Total Ischemia of the Brain

  • K.-A. Hossmann


Complete cessation of cerebral blood flow causes an almost immediate suppression of higher central nervous function (41), followed by a breakdown of cell metabolism within a few minutes (36, 37). The biochemical and functional sequel of ischemic suppression has been studied extensively in various laboratories, and the results obtained are quite similar as long as brain temperature is maintained in the normal range (for review, see 10, 21, 44).


Cerebral Blood Flow Cerebral Ischemia Ischemic Brain Monkey Brain Chain Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AMES, A. III., WRIGHT, R.L., KOWADA, M., THURSTON, J.M., MAJNO, G.: Cerebral ischemia. II. The no-reflow phenomenon. Amer. J. Path. 52, 437–453 (1968).PubMedGoogle Scholar
  2. 2.
    ANDERSON, J.M., BROWN, J.K., COCKBURN, F.: On the role of disseminated intravascular coagulation in pathology of brain asphyxia. Develop. Med. Child. Neurol. 16, 581–591 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    BANDARANAYAKE, N.M., NEMOTO, E.M.: Rat brain osmolality during ischemic anoxia. Crit. Care Med. 4, 131–132 (1976)CrossRefGoogle Scholar
  4. 4.
    BAZAN, N.G.: Free fatty acid production in cerebral white and grey matter of the squirrel monkey. Lipids 6, 211–212 (1971).PubMedCrossRefGoogle Scholar
  5. 5.
    BRIERLEY, J.B., LJUNGGREN, B., SIESJö, B.K.: Neuropathological alterations in rat brain after complete ischemia due to raised intracranial pressure. In: Intracranial Pressure (N. Lundberg et al., Eds.), vol. II, p. 167–171. Berlin-Heidelberg-New York: Springer 1975.CrossRefGoogle Scholar
  6. 6.
    BRIERLEY, J.B., MELDRUM, B.S., BROWN, A.W.: The threshold and neuropathology of cerebral anoxic-ischemic cell change. Arch. Neurol. 29, 367–374 (1973).PubMedGoogle Scholar
  7. 7.
    BROWN, R.M., CARLSSON, A., LJUNGGREN, B., SIESJö, B.K., SNIDER, S.R.: Effect of ischemia on monoamine metabolism in the brain. Acta physiol. scand. 90, 789–791 (1974).PubMedCrossRefGoogle Scholar
  8. 8.
    CANTU, R.C., AMES, A. III., DIGIACINTO, G., DIXON, J.: Hypotension: A major factor limiting recovery from cerebral ischemia. J. Surg. Res. 9, 525–529 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    CANTU, R.C., SNYDER, M.: Effect of anticoagulants, vasodilators, and dipyridamole on postischemic cerebral vascular obstruction. J. Surg. Res. 2, 70–71 (1972).CrossRefGoogle Scholar
  10. 10.
    COHEN, M.M.: Biochemistry of cerebral anoxia, hypoxia and ischemia. Monogr. Neurol. Sci. 1, 1–49 (1973).Google Scholar
  11. 11.
    COOPER, H.K., ZALEWSKA, T., KAWAKAMI, S., HOSSMANN, K.-A., KLEIHUES, P.: The effect of ischemia and recirculation on protein synthesis in the rat brain. J. Neurochem 28, 929–934 (1977)PubMedCrossRefGoogle Scholar
  12. 12.
    CROWELL, J.W., SMITZ, E.E.: Effect of fibrinolytic activation on survival and cerebral damage following periods of circulatory arrest. Amer. J. Physiol. 186. 283–285 (1956).PubMedGoogle Scholar
  13. 13.
    FISCHER, E.G.: Impaired perfusion following cerebro-vascular stasis. A review. Arch. Neurol. 29, 361–366 (1973).Google Scholar
  14. 14.
    FISCHER, E.G., AMES, A. III.: Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilution and perfusion pressure. Stroke 3, 538–542 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    FOLBERGROVá, J., LJUNGGREN, B., NORBERG, K., SIESJö, B.K.: Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortex. Brain Res. 80., 265–279 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    GILOH (Freudenberg), H., MAGER, J.: Inhibition of peptide chain initiation in lysates from ATP-depleted cells. I. Stages in the evolution of the lesion and its reversal by thiol compounds, cyclic AMP or purine derivatives and phosphory-lated sugars. Biochim. Biophys. Acta 414, 293–308 (1975).PubMedGoogle Scholar
