Advertisement

Glyco- and Phospholipids of Biomembranes in Higher Plants

  • P. Mazliak

Abstract

Lipids are important constituents of all biological membranes and play a central role in the molecular organization of these membranes. Structural lipids in plant biomembranes are essentially phospholipids, galactolipids, and sterols. In this chapter we shall first review the lipid composition of plant biomembranes; then we shall examine where these lipids come from in plant cells, how they are built, and how they integrate the various biomembranes or cell organelles. However, membrane lipids have not only a structural role. The activities of many membrane-bound enzymes are controlled by the extent and the quality of the lipid environment within the membranes. The last part of this chapter will deal with the results of some recent studies concerning the effect of lipids upon the activities of some membrane-bound enzymes.

Keywords

Potato Tuber Castor Bean Spinach Chloroplast Plant Mitochondrion Chloroplast Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, C.F., Hirayama, O., Good, P.: Lipid composition of photosynthetic systems. In: Biochemistry of Chloroplasts. Goodwin, T.W. (ed.). London: Academic Press, 1966, Vol. 1, pp. 195–200Google Scholar
  2. 2.
    Appleqvist, L.A., Stumpf, P.K., Von Wettstein, D.: Lipid synthesis and ultrastructure of isolated barley chloroplasts. Plant Physiol. 43, 163–187 (1968)CrossRefGoogle Scholar
  3. 3.
    Bahl, J., Guillot-Salomon, T., Douce, R.: Synthèse enzymatique du cytidine diphosphate dygly-céride dans le végétal supérieur. Physiol. Vég. 8, 55–74 (1970)Google Scholar
  4. 4.
    Bartholomew, L., Mace, K.D.: Isolation and identification of phospholipids from root tip cell plasmalemma of Phaseolus limensis. Cytobios 5, 241–247 (1972)PubMedGoogle Scholar
  5. 5.
    Ben Abdelkader, A.: Biogenèse des lipides membranaires pendant la “survie” de tranches de tubercules de Pomme de terre. Thèse Fac. Sciences, Paris, 1972, 184 pp.Google Scholar
  6. 6.
    Ben Abdelkader, A., Cherif, A., Demandre, C., Mazliak, P.: The oleyl-CoA desaturase of potato tubers: enzymatic properties, intracellular localization and induction during aging of tuber slices. Europ. J. Biochem. 32, 155–165 (1973)PubMedCrossRefGoogle Scholar
  7. 7.
    Ben Abdelkader, A., Mazliak, P.: Echange de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de Pomme de terre ou de Chou-fleur. Europ. J. Biochem. 15, 250–262 (1970)PubMedCrossRefGoogle Scholar
  8. 8.
    Bradbeer, C., Stumpf, P.K.: Fat metabolism in higher plants XIII. Phosphatidic acid synthesis and diglyceride Phosphokinase activity in mitochondria from peanut cotyledons. J. Lipid Res. 1, 214–220 (1960)PubMedGoogle Scholar
  9. 9.
    Brooks, J.L., Stumpf, P.K.: Properties of a soluble fatty acid synthesizing system from lettuce chloroplasts. Arch. Biochem. Biophys. 116, 108–116 (1966)PubMedCrossRefGoogle Scholar
  10. 10.
    Demandre, C.: Activités enzymatiques et composition lipidique de fractions enrichies en membranes cytoplasmiques isolées de tubercules de Pomme de terre. Physiol. Vég. 13, 103–114 (1975)Google Scholar
  11. 11.
    Demandre, C.: Les membranes cytoplasmiques de tubercules de Pomme de terre: isolement, composition lipidique, biogenèse des lipides associés à ces membranes au cours de la survie de tranches de tubercule. Thèse Doctorat 3è Cycle, Paris, 1976, 75 pp.Google Scholar
  12. 12.
    Devaux, P., Mc Connel, H.M.: Equality of the rates of lateral diffusion of phosphatidylethanol-amine and phosphatidylcholine spin labels in rabbit sarcoplasmic reticulum. Ann. N.Y. Acad. Sci. 222, 489–498 (1973)PubMedCrossRefGoogle Scholar
  13. 13.
    Devor, K.A., Mudd, J.B.: Biosynthesis of phosphatidylcholine by enzyme preparations of spinach leaves. J. Lipid Res. 12, 390–419 (1971)Google Scholar
  14. 14.
