Advertisement

Modulation of Plasma Membrane Architecture in Animal Cells

  • E. L. Benedetti
  • I. Dunia
  • J. Olive
  • J. Cartaud
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The term modulation was originally proposed by Paul Weiss to describe the process of qualitative adaptation of neurons in conformity with the type of effector or receptor organ with which they have been connected (1, 2). This term was later applied to a variety of physiologic states resulting from the exposure of cells, at any stage of their differentiation, to environmental signals, i. e., hormones, antigens, antibodies, ions, chemical agonists. Some environmental modulators (i. e., steroid hormones) may operate directly on intracellular organelles (cf. Ref. 3). Conversely, the primary event of other regulatory ligands (i. e., peptide hormones, neurotransmitters, antigens, lectins) is the interaction of the modulating signals with specific receptor sites localized at the cell surface. In this respect, the cell surface is the key structure where many properties of animal cells are expressed and mediated. The regulation at its level depends upon the molecular configuration of the membrane that limits the cell surface. This limiting membrane — plasma membrane — plasmalemma or cell membrane — should then be regarded as a receiver of incoming signals and as a transmitter of the information to the cell interior. Advances in the field of molecular architecture and plasma membrane function indicate that the interaction of regulatory ligands with the cell surface receptors generates at the plasma membrane transduction mechanism(s) that consequently modulate enzymatic activities, receptor, and antigenic expressions (4). The variety and complexity of these phenomena could imply that each type of cellular modulation has its own, unique regulatory mechanism. An alternative working hypothesis is that the cellular response to environmental signals is effected by a small number of operations that could also be learned and integrated (memorized) by the plasma membrane. These acquired properties of the modulating system would not be determined by the totality of its chemical compounds but rather by a sorting-out of constituents that have the opportunity — at least temporarily — to be placed in the appropriate condition where they can operate (1, 2). Plasma membrane modulation would then rely upon ordinal preexisting or recurrent segregation of membrane constituents forming effective supra- molecular domains. A working hypothesis of Yahara and Edelman (4) to explain the modulation of receptor mobility on lymphocyte surface, assumes the existence of a common structural assembly anchoring and controlling various surface receptors.

Keywords

Fracture Face Disc Membrane Intramembranous Particle Receptor Mobility Rhodopsin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiss, P.: J. Embrol. Exp. Morph. 1, 181 – 211 (1953).Google Scholar
  2. 2.
    Weiss, P.: In: The Chemistry and Physiology of Growth (ed. A. Parport ), Princeton Univ. Press 1949, pp. 135 – 186.Google Scholar
  3. 3.
    Kahn, C.R.: J. Cell Biol. 70, 261 – 286 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    Yahara, I., Edelman, G.: Exptl. Cell Res. 91, 125 – 142 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    Branton, D.: Proc. Natl. Acad. Sci. U.S. 55, 1048 – 1056 (1966).CrossRefGoogle Scholar
  6. 6.
    Branton, D.: Phil. Trans. Roy. Soc. London B 261, 133 – 138 (1971).CrossRefGoogle Scholar
  7. 7.
    Pinto da Silva, P., Branton, D.: J. Cell Biol. 45, 598 – 605 (1970).CrossRefGoogle Scholar
  8. 8.
    Wehrli, E.K., Mühlethaler, K., Moor, H.: Exptl. Cell Res. 59, 336 – 339 (1970).PubMedCrossRefGoogle Scholar
  9. 9.
    Zingheim, H.P.: Biochim. Biophys. Acta 265, 339 – 366 (1972).Google Scholar
  10. 10.
    Bretscher, M.S., Raff, M.: Nature (London) 258, 43 – 49 (1975).CrossRefGoogle Scholar
  11. 11.
    Nicolson, G.: Biochim. Biophys. Acta 457, 57 – 108 (1976).Google Scholar
  12. 12.
    Gulik-Krzywicki, T.: Biochim. Biophys. Acta 415, 1 – 28 (1975).Google Scholar
  13. 13.
    Grant, C.W.M., McConnell, H.M.: Proc. Natl. Acad. Sci. U.S. 71, 4635 – 4657 (1974).CrossRefGoogle Scholar
  14. 14.
    Kleemann, W., Grant, C.W.M., McConnell, H.M.: J. Supramol. Struc. 2, 609 – 616 (1974).CrossRefGoogle Scholar
  15. 15.
    Segrest, J.P., Gulik-Krzywicki, T., Sardet, C.: Proc. Natl. Acad. Sci. U.S. 71, 3294 – 3298 (1974).CrossRefGoogle Scholar
  16. 16.
