Acta (Amst.) 235, 381–388 (1971)Google Scholar
  142. Karibian, D., London, I.M.: Control of heme synthesis by feedback inhibition. Biochem. biophys. Res. Commun. 18, 243–249 (1965)PubMedGoogle Scholar
  143. Kassner, R.J., Walchak, H.: Heme formation from Fe (II) and porphyrin in the absence of ferrochelatase activity. Biochim. biophys. Acta (Amst.) 304, 294–303 (1973)Google Scholar
  144. Kaufman, L., Marver, H.S.: Biochemical defects in two types of human hepatic porphyria. New Engl. J. Med. 283, 954–958 (1970)PubMedGoogle Scholar
  145. Kaufman, L., Swanson, A.L., Marver, H.S.: Chemically induced porphyria: Prevention by prior treatment with phenobarbital. Science 170, 320–322 (1970)PubMedGoogle Scholar
  146. Kennedy, G.Y., Jackson, A.H., Kenner, G.W., Suckling, C.J.: Isolation, structure and synthesis of a tricarboxylic porphyrin from the Harderian glands of the rat. FEBS Lett. 6, 9–12 (1970)PubMedGoogle Scholar
  147. Ketterer, B., Tipping, E., Beale, D., Meuwissen, J., Kay, C.M.: Proteins which specifically bind carcinogens. Proceedings of XI International Cancer Congress, Florence 1974, Excerpta Medical International Congress Series No. 350, Vol. 2, pp. 25–29 (1975)Google Scholar
  148. Kiese, M., Kurz, H., Thofern, E.: Bildung v Fermenthämin aus Protohämin durch eine hämin-bedürftige Mutante eines Mikrokokkenstammes. Biochem. Z. 330, 541–544 (1958)PubMedGoogle Scholar
  149. Kikuchi, G., Kumar, A., Talmage, P., Shemin, D.: The enzymatic synthesis of δ-aminolevulinic acid. J. biol. Chem. 233, 1214–1219 (1958)PubMedGoogle Scholar
  150. Kondo, T., Nicholson, D.C., Jackson, A.H., Kenner, G.W.: Isotopic studies of the conversion of oxophlorins and their ferrihemes into bile pigments in the rat. Biochem. J. 121, 601–607 (1971)PubMedGoogle Scholar
  151. Korinek, J., Moses, H.L.: Theophylline suppression of Δ-aminolevulinic acid synthetase induction in chick embryo and rat livers. Biochem. biophys. Res. Commun. 53, 1246–1252 (1973)PubMedGoogle Scholar
  152. Kowalski, E., Dancewicz, A.M., Szot, Z., Lipinski, B., Rosiek, O.: Studies on δ-aminolevulinic acid transamination. Acta biochim. pol. 6, 257–266 (1959)PubMedGoogle Scholar
  153. Krishnakantha, T.P., Kurup, C.K.R.: Increase in hepatic catalase and glycerol phosphate dehydrogenase activities on administration of Clofibrate and clofenapate to the rat. Biochem. J. 130, 167–175 (1972)PubMedGoogle Scholar
  154. Kuenzle, C.C.: Bilirubin conjugates of human bile. Isolation of phenylazo derivatives of bile bilirubin. Biochem. J. 119, 387–394 (1970a)PubMedGoogle Scholar
  155. Kuenzle, C.C.: Bilirubin conjugates of human bile. Nuclear-magnetic resonance, infrared, and optical spectra of model compounds. Biochem. J. 119, 395–409 (1970b)PubMedGoogle Scholar
  156. Kuenzle, C.C.: Bilirubin conjugates of human bile. The excretion of bilirubin as the acyl glycosides of aldobiuronic acid, pseudoaldobiuronic acid, and hexuronosylhexuronic acid with a branched chain hexuronic acid as one of the components of the hexuronosyl-hexuronide. Biochem. J. 119, 411–435 (1970c)PubMedGoogle Scholar
  157. Labbe, R.F.: Metabolic anomalies in porphyria. The result of impaired biological oxidation? Lancet 1967 I, 1361–1364Google Scholar
  158. Labbe, R.F., Hubbard, N.: Metal specificity of the iron-protoporphyrin chelating enzyme from rat liver. Biochim. biophys. Acta (Amst.) 52, 130–135 (1961)Google Scholar
  159. Labbe, R.F., Kurumada, T., Onisawa, J.: The role of succinyl CoA synthetase in the control of heme biosynthesis. Biochim. biophys. Acta (Amst.) 111, 403–415 (1965)Google Scholar
  160. Landaw, S.A., Callahan, E.W. Jr., Schmid, R.: Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J. clin. Invest. 49, 914–925 (1970)PubMedGoogle Scholar
  161. Langelaan, D.E., Losowsky, M.S., Toothill, C.: Heme synthetase activity in human blood cells. Clin. chim. Acta 27, 453–459 (1970)PubMedGoogle Scholar
  162. Lascelles, J.: Tetrapyrrole Biosynthesis and Its Regulation. New York — Amsterdam: W.A. Benjamin, Inc. 1964Google Scholar