    Donaire, J.P., Oursel, A.: Influence du calcium sur la biosynthèse de la phosphatidylcholine par les microsomes isolés de racines de Féverole. C. R. Acad. Sci. 281, 787–789 (1975)Google Scholar
  15. 15.
    Donaldson, R.P., Tolbert, N.E., Schnarrenberger, C.: A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissue. Arch. Biochem. Biophys. 152, 199–215 (1972)PubMedCrossRefGoogle Scholar
  16. 16.
    Douady, D., Mazliak, P.: Etude des transferts d’acides gras entre liposomes et mitochondries isolées de Chou-fleur. Physiol. Vég. 13, 383–392 (1975)Google Scholar
  17. 17.
    Douce, R.: Identification et dosage de quelques glycerophosphatides dans des souches normales et tumorales de Scorsonère cultivées in vitro. C. R. Acad. Sci. 259, 2167–2170 (1964)Google Scholar
  18. 18.
    Douce, R.: Mise en évidence du cytidine diphosphate diglycéride dans les mitochondries végétales isolées. C. R. Acad. Sci. 267, 534–537 (1968)Google Scholar
  19. 19.
    Douce, R.: Site of biosynthesis of galactolipids in spinach chloroplasts. Science 183, 852–853 (1974)PubMedCrossRefGoogle Scholar
  20. 20.
    Douce, R., Guillot-Salomon, T.: Sur l’incorporation de la radioactivité du sn-glycerol-3-phos-phate-14C dans le monogalactosyldiglyceride des plastes isolés. FEBS Lett. 11, 121–126 (1970)PubMedCrossRefGoogle Scholar
  21. 21.
    Douce, R., Holz, R.B., Benson, A.A.: Isolation and properties of the envelope of spinach chloroplasts. J. Biol. Chem. 248, 7215–7222 (1973)PubMedGoogle Scholar
  22. 22.
    Hartmann, M.A., Normand, G., Benveniste, P.: Sterol composition of plasma membrane enriched fractions from maize coleoptiles. Plant Sci. Lett. 5, 287–292 (1975)CrossRefGoogle Scholar
  23. 23.
    Harwood, J.L.: Fatty acid biosynthesis by avocado pear. Lipids 9, 850–854 (1974)PubMedCrossRefGoogle Scholar
  24. 24.
    Hashimoto, H., Murakami, S.: Dual character of lipid composition of the envelope membrane of spinach chloroplasts. Plant Cell Physiol. (Tokyo) 16, 895–902 (1975)Google Scholar
  25. 25.
    Hawke, J.C., Leese, B.M., Leech, R.M.: Lipid biosynthesis by intact mesophyll and bundle sheat chloroplasts from maize. Phytochemistry 14, 1733–1737 (1975)CrossRefGoogle Scholar
  26. 26.
    Hawke, J.C., Stumpf, P.K.: The biosynthesis of saturated and unsaturated fatty acids by preparations from barley seedlings. J. Biol. Chem. 240, 4746–4752 (1965)PubMedGoogle Scholar
  27. 27.
    Hodges, T.K., Leonard, R.T., Bracker, C.E., Keenan, T.W.: Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc. Natl. Acad. Sci. U.S. 69, 3307–3311 (1972)CrossRefGoogle Scholar
  28. 28.
    Holtz, R.B., Stewart, P.S., Patton, S., Schisler, L.C.: Isolation and characterization of membranes from the cultivated mushroom. Plant Physiol. 50, 541–546 (1972)PubMedCrossRefGoogle Scholar
  29. 29.
    Jacobson, B.S., Jaworski, J.G., Stumpf, P.K.: Stearyl-acyl carrier protein desaturase from spinach chloroplasts. Plant Physiol. 54, 484–486 (1974)PubMedCrossRefGoogle Scholar
  30. 30.
    Jolliot, A., Mazliak, P.: Rôle des lipides dans diverses activités enzymatiques de la chaîne de transport des électrons d’une fraction mitochondriale isolée d’inflorescences de Chou-fleur. Plant Sci. Lett. 1, 21–29 (1973)CrossRefGoogle Scholar
  31. 31.
    Jost, P.C., Griffith, O.H., Capaldi, R.A., Vanderkooi, G.: Evidence for boundary lipid in membrane. Proc. Natl. Acad. Sci. 70, 480–484 (1973)PubMedCrossRefGoogle Scholar
  32. 32.