    Yamanaka, N., Deamer, D.W.: Biochim. Biophys. Acta 426, 132 – 147 (1976).CrossRefGoogle Scholar
  17. 17.
    Podo, F., Blasie, J.K.: In: Biochemistry of Cell Walls and Membranes, Biochemistry Series 1, Vol. 2 (eds. H.L. Kornberg, D.C. Phillips, C.F. Fox ), London: Butterworths 1975, pp. 97 – 122.Google Scholar
  18. 18.
    Ebrey, T.G.: Proc. Natl. Acad. Sci. U.S. 68, 713 – 716 (1971).CrossRefGoogle Scholar
  19. 19.
    Daemen, F.J.M., Degrip, W.J., Jansen, P.A.A.: Biochim. Biophys. Acta 271, 419 – 428 (1972).Google Scholar
  20. 20.
    Cheng-Wen-Wu, Stryer, L.: Proc. Natl. Acad. Sci. U.S. 69, 1104 – 1108 (1972).CrossRefGoogle Scholar
  21. 21.
    Daemen, F.J.M.: Biochim. Biophys. Acta 300, 255 – 288 (1973).Google Scholar
  22. 22.
    Olive, J., Recouvreur, M.: Exptl. Eye Res. (in Press) 1976 ).Google Scholar
  23. 23.
    Corless, J.M., Cobbs, W.H., Costello, M.J., Robertson, J.D.: Exptl. Eye Res. 23, 295 – 324 (1976).CrossRefGoogle Scholar
  24. 24.
    Chen, Y.S., Hubbell, W.L.: Exptl. Eye Res. 17, 517 – 532 (1973).CrossRefGoogle Scholar
  25. 25.
    Bibb, C., Young, R.W.: J. Cell Biol. 61, 327 – 343 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    Montal, M.: In: Animal Rev. Biophys. and Bioengineering (eds. L.J. Mullins, W.A. Hagins, L. Stryer, C. Newton ), Palo Alto Calif., U.S.: Ann. Rev. Inc., Vol. 5, 1976, pp. 119 – 140.Google Scholar
  27. 27.
    Changeux, J.P., Benedetti, E.L., Bourgeois, J.P., Brisson, A., Cartaud, J., Devaux, P., Grünhagen, H., Moreau, M., Popot, J.L., Sobel, A., Weber, M.: Cold Spring Harbor Symp. Quant. Biol., Vol. XL, 211 – 230 (1975).Google Scholar
  28. 28.
    Van Winkle, W.B., Lane, L.K., Schwartz, A.: Exptl. Cell Res. 100, 291 – 296 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    Olive, J., Benedetti, E.L.: Mol. Biol. Reports 1, 245 – 249 (1974).CrossRefGoogle Scholar
  30. 30.
    Daemen, F.J.M., van Breugel, P.G.J.M., Bonting, S.L.: Fed. Proc. 33, 1575 (1974).Google Scholar
  31. 31.
    Raubach, R.A., Nemes, P.P., Dratz, E.A.: Exptl. Eye Res. 18, 1 – 12 (1974).CrossRefGoogle Scholar
  32. 32.
    Jan, L., Revel, J.P.: Biochim. Biophys. Acta 323, 378 – 390 (1973).CrossRefGoogle Scholar
  33. 33.
    Godfrey, A.J.: J. Ultrastruct. Res. 43, 228 – 246 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    Engelhardt, P., Storteir, S.: J. Ultrastruct. Res. 50, 369 – 370 (1975).Google Scholar
  35. 35.
    Olive, J., Recouvreur, M., Gulik-Krzywicki, T.: Submitted to Biochim. Biophys. Acta (1976).Google Scholar
  36. 36.
    Satir, P., Satir, B.: In: Control of Cell Proliferation, Vol. 1 (eds. B. Clarkson, R. Baserga ). Cold Spring Harbor Conf. 1974, pp. 233 – 249.Google Scholar
  37. 37.
    Bretscher, M.: In: The Cell Surface in Development (ed. A.A. Moscona ). New York: John Wiley and Sons 1974, pp. 17 – 27.Google Scholar
  38. 38.
    Lenard, J., Landsberger, F.R.: In: Mammalian Cell Membranes, Vol. I (eds. G.A. Jamieson, D.M. Robinson ). London: Butterworts 1976, pp. 244 – 265.Google Scholar
  39. 39.
    Guerin, C., Zachovsky, A., Pringent, B., Paraf, A., Dunia, I., Diawara, M.A., Benedetti, E.L.: Proc. Natl. Acad. Sci. U.S. 71, 114 – 117 (1974).CrossRefGoogle Scholar
  40. 40.