  163. Lascelles, J., Altshuler, T.: Mutant strains of Rhodopseudomonas spheroides lacking δ-aminolevulinate synthase: Growth, heme and bacteriochlorophyll synthesis. J. Bact. 98, 721–727 (1969)PubMedGoogle Scholar
  164. Lathe, G.H.: The degradation of heme by mammals and its excretion as conjugated bilirubin. Essays Biochem. 8, 107–148 (1972)PubMedGoogle Scholar
  165. Lazarow, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes IV Biochemical pathway of catalase synthesis. J. Cell Biol. 59, 491–506 (1973a)PubMedGoogle Scholar
  166. Lazarow, P.B., De Duve, C.: The synthesis and turnover of rat liver peroxisomes. V Intracellular pathway of catalase synthesis. J. Cell Biol. 59, 507–524 (1973b)PubMedGoogle Scholar
  167. Lemberg, R., Wyndham, R.A.: Reduction of biliverdin to bilirubin in tissues. Biochem. J. 30, 1147–1170 (1936)PubMedGoogle Scholar
  168. Levere, R.D., Granick, S.: Control of hemoglobin synthesis in the cultured chick blastoderm by δ-aminolevulinic acid synthetase: Increase in the rate of hemoglobin formation with δ-aminolevulinic acid. Proc. nat. Acad. Sci. (Wash.) 54, 134–137 (1965)Google Scholar
  169. Levere, R.D., Granick, S.: Control of hemoglobin synthesis in the cultured chick blastoderm. J. biol. Chem. 242, 1903–1911 (1967)PubMedGoogle Scholar
  170. Levere, R.D., Kappas, A., Granick, S.: Stimulation of hemoglobin synthesis in chick blastoderms by certain 5β androstane and 5β pregnane steroids. Proc. nat. Acad. Sci. (Wash.) 58, 985–990 (1967)Google Scholar
  171. Levin, E.Y.: Uroporphyrinogen III cosynthetase from mouse spleen. Biochem. 7, 3781–3788 (1968a)Google Scholar
  172. Levin, E.Y.: Uroporphyrinogen III cosynthetase in bovine erythropoietic porphyria. Science 161, 907–908 (1968b)PubMedGoogle Scholar
  173. Levin, E.Y.: Enzymatic properties of uroporphyrinogen III cosynthetase. Biochem. 10, 4669–4675 (1971)Google Scholar
  174. Levin, E.Y., Coleman, D.L.: The enzymatic conversion of porphobilinogen to uroporphyrinogen catalysed by extracts of hematopoietic mouse spleen. J. biol. Chem. 242, 4248–4253 (1967)Google Scholar
  175. Levin, E.Y., Flyger, V.: Erythropoietic porphyria of the fox squirrel Sciurus niger. J. clin. Invest. 52, 96–105 (1973)PubMedGoogle Scholar
  176. Levin, W., Kuntzman, R.: Biphasic decrease of radioactive hemoprotein from liver microsomal CO-binding particles. Effect of 3-methylcholanthrene. J. biol. Chem. 244, 3671–3676 (1969)PubMedGoogle Scholar
  177. Levitt, M., Schacter, B.A., Zipursky, A., Israels, L.G.: The nonerythropoietic component of early bilirubin. J. clin. Invest. 47, 1281–1294 (1968)PubMedGoogle Scholar
  178. Lewis, M., Lee, G.R., Cartwright, G.E., Wintrobe, M.M.: Glycine decarboxylation in the porcine erythrocyte: Its relation to aminolevulinic acid synthesis. Biochim. biophys. Acta (Amst.) 141, 296–309 (1967)Google Scholar
  179. Llambias, E.B.C., Batlle, A.M. del C.: Uroporphyrinogen III cosynthetase. Evidence for the existence of a polypyrrolic substrate in soybean callus tissue. FEBS Lett. 6, 285–288 (1970)PubMedGoogle Scholar
  180. Llambias, E.B.C., Batlle, A.M. del C.: Studies on the porphobilinogen deaminase-uroporphyrinogen cosynthetase system of cultured soybean cells. Biochem. J. 121, 327–340 (1971a)PubMedGoogle Scholar
  181. Llambias, E.B.C., Batlle, A.M. del C.: Porphyrin Biosynthesis VIII. Avian erythrocyte porphobilinogen deaminase-uroporphyrinogen III cosynthetase, its purification, properties, and the separation of its components. Biochim. biophys. Acta (Amst.) 227, 180–191 (1971b)Google Scholar
  182. Lodish, H.F., Desalu, O.: Regulation of synthesis of nonglobin proteins in cell-free extracts of rabbit reticulocytes. J. biol. Chem. 248, 3520–3527 (1973)Google Scholar
  183. London, I.M.: The metabolism of the erythrocyte. Harvey Lect. 56, 151–189 (1961)Google Scholar
  184. London, I.M., West, R., Shemin, D., Rittenberg, D.: On the origin of bile pigment in normal man. J. biol. Chem. 184, 351–358 (1950)PubMedGoogle Scholar
  185. Lu, A.Y.H, West, S.B., Vore, M., Ryan, D., Levin, W.: Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P-450 containing system. J. biol. Chem. 249, 6701–6709 (1974)PubMedGoogle Scholar