  17. 17.
    GRENELL, R.G.: Central nervous system resistance. I. The effects of temporary arrest of cerebral circulation for periods of two to ten minutes. J. Neuropath. Exp. Neurol. 5, 131–154 (1946).PubMedCrossRefGoogle Scholar
  18. 18.
    Harrison, M.J., Sedal, L., Arnold, J., Rüssel, R.W.R.: No-reflow phenomenon in the cerebral circulation of Gerbil, J. Neurol, Neurosurg. Psychiat. 38, 1190–1193 (1975).CrossRefGoogle Scholar
  19. 19.
    HINZEN, D.H., ISSELHARD, W., FüSGEN, I., MüLLER, U.: Phos-pholipid-Stoffwechsel und Funktion des Säugergehirns in vivo. I. Katabole Veränderungen der Phospholipide in verschiedenen Anteilen des Kaninchengehirns während Ischämie, Pflügers Arch. ges. Physiol. 318, 117–129 (1970).CrossRefGoogle Scholar
  20. 20.
    HIRSCH, H., MüLLER, H.A.: Funktionelle und histologische Veränderungen des Kaninchengehirns nach kompletter Gehirnischämie. Pflügers Arch. ges. Physiol. 275, 277–291 (1962).CrossRefGoogle Scholar
  21. 21.
    HIRSCH, H., SCHNEIDER, M.: Durchblutung und Sauerstoffaufnahme des Gehirns. In: Handbuch der Neurochirurgie (H. Olivecrona, W. Tönnis, Eds.), vol. I, sect. 2, p. 434–552. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  22. 22.
    HOSSMANN, K.A.: Development and Resolution of Ischemic Brain Swelling. In: Dynamics of Brain Edema (H.M. Pappius, W. Feindel, Eds.), p. 219. Berlin-Heidelberg-New York: Springer 1976.CrossRefGoogle Scholar
  23. 23.
    HOSSMANN, K.A., KLEIHUES, P.: Reversibility of ischemic brain damage. Arch. Neurol, 29, 375–384 (1973).PubMedGoogle Scholar
  24. 24.
    HOSSMANN, K.-A., LECHTAPE-GRüTER, H., HOSSMANN, V,: The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z. Neurol. 204, 281–299 (1973).CrossRefGoogle Scholar
  25. 25.
    HOSSMANN, K.-A., SAKAKI, S., KIMOTO, K.: Cerebral uptake of glucose and oxygen in the cat brain after prolonged ischemia. Stroke _7, 301–305 (1976).Google Scholar
  26. 26.
    HOSSMANN, K.-A., SAKAKI, S., ZIMMERMANN, V.: Cation activities in reversible ischemia of the cat brain. Stroke, 8, 77–81 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    HOSSMANN, K.-A., TAKAGI, S.: Osmolality of brain in cerebral ischemia. Exp. Neurol. 51, 124–131 (1976).CrossRefGoogle Scholar
  28. 28.
    HOSSMANN, K.-A., TAKAGI, S., SAKAKI, S.: Vital microscopy of pial arteries after prolonged cerebral ischemia. Drug Res. 26, 1233–1234 (1976).Google Scholar
  29. 29.
    HOSSMANN, K.-A., ZIMMERMANN, V.: Resuscitation of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations. Brain Res. 81, 59–74 (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    KLEIHUES, P., HOSSMANN, K.-A.: Protein synthesis in the cat brain after prolonged cerebral ischemia. Brain Res. 35, 409–418 (1971).PubMedCrossRefGoogle Scholar
  31. 31.
    KLEIHUES, P., HOSSMANN, K.-A.: Regional incorporation of L-(3–3H)-tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta neuropath. 25, 313–324 (1973).PubMedCrossRefGoogle Scholar
  32. 32.
    KLEIHUES, P., HOSSMANN, K.-A., PEGG, A.E., KOBAYASHI, K., ZIMMERMANN, V.: Resuscitation of the monkey brain after 1 hour complete ischemia. III. Indications of metabolic recovery. Brain Res. 95, 61–73 (1975).PubMedCrossRefGoogle Scholar
  33. 33.
    KLEIHUES, P., KOBAYASHI, K., HOSSMANN, K.-A.: Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J. Neurochem. 23, 417–425 (1974).PubMedCrossRefGoogle Scholar
