Interactions of Drugs with Liver Microsomes

  • Ingeborg Schuster
Part of the Progress in Molecular and Subcellular Biology book series (PMSB, volume 5)


The history of microsomes dates back to 1938 when CLAUDE first detected a new cell fraction in mammalian cells. For these particles, which could be isolated by differential centrifugation and afterward observed in a dark field microscope “as fine granules,” he proposed the term microsomes (CLAUDE, 1943). With the newly evolving technique of electron microscopy it was then proved that microsomes resembled the isolated form of endoplasmic reticulum (CLAUDE et al., 1947; PALADE and SIEKEVITZ, 1956).


Liver Microsome Microsomal Protein Microsomal Membrane Mixed Function Oxidase Hepatic Microsomal Cytochrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APPLEBY, C.A.: A soluble haemprotein, P450 from nitrogen-fixing rhizobium bacteroids. Biochim. Biophys. Acta 147, 399–402 (1967).PubMedGoogle Scholar
  2. ARNDT, R., KRISCH, K.: Catalytic properties of an unspecific carboxyl-esterase (El) from rat liver microsomes. Europ. J. Biochem. 36, 129–134 (1973).PubMedGoogle Scholar
  3. AXELROD, J.: The enzymatic deamination of amphetamine (benzedrine). J. Biol. Chem. 214, 753–763 (1955).PubMedGoogle Scholar
  4. AXELROD, J.: The enzymatic N-demethylation of narcotic drugs. J. Pharmacol. Exp. Ther. 117, 322–330 (1956a).PubMedGoogle Scholar
  5. AXELROD, J.: The enzymic cleavage of aromatic ethers. Biochem. J. 63, 634–639 (1956b).PubMedGoogle Scholar
  6. BAUER, S., KIESE, M.: Heterogeneousness of the microsomal enzymes effecting the o- and p-hydroxylation of aniline. Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharmak. 247, 144–148 (1964).Google Scholar
  7. BECKETT, A.H.: Metabolic oxidation of aliphatic basic nitrogen atoms and their α-carbon atoms. Xenobiotica 1, 365–384 (1971).PubMedGoogle Scholar
  8. BENÖHR, H.C., KRISCH, K.: Carboxylesterase aus Rinderlebermikrosomen. Isolierung, Eigenschaften und Substratspezifitat. Z. Physiol. Chem. 348, 1102–1114 (1967).Google Scholar
  9. BERNHAMMER, E., KRISCH, K.: Zur Hydrolyse von Aminosaure-Arylamiden durch mikrosomale Schweineleberesterase und Serum. Z. Klin. Chem. 4, 49–55 (1966).Google Scholar
  10. BIELKA, H.: Endoplasmatisches Retikulum und Ergastoplasma. In: Molekulare Biologie der Zelle (Ed. H. Bielka), pp. 399–432. Stuttgart: G. Fischer, 1969.Google Scholar
  11. BOYD, G.S.: Biological hydroxylation reactions. In: Biological Hydroxylation Reactions (Eds. G.S. BOYD, R.M.S. SMELLIE), pp. 1–9. London-New York: Academic Press, 1972.Google Scholar
  12. BRODIE, B.B., REID, W.D., CHO, A.K., SIPES, G., KRISHNA, G., GILLETTE, J.R.: Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Nat, Acad. Sci. 68, 160–164 (1971).Google Scholar
  13. BROWN, R.R., MILLER, J.A., MILLER, E.C.: The metabolism of methylated aminoazo dyes. IV Dietary factors enhancing demethylation in vitro. J. Biol. Chem. 209, 211–222 (1954).PubMedGoogle Scholar
  14. BUTLER, K.W., SCHNEIDER, H., SMITH, I.C.: The effects of local anaesthetics on lipid multilayers. A spin probe study. Arch. Biochem. Biophys. 154, 548–554 (1973).PubMedGoogle Scholar
  15. CAMPBELL, P.N., LAWFORD, G.R.: The protein synthesizing activity of the endoplasmic reticulum in liver. In: Structure and Function of the Endoplasmic Reticulum in Animal Cells (Ed. F.C. GRAN), pp. 57–79. Oslo: Univ. Forlaget, 1968.Google Scholar
  16. CHAPLIN, M.D., MANNERING, G.J.: Role of phospholipids in hepatic microsomal drug-metabolizing system. Mol. Pharmacol. 6, 631–640 (1970).PubMedGoogle Scholar
  17. CHAPMAN, D.: Some recent studies of lipids, lipid-cholesterol and membrane systems. In: Biological Membranes (Ed. D. CHAPMAN, D.F.H. WALLACH), Vol. 2, pp. 91–144. London-New York: Academic Press, 1973.Google Scholar
  18. CLAUDE, A.: Fraction from normal chick embryo similar to tumor producing fraction of chick tumor I. Proc. Soc. Exp. Biol. Med. 39, 398–403 (1938).Google Scholar
  19. CLAUDE, A.: Constitution of protoplasm. Science 97, 451–456 (1943).PubMedGoogle Scholar
  20. CLAUDE, A.: Studies on cells: Morphology, chemical constitution and distribution of biochemical functions. Harvey Lect. 43, 121–164 (1948).Google Scholar