  186. Maines, M.D., Kappas, A.: Cobalt induction of hepatic heme oxygenase: with evidence that cytochrome P-450 is not essential for this enzyme activity. Proc. nat. Acad. Sci. (Wash.) 71, 4293–4297 (1974)Google Scholar
  187. Margolis, F.L.: Regulation of porphyrin biosynthesis in the Harderian gland of inbred mouse strains. Arch. Biochem. Biophys. 145, 373–381 (1971)PubMedGoogle Scholar
  188. Marks, G.S.: Heme and Chlorophyll. Chemical, Biochemical and Medical Aspects. London: D. Van Nostrand Company Ltd. 1969Google Scholar
  189. Marver, H.S., Schmid, R.: The porphyrias. In: The Metabolic Basis of Inherited Disease. Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S. (eds.), 3rd ed., pp. 1087–1140. New York: McGraw-Hill 1972Google Scholar
  190. Marver, H.S., Collins, A., Tschudy, D.P., Rechcigl, M. Jr.: δ-Aminolevulinic acid synthetase II. Induction in rat liver. J. biol. Chem. 241, 4323–4329 (1966a)PubMedGoogle Scholar
  191. Marver, H.S., Tschudy, D.P., Perlroth, M.G., Collins, A.: δ-Aminolevulinic acid synthetase I. Studies in liver homogenates. J. biol. Chem. 241, 2803–2809 (1966b)PubMedGoogle Scholar
  192. Mathews, M.B., Hunt, T., Brayley, A.: Specificity of the control of protein synthesis by hemin. Nature (Lond.) (New Biol.) 243, 230–233 (1973)Google Scholar
  193. Mauzerall, D., Granick, S.: Porphyrin biosynthesis in erythrocytes. III. Uroporphyrinogen and its decarboxylase. J. biol. Chem. 232, 1141–1162 (1958)PubMedGoogle Scholar
  194. Mazanowska, A.M., Neuberger, A., Tait, G.H.: Effect of lipids and organic solvents on the enzymie formation of zinc protoporphyrin and heme. Biochem. J. 98, 117–127 (1966)PubMedGoogle Scholar
  195. McKay, R., Druyan, R., Getz, G.S., Rabinowitz, M.: Intramitochondrial localization of δ-aminolevulate synthetase and ferrochelatase in rat liver. Biochem. J. 114, 455–461 (1969)PubMedGoogle Scholar
  196. Meigs, R.A., Ryan, K.J.: Cytochrome P-450 and steroid biosynthesis in human placenta. Biochim. biophys. Acta (Amst.) 165, 476–482 (1968)Google Scholar
  197. Meyer, U.A., Marver, H.S.: Enhancement of the fractional catabolic rate of microsomal heme in chemically induced porphyria. S. Afr. J. Lab. clin. Med. 17, 175–177 (1971a)Google Scholar
  198. Meyer, U.A., Marver, H.S.: Chemically induced porphyria: Increased microsomal heme turnover after treatment with allylisopropylacetamide. Science 171, 64–66 (1971b)PubMedGoogle Scholar
  199. Meyer, U.A., Schmid, R.: Hereditary hepatic porphyrias. Fed. Proc. 32, 1649–1655 (1973)PubMedGoogle Scholar
  200. Miyagi, K., Cardinal, R., Bossenmaier, I., Watson, C.J.: The serum porphobilinogen, and the porphobilinogen deaminase in normal and porphyric individuals. J. Lab. clin. Med. 78, 683–695 (1971)PubMedGoogle Scholar
  201. Moore, M.R., Goldberg, A.: Normal and abnormal heme biosynthesis. In: Iron in Biochemistry and Medicine. Jacobs, A., Worwood, M. (eds.), pp. 115–144. London —New York: Academic Press 1974Google Scholar
  202. Mowat, A.P., Arias, I.M.: Observations of the effect of diethylnitrosamine on glucuronide formation. Biochim. biophys. Acta (Amst.) 212, 175–178 (1970)Google Scholar
  203. Mulder, G.J.: Bilirubin and the heterogeneity of microsomal uridine diphosphate glucuronyl-transferase from rat liver. Biochim. biophys. Acta (Amst.) 289, 284–292 (1972)Google Scholar
  204. Murthy, V.V., Woods, J.S.: Solubilization and partial purification of mitochondrial δ-aminolevulinate synthetase from fetal rat liver. Biochim. biophys. Acta (Amst.) 350, 240–246 (1974)Google Scholar
  205. Murty, H.S., Caasi, P.I., Brook, S.K., Nair, P.P.: Biosynthesis of heme in the vitamin E-deficient rat. J. biol. Chem. 245, 5498–5504 (1970)PubMedGoogle Scholar
  206. Muzyka, V.I.: δ-Aminolevulinic acid synthetase in grey substance of brain hemispheres (Russian). Biokhimiya 37, 1220–1223 (1972) (Biochemistry–Translation by Consultants Bureau, New York, pp. 1022–1024)Google Scholar
  207. Nakao, K., Wada, O., Kitamura, T., Vono, K., Urata, G.: Activity of aminolevulinic acid synthetase in normal and porphyric human livers. Nature (Lond.) 210, 838–839 (1966)Google Scholar