    Joyard, J., Douce, R.: Mise en évidence et rôle des diacylglycerols de l’enveloppe des chloro-plastes. Biochim. Biophys. Acta 424, 125–131 (1976)PubMedGoogle Scholar
  33. 33.
    Kader, J.C.: Proteins and intracellular exchange of lipids. I. Stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolated from potato tuber. Biochim. Biophys. Acta 380, 31–44 (1975)PubMedGoogle Scholar
  34. 34.
    Kannangara, C.G., Stumpf, P.K.: The biosynthesis of polyunsaturated fatty acids by isolated chloroplasts. Arch. Biochem. Biophys. 148, 414–424 (1972)PubMedCrossRefGoogle Scholar
  35. 35.
    Keenan, T.W., Leonard, R.T., Hodges, T.K.: Lipid composition of plasma membranes from Avena sativa roots. Cytobios 7, 103–112 (1973)Google Scholar
  36. 36.
    Kornberg, R.D., Mc Connel, H.M.: Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10, 1111–1120 (1971)PubMedCrossRefGoogle Scholar
  37. 37.
    Lamant, A., Heller, R.: Intervention des systèmes membranaires dans l’absorption du Calcium par les racines de Féverole (calcicole) et de Lupin (Calcifuge). Physiol. Vég. 13, 685–700 (1975)Google Scholar
  38. 38.
    Lord, J.M.: Phospholipid synthesis and exchange in castor bean endosperm homogenates. Plant Physiol. 57, 218–223 (1976)PubMedCrossRefGoogle Scholar
  39. 39.
    Lyons, J.M., Raison, J.K.: Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45, 386–389 (1970)PubMedCrossRefGoogle Scholar
  40. 40.
    Lyons, J.M., Wheaton, T. A., Pratt, H.K.: Relationship between physical nature of mitochondrial membranes and chilling sensitivity in plants. Plant Physiol. 39, 262–268 (1964)PubMedCrossRefGoogle Scholar
  41. 41.
    Macher, B.A., Mudd, J.B.: Synthesis of phosphatidylethanolamine by enzyme preparations from plant tissues. Plant Physiol. 53, 171–175 (1974)PubMedCrossRefGoogle Scholar
  42. 42.
    Mackender, L.R.O., Leech, R.M.: The galactolipid, phospholipid and fatty acid composition of the chloroplast envelope membranes of Vicia faba. Plant Physiol. 53, 496–502 (1974)PubMedCrossRefGoogle Scholar
  43. 43.
    Mannella, C.A., Bonner, W.D.: Biochemical characteristics of the outer membranes of plant mitochondria. Biochim. Biophys. Acta 413, 213–225 (1975)PubMedCrossRefGoogle Scholar
  44. 44.
    Marshall, M.O., Kates, M.: Biosynthesis of phosphatidylglycerol by cell-free preparations from spinach leaves. Biochim. Biophys. Acta 260, 558–570 (1972)PubMedGoogle Scholar
  45. 45.
    Marshall, M.O., Kates, M.: Biosynthesis of nitrogenous phospholipids in spinach leaves. Can. J. Biochem. 52, 469–482 (1974)PubMedGoogle Scholar
  46. 46.
    McCarty, R.E., Douce, R., Benson, A.A.: The acyl lipids of highly purified plant mitochondria. Biochim. Biophys. Acta 316, 266–270 (1973)PubMedGoogle Scholar
  47. 47.
    Mazliak, P.: Effet de quatre détergents sur l’oleyl-CoA désaturase des microsomes de Pomme de terre. C. R. Acad. Sci. 281, 1471–1474 (1975)Google Scholar
  48. 48.
    Mazliak, P., Ben Abdelkader, A.: Exchanges d’acides gras in vitro entre mitochondries, microsomes et surnageants cytoplasmiques de cellules de Pomme de terre ou de Chou-fleur. Phytochem-istry 10, 2879–2890 (1971)CrossRefGoogle Scholar
  49. 49.
    Mazliak, P., Decotte, A.M.: Effects of four detergents on the oxidative and phosphorylating capacities of potato mitochondria. J. Exp. Botany 27, 769–777 (1976)CrossRefGoogle Scholar
  50. 50.
    Mazliak, P., Oursel, A., Ben Abdelkader, A., Grosbois, M.: Biosynthèse des acides gras dans les mitochondries végétales isolées. Europ. J. Biochem. 28, 399–411 (1972)PubMedCrossRefGoogle Scholar
  51. 51.
