Advertisement

Plasma Amino Acid Imbalance and Hepatic Coma

  • H. N. Munro
  • J. D. Femstrom
  • R. J. Wurtman
Part of the Klinische Anästhesiologie und Intensivtherapie book series (KAI, volume 13)

Abstract

Cirrhosis of the liver is a major disease with severe consequences to the patient, including coma. The causation of hepatic coma nevertheless continues to be the subject of speculation. For some years, it was postulated that ammonia formed in the intestine by bacterial action passed into the general circulation as a result of the liver failure and was responsible for the onset of coma. This explanation is, however, in conflict with data such as the studies of COHN and CASTELL (2), in which the electroencephalogram of patients with cirrhosis failed to respond to induction of acute hyperammonemia. It has been suggested by FISCHER and BALDE S SARIN I (6) that amines formed in the gut may pass into the general circulation in hepatic cirrhosis and become transformed in the brain to derivatives that compete with endogenous neurotransmitters. Specifically, FISCHER and BALDESSARINI present evidence that tyramine, formed by the intestinal flora from tyrosine, is a precursor of octopamine in the brain and that this latter displaces the normal adrenergic transmitters dopamine and norepinephrine.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BLASBERG, R., LAJTHA, A.: Substrate specificity of steadystate amino acid transport in mouse brain slices. Arch. Biochem. Biophys. 112, 361 (1965).CrossRefGoogle Scholar
  2. 2.
    COHN, R., CASTELL, D. O.: The effect of acute hyperammonemia on the electroencephalogram. J. Lab. clin. Med. 68, 195 (1966).PubMedGoogle Scholar
  3. CRIM, M. C., MUNRO, H. N.: Protein and amino acid requirements and metabolism in relation to defined formula diets. In: Defined Formula Diets for Medical Purposes (ed. M.E. SHILS). Amer. Med. Assoc., Chicago (In press).Google Scholar
  4. ELWYN, D. H.: The role of the liver in regulation of amino acid and protein metabolism. In: Mammalian Protein Metabolism (ed. H.N. MUNRO), vol. 4, p. 523. New York: Academic Press.Google Scholar
  5. 5.
    FERNSTROM, J. D., WURTMAN, R. J.: Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178, 414 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    FISCHER, J. E., BALDESSARINI, R. J.: False neurotransmitters and hepatic failure. Lancet II, 75 (1971).CrossRefGoogle Scholar
  7. 7.
    FISCHER, J. E., FUNOVICS, J. M., AGUIRRE, A., JAMES, J. M., KEANE, J. M., WESDORP, R. I. C., YOSHIMURA, N., WESTMAN, T.: The role of plasma amino acids in hepatic encephalopathy. Surgery 78, 276 (1975).PubMedGoogle Scholar
  8. 8.
    IOB, V., COON, W. W., SLOAN, M.: Altered clearance of free amino acids from plasma of patients with cirrhosis of the liver. J. Surg. Res. 6, 233 (1966).PubMedCrossRefGoogle Scholar
  9. 9.
    JAMES, J. H., HODGMAN, J. M., FUNOVICS, J. M., YOSHIMURA, N., FISCHER, J. E.: Brain tryptophan, plasma free tryptophan and distribution of plasma neutral amino acids. Metab. 25, 471 (1976).CrossRefGoogle Scholar
  10. 10.
    KADEN, M., HARDING, P., FIELD, J. B.: Effect of intraduodenal glucose administration on hepatic extraction of insulin in the anesthetized dog. J. clin. Invest. 52, 2016 (1973)PubMedCrossRefGoogle Scholar
  11. 11.
    KNOTT, P. J., CURZON, G.: Free tryptophan in plasma and brain tryptophan metabolism. Nature 239, 452 (1972).PubMedCrossRefGoogle Scholar
  12. 12.