  208. Narisawa, K., Kikuchi, G.: Mechanism of allylisopropylacetamide-induced increase of δ-aminolevulinate synthetase in rat liver mitochondria. Biochim. biophys. Acta (Amst.) 123, 596–605 (1966)Google Scholar
  209. Neuberger, A.: Aspects of the metabolism of glycine and of porphyrins. Biochem. J. 78, 1–10 (1961)PubMedGoogle Scholar
  210. Neuwirt, J., Poňka, P., Borová, J.: Heme and the production of δ-aminolevulinic acid in rabbit reticulocytes. Enzyme 17, 100–107 (1974)PubMedGoogle Scholar
  211. Nicholls, P., Elliott, W.B.: The cytochromes. In: Iron in Biochemistry and Medicine. Jacobs, A., Worwood, M. (eds.), pp. 221–277. London — New York: Academic Press 1974Google Scholar
  212. Noir, B.A., Nanet, H.: A study of the ethyl anthranilate derivatives of bilirubin sulphate. Confirmation of the existence of bilirubin sulphate conjugates in bile. Biochim. biophys. Acta (Amst.) 372, 230–236 (1974)Google Scholar
  213. Ó Carra, P., Colleran, E.: Properties and kinetics of biliverdin reductase. Biochem. J. 125, 110P (1971)Google Scholar
  214. Ostrow, J.D., Murphy, N.H.: Isolation and properties of conjugated bilirubin from bile. Biochem. J. 120, 311–327 (1970)PubMedGoogle Scholar
  215. Padmanaban, G., Satyanarayana Rao, M.R., Malathi, K.: A model for the regulation of δ-aminolevulinate synthetase induction in rat liver. Biochem. J. 134, 847–857 (1973)PubMedGoogle Scholar
  216. Patton, G.M., Beattie, D.S.: Studies on hepatic δ-aminolevulinic acid synthetase. J. biol. Chem. 248, 4467–4474 (1973)PubMedGoogle Scholar
  217. Pimstone, N.R., Blekkenhorst, G., Eales, L.: Enzymatic defects in hepatic porphyria. Enzyme 16, 354–366 (1973)PubMedGoogle Scholar
  218. Pimstone, N.R., Engel, P., Tenhunen, R., Seitz, P.T., Marver, H.S., Schmid, R.: Inducible heme oxygenase in the kidney: A model for the homeostatic control of hemoglobin catabolism. J. clin. Invest. 50, 2042–2050 (1971b)PubMedGoogle Scholar
  219. Pimstone, N.R., Tenhunen, R., Seitz, P.T., Marver, H.S., Schmid, R.: The enzymie degradation of hemoglobin to bile pigments by macrophages. J. exp. Med. 133, 1264–1281 (1971a)PubMedGoogle Scholar
  220. Pisani, W., Bonzanino, A., Coscia, G.C.: Attivitâ delta-aminolevulico-ossidative degli omogenati di fegato di ratto in varie condizioni sperimentali. Boll. Soc. ital. Biol. sper. 43, 65–67 (1967)PubMedGoogle Scholar
  221. Poňka, P., Neuwirt, J., Borová, J.: The role of heme in the release of iron from transferring in reticulocytes. Enzyme 17, 91–99 (1974)PubMedGoogle Scholar
  222. Poole, B.: The kinetics of disappearance of labeled leucine from the free leucine pool of rat liver and its effect on the apparent turnover of catalase and other hepatic proteins. J. biol. Chem. 246, 6587–6591 (1971)PubMedGoogle Scholar
  223. Porra, R.J., Falk, J.E.: Protein-bound porphyrins associated with protoporphyrin biosynthesis. Biochem. biophys. Res. Commun. 5, 179–184 (1961)PubMedGoogle Scholar
  224. Porra, R.J., Falk, J.E.: The enzymie conversion of coproporphyrinogen III into protoporphyrin IX. Biochem. J. 90, 69–75 (1964)PubMedGoogle Scholar
  225. Porra, R.J., Jones, O.T.G.: Studies on ferrochelatase. 1. Assay and properties of ferrochelatase from a pig liver mitochondrial extract. Biochem. J. 87, 181–185 (1963)PubMedGoogle Scholar
  226. Porra, R.J., Vitols, K.S., Labbe, R.F., Newton, N.A.: Studies on ferrochelatase. The effects of thiols and other factors on the determination of activity. Biochem. J. 104, 321–327 (1967)PubMedGoogle Scholar
  227. Poulson, R., Polglase, W.J.: Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharomyces cerevisiae. Purification and characterization. J. biol. Chem. 249, 6367–6371 (1974a)PubMedGoogle Scholar
  228. Poulson, R., Polglase, W.J.: Site of glucose repression of heme biosynthesis. FEBS Lett. 40, 258–260 (1974b)PubMedGoogle Scholar
  229. Poulson, R., Polglase, W.J.: The enzymie conversion of protoporphyrinogen IX to protoporphyrin IX. Protoporphyrinogen oxidase activity in mitochondrial extracts of Saccharomyces cerevisiae. J. biol. Chem. 250, 1269–1274 (1975)PubMedGoogle Scholar