  34. 34.
    KOBAYASHI, K., KAWAKAMI, S., HOSSMANN, K.-A., KLEIHUES, P.: Free amino acids in the cat brain during cerebral ischemia and subsequent recirculation. In: Blood Flow and Metabolism in the Brain (M. Harper et al., Eds.), p. 10.3–10.7. Edinburgh: Churchill Livingstone 1975.Google Scholar
  35. 35.
    LASSEN, N.A.: The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localised within the brain. Lancet 1966 II, 1113–1115.CrossRefGoogle Scholar
  36. 36.
    LJUNGGREN, B., SCHUTZ, H., SIESJö, B.K.: Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia. Brain Res. 73, 277–289 (1974).PubMedCrossRefGoogle Scholar
  37. 37.
    LOWRY, O.H., PASSONEAU, J.V., HASSELBERGER, F.X., SCHULZ, D.W.: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in the brain. J, Biol. Chem. 239, 18–30 (1964).Google Scholar
  38. 38.
    MATAKAS, F., EIBS, G., CUYPERS, J.: Effect of systemic arterial blood-pressure on cerebral blood flow in intracranial hypertension. J. Neurol. Neurosurg. Psychiat. 38, 1206–1210 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    NEELY, W.A., YOUMANS, J.R.: Anoxia of canine brain without damage J. Amer. med. Ass. 183. 1085–1087 (1963).Google Scholar
  40. 40.
    NEMOTO, E.M., SNYDER, J.V., CARROLL, R.G., MORITA, H.: Global ischemia in dogs: Cerebrovascular CO2 reactivity and autoregulation. Stroke 6, 425–431 (1975).PubMedCrossRefGoogle Scholar
  41. 41.
    ROSSEN, R., KABAT, H., ANDERSON, J.P.: Acute arrest of cerebral circulation in man. Arch. Neurol. Psychiat. 50, 510–528 (1943).Google Scholar
  42. 42.
    SAFAR, P., STEZOSKI, W., NEMOTO, E.M.: Amelioration of brain damage following 12 minutes cardiac arrest in dogs. Arch. Neurol. 33, 91–95 (1976).PubMedGoogle Scholar
  43. 43.
    SAINIO, K.: Computer analysis of rabbit EEG after cerebral ischemia. EEG Clin. Neurophysiol. 36, 471–479 (1974).CrossRefGoogle Scholar
  44. 44.
    SIESJö, B.K., PLUM, F.: Cerebral energy metabolism in normo-xia and in hypoxia. Acta anaest. scand. 45, 81–101 (1971).CrossRefGoogle Scholar
  45. 45.
    SNYDER, J.V., NEMOTO, E.M., CARROLL, R.G., SAFAR, P.: Global ischemia in dogs: Intracranial pressure, brain blood flow and metabolism. Stroke 6, 21–27 (1975).PubMedCrossRefGoogle Scholar
  46. 46.
    TERAURA, T., MEYER, J.S., SAKAMOTO, K., HASHI, K., MARX, P., STERMAN-MARINCHESU, C., SHINMARU, S.: Hemodynamic and metabolic concomitants of brain swelling and cerebral edema due to experimental cerebral infarction. J. Neurosurg. 36, 728–744 (1972).PubMedCrossRefGoogle Scholar
  47. 47.
    VAN HARREVELD, A.: Brain Tissue Electrolytes. London: Butter-worths 1966.Google Scholar
  48. 48.
    WHITE, R.J., WOLIN, L.R., TASLITZ, N., TAKOATO, Y., AUSTIN, J.C., AUSTIN, P.E. Jr.: Primate survival after deep hypothermia (5–8º C) and ischemia (1 hr) of brain. Cryobiology 10, 512–513 (1973).Google Scholar
  49. 49.
    YAMAGUCHI, M., SHIRAKATA, S., YAMASAKI, S., MATSUMOTO, S.: Ischemic brain edema and compression brain edema. Water content, blood-brain barrier and circulation. Stroke 7, 77–03 (1976).CrossRefGoogle Scholar
  50. 50.
    ZIMMER, R., LANG, R., OBERDöRSTER, G.: Post-ischemic reactive hyperemia of the isolated perfused brain of the dog. Pflügers Arch. ges. Physiol. 328, 332–343 (1971).CrossRefGoogle Scholar
  51. 51.
    ZIMMERMANN, V., HOSSMANN, K.-A.: Resuscitation of the monkey brain after one hour’s complete ischemia. II, Brain water and electrolytes. Brain Res. 85, 1–11 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • K.-A. Hossmann

There are no affiliations available

Personalised recommendations