    Marchesi, V.: In: Biochemistry of Cell Walls and Membranes Biochemistry Series 1, Vol. 2 (eds. H.L. Kornberg, D.C. Phillips, C.F. Fox ). London: Butterworths 1975, p. 123.Google Scholar
  41. 41.
    Pinto da Silva, P., Nicolson, G.L.: Biochim. Biophys. Acta 363, 311 – 319 (1974).CrossRefGoogle Scholar
  42. 42.
    Pinto da Silva, P., Moss, P.S., Fudenberg, H.H.: Exptl. Cell Res. 81, 129 – 138 (1973).Google Scholar
  43. 43.
    Cartaud, J., Benedetti, E.L., Changeux, J.P.: Submitted to J. Cell Sci. (1976).Google Scholar
  44. 44.
    Steck, T.L.: J. Cell Biol. 62, 1 – 19 (1974).PubMedCrossRefGoogle Scholar
  45. 45.
    Margaritis, L.H., Elgsaeter, A., Branton, D.: Biochim. Biophys. Acta (in press) 1976.Google Scholar
  46. 46.
    Wang, K., Richards, F.M.: J. Biol. Chem. 249, 8005 – 8018 (1974).PubMedGoogle Scholar
  47. 47.
    Tilney, L.G., Detmers, P.: J. Cell Biol. 66, 508 – 520 (1975).PubMedCrossRefGoogle Scholar
  48. 48.
    Cherry, R.J., Biirkli, A., Busslinger, M., Schneider, G., Parish, G.R.: Nature (London) 263, 389 – 393 (1976).CrossRefGoogle Scholar
  49. 49.
    Elgsaeter, A., Shotton, D.M., Branton, D.: Biochim. Biophys. Acta 413, 103 – 121 (1975).Google Scholar
  50. 50.
    Gazitt, Y., Ohad, I., Loyter, A.: Biochim. Biophys. Acta 436, 1 – 14 (1976).CrossRefGoogle Scholar
  51. 51.
    Pinto da Silva, P., Martinez-Palomo, A., Gonzalez-Robles, A.: J. Cell Biol. 64, 538 – 550 (1975).PubMedCrossRefGoogle Scholar
  52. 52.
    Pinto da Silva, P., Martinez-Palomo, A.: Proc. Natl. Acad. Sci. U.S. 72, 572 – 576 (1975).CrossRefGoogle Scholar
  53. 53.
    Torpier, G., Montagnier, L., Biquard, J.M., Vigier, P.: Proc. Natl. Acad. Sci. U.S. 72, 1695 – 1698 (1975).CrossRefGoogle Scholar
  54. 54.
    Rosenblith, J.Z., Ukena, T.E., Yin, H.H., Berlin, R.D., Karnovsky, M.J.: Proc. Natl. Acad. Sci. U.S. 70, 1625 – 1629 (1973).CrossRefGoogle Scholar
  55. 55.
    Whalen, R.G., Butler-Browne, G.S., Gros, F.: Proc. Natl. Acad. Sci. U.S. 73, 2018 – 2022 (1976).CrossRefGoogle Scholar
  56. 56.
    Tilney, L.G.: J. Cell Biol. 69, 51 – 72 (1976).PubMedCrossRefGoogle Scholar
  57. 57.
    Tilney, L.G.: J. Cell Biol. 69, 73 – 89 (1976).PubMedCrossRefGoogle Scholar
  58. 58.
    Lazarides, E.: J. Cell Biol. 68, 202 – 219 (1976).PubMedCrossRefGoogle Scholar
  59. 59.
    Hartwig, J.H., Stossel, T.P.: J. Biol. Chem. 250, 5696 – 5705 (1975).PubMedGoogle Scholar
  60. 60.
    Wang, K., Ash, J.F., Singer, S.J.: Proc. Natl. Acad. Sci. U.S. 72, 4483 – 4486 (1975).CrossRefGoogle Scholar
  61. 61.
    Pollard, T.D., Weihing, R.R.: Crit. Rev. Biochem. 2, 1 – 65 (1974).CrossRefGoogle Scholar
  62. 62.
    Mooseker, M.S., Tilney, L.G.: J. Cell Biol. 67, 725 – 743 (1975).PubMedCrossRefGoogle Scholar
  63. 63.
    Benedetti, E.L., Dunia, I., Bentzel, C.J., Vermorken, A.J.M., Kibbelaar, M., Bloemendal, H.: Biochim. Biophys. Acta 457, 353– 384 (1976).Google Scholar
  64. 64.
    Edelman, G.M., Spear, P.G., Rutishauer, V., Yahara, I.: In: Cell Surface in Development (ed. A.A. Moscona ). New York: Wiley and Sons, 1974, pp. 141 – 164.Google Scholar
  65. 65.