  230. Rajamanickam, C., Satyanarayana Rao, M.R., Padmanaban, G.: On the sequence of reactions leading to cytochrome P-450 synthesis-effect of drugs. J. biol. Chem. 250, 2305–2310 (1975)PubMedGoogle Scholar
  231. Romeo, G., Levin, E.Y.: Uroporphyrinogen III cosynthetase in human congenital erythropoietic porphyria. Proc. nat. Acad. Sci. (Wash.) 63, 856–863 (1969)Google Scholar
  232. Romeo, G., Levin, E.Y.: Uroporphyrinogen decarboxylase from mouse spleen. Biochim. biophys. Acta (Amst.) 230, 330–341 (1971)Google Scholar
  233. Sancovich, H.A., Batlle, A.M.C., Grinstein, M.: Porphyrin biosynthesis VI. Separation and purification of porphobilinogen deaminase and uroporphyrinogen isomerase from cow liver. Biochim. biophys. Acta (Amst.) 191, 130–143 (1969)Google Scholar
  234. San Martin de Viale, L.C., Garcia, R.C., de Pisarev, D.K., Tomio, J.M., Grinstein, M.: Studies on uroporphyrinogen decarboxylase from chicken erythrocytes. FEBS Lett. 5, 149–152 (1969)Google Scholar
  235. San Martin de Viale, L.C., Grinstein, M.: Porphyrin biosynthesis IV. 5- and 6-COOH porphyrinogens (Type III) as normal intermediates in heme synthesis. Biochim. biophys. Acta (Amst.) 158, 79–91 (1968)Google Scholar
  236. Sano, S.: 2,4-Bis(β-hydroxypropionic acid) deuteroporphyrinogen IX, a possible intermediate between coproporphyrinogen III and protoporphyrin IX. J. biol. Chem. 241, 5276–5283 (1966)PubMedGoogle Scholar
  237. Sano, S., Granick, S.: Mitochondrial coproporphyrinogen oxidase and protoporphyrin formation. J. biol. Chem. 236, 1173–1180 (1961)PubMedGoogle Scholar
  238. Sardesai, V.M., Lenaghan, R., Rosenberg, J.C.: Tissue delta-aminolevulinic acid synthetase activity in hemorrhagic shock. Biochem. Med. 6, 366–371 (1972)PubMedGoogle Scholar
  239. Sassa, S., Granick, S.: Induction of δ-aminolevulinic acid synthetase in chick embryo liver cells in culture. Proc. nat. Acad. Sci. (Wash.) 67, 517–522 (1970)Google Scholar
  240. Sassa, S., Granick, S., Bickers, D.R., Bradlow, H.L., Kappas, A.: A microassay for uroporphyrinogen I synthase, one of three abnormal enzyme activities in acute intermittent porphyria, and its application to the study of the genetics of this disease. Proc. nat. Acad. Sci. (Wash.) 71, 732–736 (1974)Google Scholar
  241. Satyanarayana Rao, M.R., Padmanaban, G., Muthukrishnan, S., Sarma, P.S.: Feedback inhibition of δ-aminolevulinate dehydratase by coproporphyrinogen III. Indian J. Biochem. 7, 132–133 (1970)Google Scholar
  242. Sawada, H., Takeshita, M., Sugita, Y., Yoneyama, Y.: Effect of lipid on protoheme ferrolyase. Biochim. biophys. Acta (Amst.) 178, 145–155 (1969)Google Scholar
  243. Schacter, B.A., Nelson, E.B., Marver, H.S., Masters, B.S.S.: Immunochemical evidence for an association of heme oxygenase with the microsomal electron transport system. J. biol. Chem. 247, 3601–3607 (1972)PubMedGoogle Scholar
  244. Schacter, B.A., Waterman, M.R.: Activity of various metalloporphyrin protein complexes with microsomal heme oxygenase. Life Sci. 14, 47–53 (1974)PubMedGoogle Scholar
  245. Schimke, R.T.: Control of enzyme levels in mammalian tissues. Advanc. Enzymol. 37, 135–187 (1973)Google Scholar
  246. Schimke, R.T., Doyle, D.: Control of enzyme levels in animal tissues. Ann. Rev. Biochem. 39, 929–976 (1970)PubMedGoogle Scholar
  247. Schmid, R.: Hyperbilirubinemia. In: The Metabolic Basis of Inherited Disease. Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S. (eds.), 3rd ed., pp. 1141–1178. New York: McGraw-Hill 1972Google Scholar
  248. Schneider, W.C.: Intracellular distribution of enzymes XIII. Enzymatic synthesis of deoxycytidine diphosphate choline and lecithin in rat liver. J. biol. Chem. 238, 3572–3578 (1963)PubMedGoogle Scholar
  249. Scholnick, P.L., Hammaker, L.E., Marver, H.S.: Soluble δ-aminolevulinic acid synthetase of rat liver. I. Some properties of the partially purified enzyme. J. biol. Chem. 247, 4126–4131 (1972a)PubMedGoogle Scholar