  21. CLAUDE, A.: Microsomes, endoplasmic reticulum and interactions of cytoplasmic membranes. In: Microsomes and Drug Oxidation (Eds. J.R. GILLETTE, A.H. CONNEY, G.J. COSMIDES, R.W. ESTABROOK, J.R. FOUTS, G.J. MANNERING), pp. 3–39. New York-London: Academic Press, 1969.Google Scholar
  22. CLAUDE, A., PORTER, K.R., PICKELS, E.G.: Electron microscope study of chicken tumor cells. Cancer Res. 7, 421–430 (1947).Google Scholar
  23. COHEN, B.S., ESTABROOK, R.W.: Microsomal electron transport reactions. II. The use of reduced triphosphopyridine nucleotide and/or reduced diphosphopyridine nucleotide for the oxidative N-demethylation of aminopyrine and other drug substrates. Arch. Biochem. Biophys. 143, 46–53 (1971).PubMedGoogle Scholar
  24. CONNEY, A.H.: Pharmacological implications of microsomal enzyme induction. Pharmacol. Rev. 19, 317–366 (1967).PubMedGoogle Scholar
  25. CONNEY, A.H., DAVISON, C., GASTEL, R., BURNS, J.J.: Adaptive increases in drug metabolizing enzymes induced by phenobarbital and other drugs. J. Pharmacol. Exp. Ther. 130, 1–8 (1960).PubMedGoogle Scholar
  26. CONNEY, A.H., GILMAN, A.G.: Puromycin inhibition of enzyme induction by 3-methylcholanthrene and phenobarbital. J. Biol. Chem. 238, 3682–3685 (1963).PubMedGoogle Scholar
  27. CONNEY, A.H., MILLER, E.C., MILLER, J.A.: Substrate induced synthesis and other properties of benzpyrene hydroxylase in rat liver. J. Biol. Chem. 228, 753–766 (1957).PubMedGoogle Scholar
  28. COON, M.J., NORDBLOM, G.D., WHITE, R.E., HAUGEN, D.A.: Purified liver microsomal cytochrome P450: Catalytic mechanism and characterization of multiple forms. Biochem. Soc. Trans. 3, 813–817 (1975).Google Scholar
  29. COON, M.J., STROBEL, H.W., BOYER, R.F.: On the mechanism of hydroxyla-tion reactions catalyzed by cytochrome P450. Drug Metabolism Disposition 1, 92–97 (1973).Google Scholar
  30. COOPER, D.Y., SCHLEYER, H., ROSENTHAL, O.: Some chemical properties of cytochrome P-450 and its carbon monoxide compound (P-450. CO). Ann. N.Y. Acad. Sci. 174, 205–217 (1970).PubMedGoogle Scholar
  31. CORREIA, M.A., MANNERING, G.J.: Reduced diphosphopyridine nucleotide synergism of the reduced triphosphopyridine nucleotide-dependent mixed-function oxidase system of hepatic microsomes. I. Effects of activation and inhibition of the fatty acyl coenzyme A desaturation system. Mol. Pharmacol. 9, 455–469 (1973).PubMedGoogle Scholar
  32. DALLNER, G.: Molecular organization of the endoplasmic membranes. In: Proc. 4th Int. Cong. Pharmacol., vol. 4, pp. 70–78. Basel-Stuttgart: Schwabe, 1969.Google Scholar
  33. DALLNER, G., SIEKEVITZ, P., PALADE, G.E.: Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J. Cell Biol. 30, 73–96 (1966).PubMedGoogle Scholar
  34. DALY, J.W., JERINA, D.M., WITKOP, B.: Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28, 1129–1149 (1972).PubMedGoogle Scholar
  35. DAVIES, D.S., GIGON, P.L., GILLETTE, J.R.: Species and sex differences in electron transport system in liver microsomes and their relationship to ethyl morphine demethylation. Life Sci. 8, 85–91 (1969).PubMedGoogle Scholar
  36. DE KRUIFF, B., VAN GOLDE, L.M.G., VAN DEENEN, L.L.M.: Utilization of diacylglycerol species by cholinephosphotransferase, ethanolamine-phosphotransferase and diacylglycerol acyltransferase in rat liver microsomes. Biochim. Biophys. Acta 210, 425–435 (1970).Google Scholar
  37. DIEHL, H., SCHADELIN, J., ULLRICH, V.: Studies on the kinetics of cytochrome P-450 reduction in rat liver microsomes. Z. Physiol. Chem. 351, 1359–1371 (1970).Google Scholar
  38. DIGNAM, J.D., STROBEL, H.W.: Preparation of homogeneous NADPH-cytochrome-P450 reductase from rat liver. Biochem. Biophys. Res. Commun. 63, 845–852 (1975).PubMedGoogle Scholar
  39. DUPPEL, W., LEBEAULT, J.M., COON, M.J.: Properties of a yeast cytochrome P450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes and drugs. Europ. J. Biochem. 36, 583–592 (1973).PubMedGoogle Scholar
  40. DUS, K., KATAGIRI, M., YU, C.A., ERBES, D.L., GUNSALUS, I.C.: Chemical characterization of cytochrome P450 cam. Biochem. Biophys. Res. Commun. 40, 1423–1430 (1970).PubMedGoogle Scholar
  41. DUS, K., LITCHFIELD, W.J., MIGUEL, A.G., VAN DER HOEVEN, A., HAUGEN, D.A., DEAN, W.L., COON, M.J.: Structural resemblance of cytochrome P450 isolated from Pseudomonas putida and from rabbit liver microsomes. Biochem. Biophys. Res. Commun. 60, 15–21 (1974).PubMedGoogle Scholar