    Stadler, J., Franke, W.W.: J. Cell Biol. 60, 297 – 303 (1974).PubMedCrossRefGoogle Scholar
  66. 66.
    Benedetti, E.L., Dunia, I.: In: Molecular Biology of Nucleocyto- plasmic Relationships (ed. S. Puiseux-Dao ). Amsterdam: Elsevier 1975, pp. 265 – 284.Google Scholar
  67. 67.
    Benedetti, E.L., Dunia, I., Bloemendal, H.: Proc. Natl. Acad. Sci. U.S. 71, 5073 – 5077 (1974).CrossRefGoogle Scholar
  68. 68.
    Pitts, J.D.: In: Ciba Foundation Symp. on Growth Control in Cell Cultures (eds. G.E.W. Wolstenholma, J. Knight ). London: Churchill Livingstone, 1971, p. 89.Google Scholar
  69. 69.
    Subak-Sharpe, H., Bürk, R.R., Pitts, J.D.: J. Cell Sci. 4, 353 – 367 (1969).PubMedGoogle Scholar
  70. 70.
    Cox, R.P., Krauss, M.R., Balis, M.E., Dancis, J.: J. Cell Physiol. 84, 237 (1974).PubMedCrossRefGoogle Scholar
  71. 71.
    Dunia, I., Sen, K., Benedetti, E.L., Zweers, E.L., Bloemendal, H.: FEBS Lett. 45, 139 – 144 (1974).PubMedCrossRefGoogle Scholar
  72. 72.
    Goodenough, D.A., Stoeckenius, W.: J. Cell Biol. 54, 646 – 656 (1972).PubMedCrossRefGoogle Scholar
  73. 73.
    Duguid, J.R., Revel, J.P.: In: Cold Spring Harbor Symp. Quant. Biol. 11, 49–63 (1976).Google Scholar
  74. 74.
    Loewenstein, W.R.: In: Cold Spring Harbor Symp. Quant. Biol. 11, 45–47 (1976).Google Scholar
  75. 75.
    Hax, W.M.A., Van Venroodj, G.E.M.P., Vossenberg, J.B.J.: J. Membrane Biol. 19, 253 – 266 (1974).CrossRefGoogle Scholar
  76. 76.
    Decker, R.S.: Abstr. 15th Ann. Mtg. Am. Soc. Cell Biol., J. Cell Biol. 67, 89a (1975).Google Scholar
  77. 77.
    Peracchia, C., Dulhunty, A.F.: J. Cell Biol. 70, 419 – 439 (1976).PubMedCrossRefGoogle Scholar
  78. 78.
    Baldwin, K.M.: Abstr. 1st Internat. Cong. Cell Biol., J. Cell Biol. 70, 207a (1976).Google Scholar
  79. 79.
    Wieland, T.: In: Mol. Basis Motility 26 Colloquium (eds. L.M.G. Heilmeyer Jr., J.C. Riiegg, T. Wieland). Berlin/Heidelberg/New York: Springer-Verlag,, 1975, pp. 203 – 214.Google Scholar
  80. 80.
    Montesano, R., Gabbiani, G., Perrelet, A., Orci, L.: J. Cell Biol. 68, 793 – 798 (1976).PubMedCrossRefGoogle Scholar
  81. 81.
    Bentzel, C.J., Hainau, B., Edelman, A., Anagnostopoulus, T., Benedetti, E.L.: Nature (New Biol.). In press.Google Scholar
  82. 82.
    Frömter, E., Diamond, J.M.: Nature (New Biol.) 235, 9 – 13 (1972).Google Scholar
  83. 83.
    Moreno, J.H., Diamond, J.M.: In: Membranes, Vol. III (ed. G. Eisenman ). New York/Basel: Marcel Dekker, Inc., 1975, pp. 383 – 497.Google Scholar
  84. 84.
    Claude, P., Goodenough, D.A.: J. Cell Biol. 58, 390 – 400 (1973).PubMedCrossRefGoogle Scholar
  85. 85.
    Van Verkleij, R.F., Zwaal, A., Roelofsen, B., Confurius, P., Kastelijn, D., Van Deenen, L.L.M.: Biochim. Biophys. Acta 323, 178 – 193 (1973).CrossRefGoogle Scholar
  86. 86.
    Fisher, K.A.: Proc. Natl. Acad. Sci. U.S. 73, 173 – 177 (1976).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • E. L. Benedetti
  • I. Dunia
  • J. Olive
  • J. Cartaud

There are no affiliations available

Personalised recommendations