  250. Scholnick, P.L., Hammaker, L.E., Marver, H.S.: Soluble δ-aminolevulinic acid synthetase of rat liver. II. Studies related to the mechanism of enzyme action and hemin inhibition. J. biol. Chem. 247, 4132–4137 (1972b)PubMedGoogle Scholar
  251. Shanley, B.C., Zail, S.S., Joubert, S.M.: Porphyrin metabolism in experimental hepatic siderosis in the rat. Brit. J. Haemat. 18, 79–87 (1970)PubMedGoogle Scholar
  252. Sharma, D.C.: Aberration of porphyrin metabolism in iron-deficient anaemic rats. Biochem. J. 134, 821–823 (1973)PubMedGoogle Scholar
  253. Shemin, D.: Mechanism and control of pyrrole synthesis. Biochem. Soc. Symp. 28, 75–89 (1968)PubMedGoogle Scholar
  254. Shemin, D.: δ-Aminolevulinic acid dehydratase. In: The Enzymes. Boyer, P.D. (ed.), 3rd ed., Vol. VII, pp. 323–337. New York — London: Academic Press 1972Google Scholar
  255. Singleton, J.W., Laster, L.: Biliverdin reductase in guinea pig liver. J. biol. Chem. 240, 4780–4789 (1965)PubMedGoogle Scholar
  256. Skea, B.R., Downie, E.D., Moore, M.R., Davidson, J.N.: Induction of δ-aminolevulate synthetase activity in cultured chick-embryo liver cells by ribonucleic acid. Biochem. J. 121, 25P (1971)PubMedGoogle Scholar
  257. Stein, J.A., Tschudy, D.P., Corcoran, P.L., Collins, A.: δ-Aminolevulinic acid synthetase III. Synergistic effect of chelated iron on induction. J. biol. Chem. 245, 2213–2218 (1970)PubMedGoogle Scholar
  258. Stevens, E., Frydman, R.B., Frydman, B.: Separation of porphobilinogen deaminase and uroporphyrinogen III cosynthetase from human erythrocytes. Biochim. biophys. Acta (Amst.) 158, 496–498 (1968)Google Scholar
  259. Stoll, M.S., Elder, G.H., Games, D.E., O’Hanlon, P., Millington, D.S., Jackson, A.H.: Iso-coproporphyrin: nuclear-magnetic-resonance and mass spectral methods for the determination of porphyrin structure. Biochem. J. 131, 429–432 (1973)PubMedGoogle Scholar
  260. Strand, L.J., Felsher, B.F., Redeker, A.G., Marver, H.S.: Heme biosynthesis in intermittent acute porphyria: decreased hepatic conversion of porphobilinogen to porphyrins and increased delta-aminolevulinic acid synthetase activity. Proc. nat. Acad. Sci. (Wash.) 67, 1315–1320 (1970)Google Scholar
  261. Strand, L.J., Meyer, U.A., Felsher, B.F., Redeker, A.G., Marver, H.S.: Decreased red cell uroporphyrinogen I synthetase activity in intermittent acute porphyria. J. clin. Invest. 51, 2530–2536 (1972b)PubMedGoogle Scholar
  262. Strand, L.J., Swanson, A.L., Manning, J., Branch, S., Marver, H.S.: Radiochemical micro-assay for δ-aminolevulinic acid synthetase in hepatic and erythroid tissues. Analyt. Biochem. 47, 457–470 (1972a)PubMedGoogle Scholar
  263. Sweeney, V.P., Pathak, M.A., Asbury, A.K.: Acute intermittent porphyria. Increased ALA-synthetase activity during an acute attack. Brain 93, 369–380 (1970)PubMedGoogle Scholar
  264. Tait, G.H.: Coproporphyrinogenase activities in extracts of Rhodopseudomonas spheroides and Chromatium Strain D. Biochem. J. 128, 1159–1169 (1972)PubMedGoogle Scholar
  265. Tait, G.H.: Aminolevulinate synthetase of Micrococcus denhrificans. Purification and properties of the enzyme, and the effect of growth conditions on the enzyme activity in cells. Biochem. J. 131, 389–403 (1973a)PubMedGoogle Scholar
  266. Tait, G.H.: Control of aminolevulinate synthetase in Micrococcus denhrificans. Enzyme 16, 21–27 (1973b)PubMedGoogle Scholar
  267. Takeshita, M., Sugita, Y., Yoneyama, Y.: Relation between electrophoretic charge of phosphor-lipids and the activating effect on protoheme ferrolyase. Biochim. biophys. Acta (Amst.) 202, 544–546 (1970)Google Scholar
  268. Taljaard, J.J.F., Shanley, B.C., Deppe, W.M., Joubert, S.M.: Porphyrin metabolism in experimental hepatic siderosis in the rat. III. Effect of iron overload and hexachlorobenzene on liver heme biosynthesis, Brit. J. Haemat. 23, 587–593 (1972)Google Scholar
  269. Tanaka, M., Bottomley, S.S.: Bone marrow δ-aminolevulinic acid synthetase activity in experimental sideroblastic anemia. J. Lab. clin. Med. 84, 92–98, (1974)PubMedGoogle Scholar
  270. Tenhunen, R., Marver, H.S., Pimstone, N.R., Trager, W.F., Cooper, D.Y., Schmid, R.: Enzymatic degradation of heme. Oxygenative cleavage requiring cytochrome P-450. Biochem. 11, 1716–1720 (1972)Google Scholar