  42. DUTTON, G.J.: Glucuronide-forming enzymes. In: Handbook of Experimental Pharmacology (Eds. B.B. BRODIE, J.R. GILLETTE, H.S. ACKERMANN), vol. XXVIII, pt.2, pp. 378–400. Berlin: Springer, 1971.Google Scholar
  43. EIGEN, M.: Diffusion control in biochemical reactions. In: Quantum Statistical Mechanics in the Natural Sciences (Eds. B. Kursunoglu, S.L. Mintz, S.M. Widmayer), pp. 37–61. New York: Plenum Press, 1974.Google Scholar
  44. ELETR, S., ZAKIM, D., VESSEY, D.A.: A spin label study on the role of phospholipids in the regulation of membrane-bound microsomal enzymes. J. Mol. Biol. 78, 351–362 (1973).PubMedGoogle Scholar
  45. ELING, T.E., DI AUGUSTINE, R.P.: A role for phospholipids in the binding and metabolism of drugs by hepatic microsomes. Biochem. J. 123, 539–549 (1971).PubMedGoogle Scholar
  46. ERNSTER, L., JONES, L.C.: Nucleoside tri- and diphosphate activities of rat liver microsomes. J. Cell Biol. 15, 563–578 (1962).PubMedGoogle Scholar
  47. ERNSTER, L., ORRENIUS, S.: Substrate-induced synthesis of the hydroxyl-ating enzyme system of liver microsomes. Federation Proc.24, 1190–1199 (1965).Google Scholar
  48. ESTABROOK, R.W., BARON, J., PETERSON, J., ISHIMURA, Y.: Oxygenated cytochrome P450 as an intermediate in hydroxylation reactions. In: Biological Hydroxylation Mechanisms (Eds. G.S. BOYD, R.M.S. SMELLIE), pp. 159–185. London-New York: Academic Press, 1972.Google Scholar
  49. ESTABROOK, R.W., COHEN, B.: Organization of the microsomal electron transport system. In: Microsomes and Drug Oxidation (Eds. J.R. GILLETTE, A.H. CONNEY, G.J. COSMIDES, R.W. ESTABROOK, J.R. FOUTS, G.J. MANNERING), pp. 95–109. New York-London: Academic Press, 1969.Google Scholar
  50. ESTABROOK, R.W., FRANKLIN, M.R., COHEN, B., SHIGAMATZU, A., HILDEBRANDT, A.G.: Influence of hepatic microsomal mixed function oxidation reactions on cellular metabolic control. Metabolism 20, 187–199 (1971).PubMedGoogle Scholar
  51. FOUTS, J.R., ROGERS, L.A.: Morphological changes in the liver accompanying stimulation of microsomal drug metabolizing enzyme activity by phenobarbital, chlordane, benzpyrene or methylcholanthrene in rats. J. Pharmacol. Exp. Ther. 147, 112–119 (1965).PubMedGoogle Scholar
  52. FRANZ, W., KRISCH, K.: Carboxylesterase aus Schweinenierenmikrosomen. I. Isolierung, Eigenschaften und Substratspezifitat. Z. Physiol. Chem. 349, 575–587 (1968a).Google Scholar
  53. FRANZ, W., KRISCH, K.: Acylgruppenubertragung auf aromatische Amine durch Carboxylesterasen. Z. Physiol. Chem. 349, 1413–1422 (1968b).Google Scholar
  54. FROMMER, U., ULLRICH, V., STAUDINGER, H.J.: Hydroxylation of aliphatic compounds by liver microsomes. I. The distribution pattern of isomeric alcohols. Z. Physiol. Chem. 351, 903–912 (1970).Google Scholar
  55. GARFINKEL, D.: Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys. 77, 493–509 (1958).PubMedGoogle Scholar
  56. GARLAND, R.C., CORI, C.F., CHANG, H.F.W.: Relipidation of phospholipid-depleted microsomal particles with high glucose 6-phosphatase activity. Proc. Nat. Acad. Sci. 71, 3805–3809 (1974).PubMedGoogle Scholar
  57. GAUDETTE, L.E., BRODIE, B.B.: Relationship between the lipid solubility of drugs and their oxidation by liver microsomes. Biochem. Pharmacol. 2 89–96 (1959).PubMedGoogle Scholar
  58. GIGON, P.L., GRAM, T.E., GILLETTE, J.R.: Studies on the rate of reduction of hepatic microsomal cytochrome P450 by reduced nicotinamide adenine dinucleotide phosphate: Effect of drug substrates. Mol. Pharmacol. 5, 109–122 (1969).PubMedGoogle Scholar
  59. GILLETTE, J.R.: Effect of various inducers on electron transport system associated with drug metabolism by liver microsomes. Metabolism 20, 215–227 (1971).PubMedGoogle Scholar
  60. GILLETTE, J.R.: Overview of drug-protein binding. Ann. N.Y. Acad. Sci. 226, 6–17 (1973).PubMedGoogle Scholar
  61. GILLETTE, J.R., DAVIS, D.C., SASAME, H.A.: Cytochrome P450 and its role in drug metabolism. Ann. Rev. Pharmacol. 12, 57–84 (1972).PubMedGoogle Scholar
  62. GILLETTE, J.R., KAMM, J.J.: The enzymatic formation of sufoxides: The oxidation of chlorpromazine and 4,4’-diaminophenyl sulfide by guinea pig liver microsomes. J. Pharmacol. Exp. Ther. 130, 262–267 (1960).PubMedGoogle Scholar