    KRASS, E., BITTNER, R., MEVES, M., BEGER, H. G.: Insulinkonzentrationen im Pfortaderblut des Menschen nach Glucoseinfusion. Klin. Wschr. 52, 404 (1974).CrossRefGoogle Scholar
  13. 13.
    LIPSETT, D., MADRAS, B. K., WURTMAN, R. J., MUNRO, H. N.: Serum tryptophan level after carbohydrate ingestion: selective decline in non-albumin-bound tryptophan coincident with reduction in serum free fatty acids. Life Sci. 12 (part II), 57 (1973).CrossRefGoogle Scholar
  14. 14.
    LOTSPEICH, W. D.: The role of insulin in the metabolism of amino acids. J. biol. Chem. 179, 175 (1949).PubMedGoogle Scholar
  15. 15.
    MADRAS, B. K., COHEN, E. L., FERNSTROM, J. D., LARIN, F., MUNRO, H. N., WURTMAN, R. J.: Dietary carbohydrate increases brain tryptophan and decreases serum free tryptophan. Nature 244, 34 (1973)PubMedCrossRefGoogle Scholar
  16. 16.
    Madras, B. K., Cohen, E. L., Messing, R., Munro, H. N., Wurtman, R. J.: Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metab. 23, 1107 (1974).CrossRefGoogle Scholar
  17. 17.
    MARCO, J., DIEGO, J., VILLANUEVA, M., DIAZ-FIERROS, M., VALVERDE, I., SEGOVIA, J. M.: Elevated plasma glucagon levels in cirrhosis of the liver. New Engl. J. Med. 289, 1107 (1973)PubMedCrossRefGoogle Scholar
  18. 18.
    MUNRO, H. N.: The role of insulin in the regulation of protein metabolism. Scottish Med. J. 1, 285 (1956).Google Scholar
  19. 19.
    MUNRO, H. N., THOMSON, W. S. T.: Influence of glucose on amino acid metabolism. Metab. Clin. Exper. 2, 354 (1953).Google Scholar
  20. 20.
    MUNRO, H. N., BLACK, J. G., THOMSON, W. S. T.: The mode of action of dietary carbohydrate on protein metabolism. Brit. J. Nutrit. 13, 475 (1959).PubMedCrossRefGoogle Scholar
  21. 21.
    MUNRO, H. N., FERNSTROM, D. J., WURTMAN, R. J.: Insulin, plasma amino acid imbalance and hepatic coma. Lancet I, 722 (1975)CrossRefGoogle Scholar
  22. 22.
    NEAME, K. D.: Effect of neutral a- and w-amino acids and basic a-amino acids on uptake of L-histidine by intestinal mucosa, testis, spleen and kidney in vitro: a comparison with effect in brain. J. Physiol. 185, 627 (1966).PubMedGoogle Scholar
  23. 23.
    POZEFSKY, T., FELIG, P., TOBIN, J. D., SOELDNER, J. S., CAHILL, G. F.: Amino acid balance across the tissues of the forearm in postabsorptive man: effects of insulin at two dose levels. J. clin. Invest. 48, 2278 (1969).CrossRefGoogle Scholar
  24. 24.
    SHERWIN, R., JOSHI, P., HENDLER, R., FELIG, P., CONN, H. P.: Hyperglucagonemia in Laennec1s cirrhosis: the role of portal systemic shunting. New Engl. J. Med. 290, 239 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    SWENDSEID, M. E., UMEZAWA, C. Y., DRENICK, E. J.: Plasma amino acid levels in obese subjects before, during and after starvation. Amer. J. clin. Nutrit. 22, 740 (1969).Google Scholar
  26. 26.
    TAGLIAMONTE, A., BIGGIO, G., VARGIU, L., GESSA, G. L.: Free tryptophan in serum controls brain tryptophan level and serotonin synthesis. Life Sci. J 2 (part II), 277 (1973).CrossRefGoogle Scholar
  27. 27.
    WURTMAN, R. J., LARIN, F., MOSTAFAPOUR, S., FERNSTROM, J. D. Brain catecholamine synthesis: control by brain tyrosine concentration. Science 185, 183 (1974).PubMedCrossRefGoogle Scholar
  28. 28.
    YOUNG, S. N., GARELIS, E., LAL, S., MARTIN, J. B., MOLINANEGRO, D., ETHIER, R., SOURKES, T. L.: Tryptophan and 5-hydroxyindolacetic acid in human cerebrospinal fluid. J. Neurochem. 22, 111 (1974).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • H. N. Munro
  • J. D. Femstrom
  • R. J. Wurtman

There are no affiliations available

Personalised recommendations