  271. Tenhunen, R., Marver, H.S., Schmid, R.: The enzymie conversion of heme to bilirubin by microsomal heme oxygenase. Proc. nat. Acad. Sci. (Wash.) 61, 748–755 (1968)Google Scholar
  272. Tenhunen, R., Marver, H.S., Schmid, R.: Microsomal heme oxygenase. Characterization of the enzyme. J. biol. Chem. 244, 6388–6394 (1969)PubMedGoogle Scholar
  273. Tenhunen, R., Marver, H.S., Schmid, R.: The enzymatic catabolism of hemoglobin: Stimulation of microsomal heme oxygenase by hemin. J. Lab. clin. Med. 75, 410–421 (1970a)PubMedGoogle Scholar
  274. Tenhunen, R., Ross, M.E., Marver, H.S., Schmid, R.: Reduced nicotinamide-adenine dinucleotide phosphate dependent biliverdin reductase: Partial purification and characterisation. Biochem. 9, 298–303 (1970b)Google Scholar
  275. Tomaro, M.L., Frydman, R.B., Frydman, B.: Porphobilinogen oxygenase from rat liver: Induction, isolation and properties. Biochem. 12, 5263–5268 (1973)Google Scholar
  276. Tomio, J.M., Garcia, R.C., San Martin de Viale, L.C., Grinstein, M.: Porphyrin biosynthesis. VII. Porphyrinogen carboxylase from avian erythrocytes. Purification and properties. Biochim. biophys. Acta (Amst.) 198, 353–363 (1970)Google Scholar
  277. Tomita, Y., Ohashi, A., Kikuchi, G.: Induction of δ-aminolevulinate synthetase in organ culture of chick embryo liver by allylisopropylacetamide and 3,5-dicarbethoxy-l,4-dihydrocollidine. J. Biochem. (Tokyo) 75, 1007–1015 (1974)Google Scholar
  278. Tschudy, D.P.: Porphyrin Metabolism and the porphyrias. In: Duncan’s Diseases of Metabolism. Genetics and Metabolism. Bondy, P.K., Rosenberg, L.E. (eds.), 7th ed., pp. 775–824. Philadelphia — London — Toronto: W.B. Saunders Co. 1974Google Scholar
  279. Tschudy, D.P., Marver, H.S., Collins, A.: A model for calculating messenger RNA half-life: Short-lived messenger RNA in the induction of mammalian δ-aminolevulinic acid synthetase. Biochem. biophys. Res. Commun. 21, 480–487 (1965a)PubMedGoogle Scholar
  280. Tschudy, D.P., Perlroth, M.G., Marver, H.S., Collins, A., Hunter, G. Jr., Rechcigl, M. Jr.: Acute intermittent porphyria: The first overproduction disease localized to a specific enzyme. Proc. nat. Acad. Sci. (Wash.) 53, 841–847 (1965b)Google Scholar
  281. Tschudy, D.P., Rose, J., Hellman, E., Collins, A., Rechcigl, M. Jr.: Biochemical studies of experimental porphyria. Metabolism 11, 1287–1301 (1962)PubMedGoogle Scholar
  282. Tyrrell, D.L.J., Marks, G.S.: Drug induced porphyrin biosynthesis V. Effect of protohemin on the transcriptional and post-transcriptional phases of δ-aminolevulinic acid synthetase induction. Biochem. Pharmacol. 21, 2077–2093 (1972)PubMedGoogle Scholar
  283. Urata, G., Granick, S.: Biosynthesis of δ-aminoketones and the metabolism of aminoacetone. J. biol. Chem. 238, 811–820 (1963)PubMedGoogle Scholar
  284. Vessey, D.A., Goldenberg, J., Zakim, D.: Differentiation of homologous forms of hepatic microsomal UDP-glucuronyltransferase. II. Characterization of the bilirubin conjugating form. Biochim. biophys. Acta (Amst.) 309, 75–82 (1973)Google Scholar
  285. Wainwright, S.D., Wainwright, L.K.: Regulation of the initiation of hemoglobin synthesis in the blood island cells of chick embryos. I. Qualitative studies on the effects of actinomycin D and δ-aminolevulinic acid. Canad. J. Biochem. 44, 1543–1560 (1966)Google Scholar
  286. Wainwright, S.D., Wainwright, L.K.: Regulation of the initiation of hemoglobin synthesis in the blood island cells of chick embryos. II. Early onset and stimulation of hemoglobin formation induced by exogenous δ-aminolevulinic acid. Canad. J. Biochem. 45, 344–347 (1967)Google Scholar
  287. Warnick, G.R., Burnham, B.F.: Regulation of porphyrin biosynthesis. Purification and characterization of δ-aminolevulinic acid synthase. J. biol. Chem. 246, 6880–6885 (1971)PubMedGoogle Scholar
  288. Weissberg, J.B., Voytek, P.E.: Liver and red cell porphobilinogen synthase in the adult and fetal guinea pig. Biochim. biophys. Acta (Amst.) 364, 304–319 (1974)Google Scholar