  63. GILLETTE, J.R., MITCHELL, J.R., BRODIE, B.B.: Biochemical mechanisms of drug toxicity. Ann. Rev. Pharmacol. 1974, 271–288 (1974).Google Scholar
  64. GLAUMANN, H.: Chemical and enzymatic composition of microsomal sub-fractions from rat liver after treatment with phenobarbital and 3-methylcholanthrene. Chem. Biol. Interactions 2, 369–380 (1970).Google Scholar
  65. GLAUMANN, H., JAKOBSSON, S.: Localization of drug metabolic activities in liver and kidney microsomes. In: Proc. 4th Int. Cong. Pharmacol., vol. 4, pp. 79–86. Basel-Stuttgart: Schwabe, 1969.Google Scholar
  66. GRAM, T.E., SCHROEDER, D.H., DAVIS, D.C., REAGAN, R.L., GUARINO, A.M.: Enzymic and biochemical composition of smooth and rough microsomal membranes from monkey, guinea pig and mouse liver. Biochem. Pharmacol. 20, 1371–1381 (1971).Google Scholar
  67. GREENZAID, P., JENCKS, W.P.: Pig liver esterase. Reactions with alcohols, structure-reactivity correlations and the acyl-enzyme intermediate. Biochemistry 10, 1210–1222 (1971).PubMedGoogle Scholar
  68. GREIM, H.: Synthesesteigerung und Abbauhemmung bei der Vermehrung der mikrosomalen Cytochrome P450 und b5 durch Phenobarbital. Naunyn-Schmiedeberg’s Arch. Pharmak. 266, 261–275 (1970).Google Scholar
  69. GRIFFIN, B.W., PETERSON, J.A.: Camphor binding by Pseudomonas putida cytochrome P450. Kinetics and thermodynamics of the reaction. Biochemistry 11, 4740–4746 (1972).PubMedGoogle Scholar
  70. GUNSALUS, I.C.: Discussion remark of J. BARON, A.G. HILDEBRANDT, J.A. PETERSON, R.W. ESTABROOK: The role of oxygenated cytochrome P-450 and of cytochrome b5 in hepatic microsomal drug oxidations. In: Microsomes and Drug Oxidations (Eds. R.W. ESTABROOK, J.R. GILLETTE, K.C. LEIBMAN), pp. 134–136. Baltimore: Williams & Wilkins Co., 1972.Google Scholar
  71. GUNSALUS, I.C., LIPSCOMB, J.D., MARSHALL, V., FRAUENFELDER, H., GREENBAUM, E., MUNCK, E.: Structure and reaction of oxygenase active centres: Cytochrome P-450 and iron sulphur proteins. In: Biological Hydroxylation Mechanisms (Eds. G.S. BOYD, R.M.S. SMELLIE), pp. 135–157. London: Academic Press, 1972.Google Scholar
  72. HAMMES, G.G., TALLMANN, D.E.: A nuclear magnetic resonance study of the interaction of L-epinephrine with phospholipid vesicles. Biochim. Biophys. Acta 233, 17–25 (1971).PubMedGoogle Scholar
  73. HAWKINS, H.C., FREEDMAN, R.B.: Fluorescence studies of drug and cation interactions with microsomal membranes. FEBS Letters 31, 301–307 (1973).PubMedGoogle Scholar
  74. HAYAISHI, O.: Oxygenases: In: 6th Int. Cong. Biochem. Proc. Plenary Sessions and Program, vol. XXXIII, pp. 31–43. Washington DC 1964.Google Scholar
  75. HILDEBRANDT, A.G.: Discussion remark of: R.W. ESTABROOK, T. MATSUBARA, J.I. MASON, J. WERRINGLOER, J. BARON: Studies on the molecular function of cytochrome P-450 during drug metabolism. Drug Metabolism Disposition 1, 109–110 (1973).Google Scholar
  76. HILDEBRANDT, H., ESTABROOK, R.W.: Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions. Arch. Biochem. Biophys. 143, 66–79 (1971).PubMedGoogle Scholar
  77. HOLLOWAY, P.W., KATZ, J.T.: A requirement of cytochrome b5 in microsomal stearyl coenzyme A desaturation. Biochem. 11, 3689–3695 (1972).Google Scholar
  78. ICHIHARA, K., KUSUNOSE, E., KUSUNOSE, M.: Reconstitution of a fatty acid ω-hydroxylation system by a solubilized kidney microsomal preparation, ferredoxin, and ferredoxin-NADP-reductase. Biochim. Biophys. Acta 202, 560–562 (1970).PubMedGoogle Scholar
  79. ICHIKAWA, Y., YAMANO, T.: Electron spin resonance of microsomal cytochromes. Arch. Biochem. Biophys. 121, 742–749 (1967).PubMedGoogle Scholar
  80. JEFCOATE, C.R.E., GAYLOR, J.L., CALABRESE, R.L.: Ligand interactions with cytochrome P450. I. Binding of primary amines. Biochemistry 8, 3455–3463 (1969).PubMedGoogle Scholar
  81. JUNGE, W., KRISCH, K.: Current problems on the structure and classification of mammalian liver carboxylesterases. Mol. Cell. Biochemistry 1, 41–52 (1973).Google Scholar
  82. KADLUBAR, F.F., ZIEGLER, D.M.: Properties of a NADH-dependent N-hydroxy amine reductase isolated from pig liver microsomes. Arch. Biochem. Biophys. 162, 83–92 (1974).PubMedGoogle Scholar