    Mazliak, P., Stoll, U., Ben Abdelkader, A.: Coopération entre les mitochondries et le reste de la cellule pour le renouvellement des lipides mitochondriaux du parenchyme de Pomme. Biochim. Biophys. Acta 152, 414–417 (1968)PubMedGoogle Scholar
  52. 52.
    Meunier, D., Mazliak, P.: Différences de composition lipidique entre les deux membranes des mitochondries de Pomme de terre. C. R. Acad. Sci. 275, 213–216 (1972)Google Scholar
  53. 53.
    Moreau, F., Dupont, J., Lance, C.: Phospholipid and fatty acid composition of outer and inner membranes of plant mitochondria. Biochim. Biophys. Acta 345, 294–304 (1974)CrossRefGoogle Scholar
  54. 54.
    Moore, T.S.: Phosphatidylserine synthesis in castor bean endosperm. Plant Physiol. 56, 177–180 (1975)PubMedCrossRefGoogle Scholar
  55. 55.
    Moore, T.S., Lord, J.M., Kagawa, T., Beevers, H.: Enzymes of phospholipid metabolism in the endoplasmic reticulum of castor bean endosperm. Plant Physiol. 52, 50–53 (1973)PubMedCrossRefGoogle Scholar
  56. 56.
    Morre, O.J., Nyquist, S., Rivera, E.: Lecithin biosynthetic enzymes of onion stem and the distribution of phorylcholine-cytidyl transferase among cell fractions. Plant Physiol. 45, 800–804 (1970)PubMedCrossRefGoogle Scholar
  57. 57.
    Mudd, J.B., Stumpf, P.K.: Factors affecting the synthesis of oleic acid by particulate preparations from avocado mesocarp. J. Biol. Chem. 236, 2602–2609 (1961)PubMedGoogle Scholar
  58. 58.
    Nakamura, Y., Yamada, M.: Fatty acid synthesis by spinach chloroplasts. I. Property of fatty acid synthesis from acetate. Plant Cell Physiol. (Tokyo) 16, 650–661 (1975)Google Scholar
  59. 59.
    Neufeld, E.F., Hall, C.W.: Formation of galactolipids by chloroplasts. Biochem. Biophys. Res. Commun. 14, 503–508 (1964)PubMedCrossRefGoogle Scholar
  60. 60.
    Nichols, B.W., James, A.T.: Acyl lipids and fatty acids in photosynthetic tissues. In: Progress in Phytochemistry. Reinhold, L., Liwschitz, Y. (eds.). London: Interscience Publishers, 1968, Vol. 1, pp. 1–49Google Scholar
  61. 61.
    Normand, G., Hartmann, M.A., Schuber, F., Benveniste, P.: Caractérisation de membranes de coléoptiles de Maïs fixant l’auxine et l’acide N-naphtylphtalamique. Physiol. Vég. 13, 743–761 (1975)Google Scholar
  62. 62.
    Ohmori, M., Yamada, M.: Composition of phosphoglycerides and glycosylglycerides in castor bean mitochondria. Plant Cell Physiol. (Tokyo) 15, 1129–1132 (1974)Google Scholar
  63. 63.
    Ongun, A., Mudd, J.B.: Biosynthesis of galactolipids in plants. J. Biol. Chem. 243, 1558–1566 (1968)PubMedGoogle Scholar
  64. 64.
    Oursel, A., Lamant, A., Salsac, L., Mazliak, P.: Etude comparée des lipides et de la fixation passive du calcium dans les racines et les fractions subcellulaires du Lupinus luteus et de la Vicia faba. Phytochemistry 12, 1865–1874 (1973)CrossRefGoogle Scholar
  65. 65.
    Philipp, E.I., Franke, W.W., Keenan, T.W., Stadler, J., Jarasch, E.E.: Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissues. J. Cell Biol. 68, 11–29(1976)PubMedCrossRefGoogle Scholar
  66. 66.
    Ruesink, A.W.: The plasma membrane of Avena coleoptile protoplasts. Plant Physiol. 47, 192–195 (1971)PubMedCrossRefGoogle Scholar
  67. 67.
    Rullkötter, J., Heinz, E., Tulloch, A.P.: Combination and positional distribution of fatty acids in plant digalactosyldiglycerides. Z. Pflanzenphysiologie 76, 163–175 (1975)Google Scholar
  68. 68.