  289. Welton, A.F., Aust, S.D.: Multiplicity of cytochrome P-450 hemoproteins in rat liver microsomes. Biochem. biophys. Res. Commun. 56, 898–906 (1974)PubMedGoogle Scholar
  290. Wetterberg, L., Marver, H.S., Swanson, A.L.: Delta-aminolevulinic acid synthetase in the Harderian gland. S. Afr. J. Lab. clin. Med. 17, 189–191 (1971)Google Scholar
  291. White, J.M., Brain, M.C., Ali, M.A.M.: Globin synthesis in sideroblastic anaemia. I. α and β peptide chain synthesis. Brit. J. Haemat. 20, 263–275 (1971)PubMedGoogle Scholar
  292. White, J.M., Harvey, D.R.: Defective synthesis of α and β globin chains in lead poisoning. Nature (Lond.) 236, 71–73 (1972)Google Scholar
  293. White, J.M., Hoffbrand, A.V.: Heme deficiency and chain synthesis. Nature (Lond.) 248, 88 (1974)Google Scholar
  294. Whiting, M.J., Elliott, W.H.: Purification and properties of solubilized mitochondrial δ-aminolevulinic acid synthetase and comparison with the cytosol enzyme. J. biol. Chem. 247, 6818–6826 (1972)PubMedGoogle Scholar
  295. Whiting, M.J., Granick, S.: Purification of δ-aminolevulinic acid synthetase (ALV-S) from chick embryo liver mitochondria. Fed. Proc. 34, 640 (1975)Google Scholar
  296. Wilson, E.L., Burger, P.E., Dowdle, E.B.: Beef-liver 5-Aminolevulinic acid dehydratase. Purification and properties. Europ. J. Biochem. 29, 563–571 (1972)PubMedGoogle Scholar
  297. Wong, K.P.: Bilirubin glucuronyltransferase. Specific activity and kinetic studies. Biochem. J. 125, 27–35 (1971a)PubMedGoogle Scholar
  298. Wong, K.P.: Formation of bilirubin glycoside. Biochem. J. 125, 929–934 (1971b)PubMedGoogle Scholar
  299. Woods, J.S.: Studies on the role of heme in the regulation of δ-aminolevulinic acid synthetase during fetal hepatic development. Molec. Pharmacol. 10, 389–397 (1974)Google Scholar
  300. Woods, J.S., Dixon, R.L.: Studies on the perinatal differences in the activity of hepatic δ-aminolevulinic acid synthetase. Biochem. Pharmacol. 21, 1735–1744 (1972)PubMedGoogle Scholar
  301. Woods, J.S., Murthy, V.V.: δ-Aminolevulinic acid synthetase from fetal rat liver: Studies on the partially purified enzyme. Molec. Pharmacol. 11, 70–78 (1975)Google Scholar
  302. Wu, W.H., Shemin, D., Richards, K.E., Williams, R.C.: The quaternary structure of δ-aminolevulinic acid dehydratase from bovine liver. Proc. nat. Acad. Sci. (Wash.) 71, 1767–1770 (1974)Google Scholar
  303. Yamamoto, T., Skanderberg, J., Zipursky, A., Israels, L.G.: The early appearing bilirubin: Evidence for two components. J. clin. Invest. 44, 31–41 (1965)PubMedGoogle Scholar
  304. Yoda, B., Israels, L.G.: Transfer of heme from mitochondria in rat liver cells. Canad. J. Biochem. 50, 633–637 (1972)Google Scholar
  305. Yoshida, T., Kikuchi, G.: Sequence of the reaction of heme catabolism catalyzed by the microsomal heme oxygenase system. FEBS Lett. 48, 256–261 (1974)PubMedGoogle Scholar
  306. Yoshida, T., Takahashi, S., Kikuchi, G.: Partial purification and reconstitution of the heme oxygenase system from pig spleen microsomes. J. Biochem. (Tokyo) 75, 1187–1191 (1974)Google Scholar
  307. Yoshikawa, H., Yoneyama, Y.: Incorporation of iron in the heme moiety of chromoproteins. In: Iron Metabolism. Gross, F. (ed.), pp. 24–37. Berlin — Göttingen — Heidelberg: Springer 1964Google Scholar
  308. Yuan, M., Russell, C.S.: Porphobilinogen derivatives as substrates for porphobilinogenase. FEBS Lett. 46, 34–38 (1974)PubMedGoogle Scholar
  309. Zaman, Z., Abboud, M.M., Akhtar, M.: Mechanism and stereochemistry of vinyl group formation in heme biosynthesis. J. chem. Soc. chem. Commun. 1263–1264 (1972)Google Scholar
  310. Zaman, Z., Jordan, P.M., Akhtar, M.: Mechanism and stereochemistry of the 5-aminolevulinate synthetase reaction. Biochem. J. 135, 257–263 (1973)PubMedGoogle Scholar
  311. Zuyderhoudt, F.M.J., Borst, P., Huijing, J.: Intramitochondrial localization of 5-aminolevulinate synthase induced in rat liver by allylisopropylacetamide. Biochim. biophys. Acta (Amst.) 178, 408–411 (1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • George H. Tait

There are no affiliations available

Personalised recommendations