  83. KASCHNITZ, R., COON, M.J.: Solubilized human liver cytochrome P450: Phospholipid requirement in hydroxylation reactions. In: Abstr. 5th Int. Cong. Pharmacol., p. 120. White Plains, New York: Phiebig, 1972.Google Scholar
  84. KATAGIRI, M., GANGULI, B.N., GUNSALUS, I.C.: A soluble cytochrome P-450 functional in methylene hydroxylation. J. Biol. Chem. 243, 3543–3546 (1968).PubMedGoogle Scholar
  85. KAWALEK, J.C., LU, A.Y.H.: Reconstituted liver microsomal enzyme system that hydroxylates drugs, other foreign compounds, and endogenous substrates. VIII. Different catalytic activities of rabbit and rat cytochromes P-448. Mol. Pharmacol. 11, 201–210 (1975).PubMedGoogle Scholar
  86. KAWASAKI, T., YAMASHINA, I.: Isolation and characterization of glyco-peptides from rough and smooth microsomes of rat liver. J. Biochem. 74, 639–647 (1973).PubMedGoogle Scholar
  87. KHANDWALA, A.S., KASPER, C.B.: Membrane structure: The reactivity of tryptophan, tyrosine and lysine in proteins of the microsomal membrane. Biochim. Biophys. Acta 233, 348–357 (1971).PubMedGoogle Scholar
  88. KLINGENBERG, M.: Pigments of rat liver microsomes. Arch. Biochem. Biophys. 75, 376–386 (1958).PubMedGoogle Scholar
  89. KRISCH, K.: Carboxylic ester hydrolases. In: The Enzymes (Ed. P.D. Boyer), vol. V, pp. 43–69. New York-London: Academic Press, 1971.Google Scholar
  90. KUNERT, M., HEYMANN, E.: The equivalent weight of pig liver carboxyl-esterase and the esterase content of microsomes. FEBS Letters 49, 292–296 (1975).PubMedGoogle Scholar
  91. LAITINEN, M., LANG, M., HÄNNINEN, O.: Changes in the protein-lipid interaction in rat liver microsomes after pretreatment of rat rat with barbiturates and polycyclic hydrocarbons. Int. J. Biochem. 5, 747–751 (1974).Google Scholar
  92. LANDRISCINA, C., GNONI, G.V., QUAGLIARIELLO, E.: Mechanisms of fatty acid synthesis in rat liver microsomes. Biochim. Biophys. Acta 202, 405–414 (1970).PubMedGoogle Scholar
  93. LAYNE, D.S.: New metabolic conjugates of steroids. In: Metabolic Conjugation and Metabolic Hydrolysis (Ed. W.H. FISHMAN), pp. 22–52. New York: Academic Press, 1970.Google Scholar
  94. LEBEAULT, J.M., LODE, E.T., COON, M.J.: Fatty acid and hydrocarbon hydroxylation in yeast: Role of cytochrome P450 in candida tropin calis. Biochem. Biophys. Res. Commun. 42, 413–419 (1971).PubMedGoogle Scholar
  95. LEVIN, W., RYAN, D., WEST, S., LU, A.Y.H.: Preparation of partially purified lipid-depleted cytochrome P-450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase from rat liver microsomes. J. Biol. Chem. 249, 1747–1754 (1974).PubMedGoogle Scholar
  96. LIPSCOMB, J.D., GUNSALUS, I.C.: Structural aspects of the active site of cytochrome P450 cam. Drug Metabolism Disposition 1, 1–5 (1973).Google Scholar
  97. LU, A.Y.H., COON, M.J.: Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem. 243, 1331–1332 (1968).PubMedGoogle Scholar
  98. LU, A.Y.H., JUNK, K.W., COON, M.J.: Resolution of the cytochrome P450-containing ω-hydroxylation system of liver microsomes into three components. J. Biol. Chem. 244, 3714–3721 (1969a).PubMedGoogle Scholar
  99. LU, A.Y.H., STRUBEL, H.W., COON, M.J.: Hydroxylation of benzphetamine and other drugs by a solubilized form of cytochrome P-450 from liver microsomes: Lipid requirement for drug demethylation. Biochem. Biophys. Res. Commun. 36, 545–551 (1969b).PubMedGoogle Scholar
  100. LU, A.Y.H., WEST, S.B., VORE, M., RYAN, D., LEVIN, W.: Role of cytochrome b5 in hydroxylation by a reconstituted cytochrome P450-containing system. J. Biol. Chem. 249, 6701–6709 (1974).PubMedGoogle Scholar
  101. MAGEE, P.N., SCHOENTAL, R.: Carcinogenesis by nitroso compounds. Brit. Med. Bull. 20, 102–106 (1964).PubMedGoogle Scholar
  102. MASTERS, B.S.S., ZIEGLER, D.M.: The distinct nature and function of NADPH-cytochrome c reductase and amine oxidase of porcine liver microsomes. Arch. Biochem. Biophys. 145, 358–364 (1971).PubMedGoogle Scholar
  103. MATHEWS, F.S., ARGOS, P., LEVINE, M.: The structure of cytochrome b5 at 2,0 Å resolution. Cold Spring Harbor Symp. Quant. Biol. 36, 387–395 (1971).Google Scholar
  104. METCALFE, J.C.: The dynamic properties of lipid molecules. In: Functional Linkage in Biomolecular System (Eds. F.O. SCHMITT, D.M. SCHNEIDER, D.M. CROTHERS), pp. 90–101. New York: Raven Press, 1975.Google Scholar