    Sastry, P.S., Kates, M.: Biosynthesis of lipids in plants II. Incorporation of glycerophosphate-32P into phosphatides by cell-free preparations from spinach leaves. Can. J. Biochem. 44, 459–467 (1966)PubMedCrossRefGoogle Scholar
  69. 69.
    Schwertener, H.A., Biale, V.B.: Lipid composition of plant mitochondria and chloroplasts. J. Lipid Res. 14, 235–241 (1973)Google Scholar
  70. 70.
    Slack, C.R., Roughan, P.G., Terpstra, J.: Some properties of a microsomal oleate desaturase from leaves. Biochem. J. 155, 71–80 (1976)PubMedGoogle Scholar
  71. 71.
    Stumpf, P.K.: Biosynthesis of fatty acids in spinach chloroplast. In: Recent Advances in the Chemistry and Biochemistry of Plant Lipids. Galliard, T., Mercer, E.T. (eds.). New York: Academic Press, 1975, pp. 95–113Google Scholar
  72. 72.
    Sumida, S., Mudd, J.B.: Biosynthesis of cytidine diphosphate diglyceride by cauliflower mitochondria. Plant Physiol. 43, 1162–1164 (1968)PubMedCrossRefGoogle Scholar
  73. 73.
    Tchang, F.: unpublished results, 1974Google Scholar
  74. 74.
    Tremolieres, A., Dubacq, J.P.: Formation of a Δ9-dodecenoic dibasic acid from linoleic acid by young pea leaves. Phytochemistry 15, 1123–1124 (1976)CrossRefGoogle Scholar
  75. 75.
    Tremolieres, A., Mazliak, P.: Biosynthetic pathway of α-linolenic acid in developing pea leaves. Plant Sci. Lett. 2, 193–201 (1974)CrossRefGoogle Scholar
  76. 76.
    Vandor, S.L., Richardson, K.E.: Incorporation of ethanolamine 1,214C into plant microsomal phospholipids. Can. J. Biochem. 46, 1309–1315 (1968)PubMedCrossRefGoogle Scholar
  77. 77.
    Van Deenen, L.L.M., Haverkate, F.: Chemical characterization of phosphatidylglycerol from photosynthetic tissues. In: Biochemistry of Chloroplasts. Goodwin, T.W. (ed.). London: Academic Press, 1966, Vol. 1, pp. 117–131Google Scholar
  78. 78.
    Van Hummel, H.C., Hulsebos, J.J.M., Wintermand, J.F.G.M.: Biosynthesis of galactosyldiglyc-erides by non-green fractions from chloroplasts. Biochim. Biophys. Acta 380, 219–226 (1975)PubMedGoogle Scholar
  79. 79.
    Verkleij, A.J., Zwaal, R.F.A., Roelofsen, B., Comfurius, P., Kastelijn, D., van Deenen, L.L.M.: The asymmetric distribution of phospholipids in the human red cell membrane. Biochim. Biophys. Acta 323, 178–193 (1973)PubMedCrossRefGoogle Scholar
  80. 80.
    Vijay, I.K., Stumpf, P.K.: Fat metabolism in higher plants XLXI. Properties of oleyl-CoA desaturase of Carthamus tinctorius. J. Biol. Chem. 247, 360–372 (1971)Google Scholar
  81. 81.
    Warren, G.B., Houslay, M.D., Metcalfe, J.C., Birdsall, N.J.M.: Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature (London) 255, 684–687 (1975)CrossRefGoogle Scholar
  82. 82.
    Wirtz, K.W.A., Kamp, H.H., van Deenen, L.L.M.: Isolation of a protein from beef liver which specifically stimulates the exchange of phosphatidylcholine. Biochim. Biophysica Acta 274, 606–617 (1972)CrossRefGoogle Scholar
  83. 83.
    Yamada, M., Usami, Q.: Long chain fatty acids in developing castor bean seeds IV. The synthetic system in proplastids. Plant Cell Physiol. (Tokyo) 16, 879–884 (1975)Google Scholar
  84. 84.
    Zilkey, B., Canvin, D.T.: Subcellular localization of oleic acid biosynthesis enzymes in the developing castor bean endosperm. Biochem. Biophys. Res. Commun. 34, 646–653 (1969)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • P. Mazliak

There are no affiliations available

Personalised recommendations