  105. MIETTINEN, T.A., LESKINEN, E.: Glucuronic acid pathway. In: Metabolic Conjugation and Metabolic Hydrolysis (Ed. W.H. FISHMAN), pp. 158–237. New York: Academic Press, 1970.Google Scholar
  106. MILLER, E.C., MILLER, J.A.: Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules. Pharmacol. Rev. 18, 805–838 (1966).PubMedGoogle Scholar
  107. MITCHELL, J.R., JOLLOW, D.J., GILLETTE, J.R., BRODIE, B.B.: Drug metabolism as a cause of drug toxicity. Drug Metabolism Disposition 1, 418–423 (1973).Google Scholar
  108. MOULE, Y.: Biochemical characterization of the components of the endoplasmic reticulum in rat liver cell. In: Structure and Function of the Endoplasmic Reticulum in Animal Cells (Ed. F.C. GRAN), pp. 1–12. London-New York-Oslo: Universitets Forlaget, 1968.Google Scholar
  109. NILSSON, R., PETTERSSON, E., DALLNER, G.: Permeability properties of rat liver endoplasmic reticulum. FEBS Letters 15, 85–88 (1971).PubMedGoogle Scholar
  110. NOVAK, R.F., SWIFT, T.J.: Barbiturate interaction with phosphatidylcholine. Proc. Nat. Acad. Sci. 69, 640–642 (1972).PubMedGoogle Scholar
  111. OESCH, F.: Mammalian epoxide hydrases: Inducible enzymes catalyzing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3, 305–340 (1972).Google Scholar
  112. ORRENIUS, S.: Induction of the drug-hydroxylating enzyme system of liver microsomes. J. Cell Biol. 26, 725–733 (1965).PubMedGoogle Scholar
  113. ORRENIUS, S., DAS, M., GNOSSPELIUS, Y.: Overall biochemical effects of drug induction on liver microsomes. In: Microsomes and Drug Oxidation (Eds. J.R. GILLETTE, A.H. CONNEY, G.J. COSMIDES, R.W. ESTABROOK, J.R. FOUTS, G.J. MANNERING), pp. 251–277. New York-London: Academic Press, 1969.Google Scholar
  114. ORRENIUS, S., ERICSSON, J.L., ERNSTER, L.: Phenobarbital-induced synthesis of the microsomal drug metabolizing enzyme system and its relationship to the proliferation of endoplasmic membranes. A morphological and biochemical study. J. Cell Biol. 25, 627–639 (1965).PubMedGoogle Scholar
  115. ORRENIUS, S., ERNSTER, L.: Phenobarbital-induced synthesis of the oxidative demethylating enzymes of rat liver microsomes. Biochem. Biophys. Res. Commun. 16, 60–65 (1964).PubMedGoogle Scholar
  116. ORRENIUS, S., WILSON, B.J., VON BAHR, C., SCHENKMAN, J.B.: On the significance of drug-induced spectral changes in liver microsomes. In: Biological Hydroxylation Mechanisms (Eds. G.S. BOYD, R.M.S. SMELLIE), pp. 55–77. London-New York: Academic Press, 1972.Google Scholar
  117. OSHINO, N., IMAI, Y., SATO, R.: A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. (Tokyo) 69, 155–162 (1971).Google Scholar
  118. OSHINO, N., OMURA, T.: Immunochemical evidence for the participation of cytochrome b5 in microsomal stearyl-CoA desaturation reaction. Arch. Biochem. Biophys. 157, 395–404 (1973).PubMedGoogle Scholar
  119. PACHE, W., CHAPMAN, D.: Interaction of antibiotics with membranes: Chlorothricin. Biochim. Biophys. Acta 255, 348–357 (1972).PubMedGoogle Scholar
  120. PALADE, G.E., SIEKEVITZ, P.: Liver microsomes. An integrated morphological and biochemical study. J. Biophys. Biochem. Cytol. 2, 171–200 (1956).PubMedGoogle Scholar
  121. PEISACH, J., APPLEBY, C.A., BLUMBERG, W.E.: Electron paramagnetic resonance and temperature dependent spin state studies of ferric cytochrome P450 from rhizobium iaponicum. Arch. Biochem. Biophys. 150, 725–732 (1972).PubMedGoogle Scholar
  122. PESTKA, S.: Inhibitors of ribosome functions. Ann. Rev. Biochem. 40, 697–710 (1971).Google Scholar
  123. PETERS, T., JR., FLEISCHER, B., FLEISCHER, S.: The biosynthesis of rat serum albumin. IV. apparent passage of albumin through the golgi apparatus during secretion. J. Biol. Chem. 246, 240–244 (1971).PubMedGoogle Scholar
  124. PETERSON, J.A.: Camphor binding by Pseudomonas putida cytochrome P450. Arch. Biochem. Biophys. 144, 678–693 (1971).Google Scholar
  125. POULSEN, L.L., HYSLOP, R.M., ZIEGLER, D.M.: S-oxidation of thio-ureylenes catalyzed by a microsomal flavoprotein mixed function oxidase. Biochem. Pharmacol. 23, 3431–3440 (1974).PubMedGoogle Scholar
  126. PUUKKA, R., LAITINEN, M., VAINIO, H., HANNINEN, O.: Hepatic UDP-glucuronosyltransferase: Partial purification after 3-methyl-cholanthrene pretreatment of the rats. Int. J. Biochem. 6, 267–270 (1975).Google Scholar
  127. REID, W.D., KRISHNA, G.: Centrolobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic hydrocarbons. Exp. Mol. Pathol. 18, 80–99 (1973).PubMedGoogle Scholar
  128. REMMER, H.: The induction of hydroxylating enzymes by drugs. In: Biochemical Aspects of Antimetabolites and of Drug Hydroxylation (Ed. D. Shugar), vol. 16, pp. 125–141. London-New York: Academic Press, 1969.Google Scholar
  129. REMMER, H., MERKER, H.J.: Enzyminduktion und Vermehrung von endoplasmatischem Reticulum in der Leberzelle wahrend der Behandlung mit Phenobarbital (Luminal). Klin. Wschr. 41, 276–283 (1963).PubMedGoogle Scholar
  130. REMMER, H., SCHENKMAN, J., ESTABROOK, R.W., SASAME, H., GILLETTE, J., NARASIMHULU, S., COOPER, D.Y., ROSENTHAL, O.: Drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 2, 187–190 (1966).PubMedGoogle Scholar
  131. REMMER, H., SCHENKMAN, J.B., GREIM, H.: Spectral investigations on cytochrome P450. In: Microsomes and Drug Oxidation (Eds. J.R. GILLETTE, A.H. CONNEY, G.J. COSMIDES, R.W. ESTABROOK, J.R. FOOTS, G.J. MANNERING), pp. 371–386. New York: Academic Press, 1969.Google Scholar
  132. REYNOLDS, E.S.: Liver parenchymal cell injury. IV. Pattern of incorporation of carbon and chlorine from carbon tetrachloride into chemical constituents of liver in vivo. J. Pharmacol. Exp. Ther. 155, 117–126 (1967).PubMedGoogle Scholar
  133. RICH, P.R.: Cytochrome P-450 of higher plants: Its relation to other systems and reactivity. Biochem. Soc. Trans. 3, 980–981 (1975).Google Scholar
  134. ROGERS, M.J., STRITTMATTER, P.: The binding of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase to hepatic microsomes. J. Biol. Chem. 249, 5565–5569 (1974).PubMedGoogle Scholar
  135. ROUSER, G., NELSON, G.J., FLEISCHER, S., SIMON, G.: Lipid composition of animal cell membranes, organelles and organs. In: Biological Membranes. Physical Fact and Function (Ed, D. CHAPMAN), vol. I pp. 5–69. London-New York: Academic Press, 1968.Google Scholar
  136. RYAN, D., LU, A.Y.H., WEST, S., LEVIN, W.: Multiple forms of cytochrome P450 in phenobarbital and 3-methylcholanthrene-treated rats. Separation and spectral properties. J. Biol. Chem. 250, 2157–2163 (1975a).PubMedGoogle Scholar
  137. RYAN, D., LU, A.Y.H., KAWALEK, J., WEST, S.B., LEVIN, W.: Highly purified cytochrome P448 and P450 from rat liver microsomes. Biochem. Biophys. Res. Commun. 64, 1134–1141 (1975b).PubMedGoogle Scholar
  138. SABATINI, D.D., TASHIRO, Y., PALADE, G.E.: On the attachment of ribo-somes to microsomal membranes. J. Mol. Biol. 19, 503–524 (1966).PubMedGoogle Scholar
  139. SASAME, H.A., MITCHELL, J.R., THORGEIRSSON, S., GILLETTE, J.R.: Relationship between NADH and NADPH oxidation during drug metabolism. Drug Metabolism Disposition 1, 150–155 (1973).Google Scholar
  140. SATO, R., NISHIBAYASHI, H., ITO, A.: Characterization of two hemo-proteins of liver microsomes. In: Microsomes and Drug Oxidation (Eds. J.R. GILLETTE, A.H. CONNEY, G.J. COSMIDES, R.W. ESTABROOK, J.R. FOUTS, G.J. MANNERING), pp. 111–132. New York: Academic Press, 1969.Google Scholar
  141. SCHENKMAN, J.B.: Studies on the nature of the type I and type II spectral changes in liver microsomes. Biochemistry 9, 2081–2091 (1970).PubMedGoogle Scholar
  142. SCHENKMAN, J.B., CINTI, D.L., ORRENIUS, S., MOLDEUS, P., KASCHNITZ, R.: The nature of reverse type I (modified type II) spectral changes in liver microsomes. Biochemistry 11, 4243–4251 (1972).PubMedGoogle Scholar
  143. SCHENKMAN, J.B., REMMER, H., ESTABROOK, R.W.: Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 3, 113–123 (1967).Google Scholar
  144. SCHENKMAN, J.B., SATO, R.: The relationship between the pH-induced spectral change in ferriprotoheme and the substrate induced spectral change of the hepatic microsomal mixed function oxidase. Mol. Pharmacol. 4, 613–620 (1968).PubMedGoogle Scholar
  145. SCHLEYER, H., COOPER, D.H., ROSENTHAL, O.: The hemeprotein P450 in steroid hydroxylation. Ann. N.Y. Acad. Sci. 222, 102–117 (1973).PubMedGoogle Scholar
  146. SCHULZE, H.U., STAUDINGER, H.J.: Zur Struktur des endoplasmatischen Retikulums der Rattenleberzelle: Korrelation von morphometrisehen und biochemischen Me werten. Hoppe Seyler’s Z. Physiol. Chem. 352, 1675–1680 (1971).PubMedGoogle Scholar
  147. SCHUSTER, I., FLESCHURZ, C., HELM, I.: On the interaction of a lipophilic drug with different sites of rat-liver microsomes. Equilibrium studies with a substituted pleuromutilin. Europ. J. Biochem. 51, 511–519 (1975).PubMedGoogle Scholar
  148. SCHUSTER, I., FLESCHURZ, C., HELM, I.: Kinetics of tiamutinR interaction with cytochrome P450 from rabbit liver in microsomes and drug oxidation (Eds. A.H. CONNEY, R.W. ESTABROOK, A.G. HILDEBRANDT, V. ULLRICH). New York: Pergamon Press, 1977 (in press).Google Scholar
  149. SCHUSTER, I., HELM, I., FLESCHURZ, C.: The effect of charcoal treatment on microsomal cytochrome P450. FEBS Letters (1977, in press).Google Scholar
  150. SEEMAN, P.: The membrane actions of anaesthethics and tranquilizers. Pharmacol. Rev. 24, 583–655 (1972).PubMedGoogle Scholar
  151. SHANK, R.C.: Toxicology of N-nitroso compounds. Toxicol. Appl. Pharmacol. 31, 361–368 (1975).PubMedGoogle Scholar
  152. SHARROCK, M., MüNCK, E., DEBRUNNER, P.G., MARSHALL, V., LIPSCOMB, J.D., GUNSALUS, I.C.: Mössbauer studies of cytochrome P450 cam. Biochemistry 12, 258–265 (1973).PubMedGoogle Scholar
  153. SHIRES, T.K., MCLAUGHLIN, C.M., PITOT, M.C.: The selectivity and stoichiometry of membrane binding sites for polyribosomes, ribosomes and ribosomal subunits in vitro. Biochem. J. 146, 513–526 (1975).PubMedGoogle Scholar
  154. SIEBERT, G.: Biochemie der Zellstrukturen. In: Handbuch der allgemeinen Pathologie (Eds. H.W. ALTMANN, F. BÜCHNER, H. COTTIER, G. HOLLE, E. LETTERER, W. MASSHOFF, H. MEESEN, F. ROULET, G. SEIFERT, G. SIEBERT, A. STUDER), vol. 2, pt. 5, pp. 140–153. Berlin: Springer, 1968.Google Scholar
  155. SPATZ, L., STRITTMATTER, P.: A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc. Nat. Acad. Sci. 68, 1042–1046 (1971).PubMedGoogle Scholar
  156. SPATZ, L., STRITTMATTER, P.: A form of reduced nicotinamide adenine dinucleotide-cytochrome b5 reductase containing both the catalytic site and an additional hydrophobic membrane=binding segment. J. Biol. Chem. 248, 793–799 (1973).PubMedGoogle Scholar
  157. STERN, J.O., PEISACH, J. BLUMBERG, W.E., LU, A.Y.H., LEVIN, W.: A low temperature EPR study of partially purified soluble ferric cytochromes P450 and P448 from rat liver microsomes. Arch. Biochem. Biophys. 156, 404–413 (1973).PubMedGoogle Scholar
  158. STIER, A., SACKMANN, E.: Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim. Biophys. Acta 311, 400–408 (1973).PubMedGoogle Scholar
  159. STOOPS, J.K., HORGAN, D.J., RUNNEGAR, M.T.C., DE JERSEY, J., WEBB, E.C., ZERNER, B.: Carboxylesterases (EC 3.1.1.). Kinetic studies on carboxylesterases. Biochemistry 8, 2026–2033 (1969).PubMedGoogle Scholar
  160. STRITTMATTER, P., VELICK, S.F.: The purification and properties of microsomal cytochrome reductase. J. Biol. Chem. 228, 785–799 (1957).PubMedGoogle Scholar
  161. STRUBEL, H.W., LU, A.Y.H., HEIDEMA, J., COON, M.J.: Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P450 and in fatty acid, hydrocarbon and drug hydroxylation. J. Biol. Chem. 245, 4851–4854 (1970).Google Scholar
  162. SVENSSON, H., DALLNER, G., ERNSTER, L.: Investigation of specificity in membrane breakage occurring during sonication of rough microsomal membranes. Biochim. Biophys. Acta 274, 447–461 (1972).PubMedGoogle Scholar
  163. TRÄUBLE, H., EIBL, H.J.: Cooperative structural changes in lipid bi-layers. In: Functional Linkage in Biomolecular Systems (Eds. F.O. Schmitt, D.M. Schneider, D.M. Crothers), pp. 59–90. New York: Raven Press, 1975.Google Scholar
  164. TSAI, R.L., YU, C.A., GUNSALUS, I.C., PEISACH, J., BLUMBERG, W., ORME-JOHNSON, W.H., BEINERT, H.: Spin state changes in cytochrome P-450 cam. on binding of specific substrates. Proc. Nat. Acad. Sci. 66, 1157–1163 (1970).PubMedGoogle Scholar
  165. TYSON, C.A., LIPSCOMB, J.D., GUNSALUS, I.C.: The role of putidaredoxin and P450 cam. in methylene hydroxylation. J. Biol. Chem. 247, 5777–5784 (1972).PubMedGoogle Scholar
  166. UEHLEKE, H.: Toxicological aspects of the N-hydroxylation of aromatic amines. Naunyn Schmiedeberg’s Arch. Exp. Path. Pharmak. 263, 106–120 (1969).Google Scholar
  167. UEHLEKE, H.: N-hydroxylation. Xenobiotica 1, 327–338 (1971).PubMedGoogle Scholar
  168. ULLRICH, V.: On the hydroxylation of cyclohexane in rat liver microsomes. Z. Physiol. Chem. 350, 357–365 (1969).Google Scholar
  169. VAN DER HOEVEN, T.A., COON, M.J.: Preparation and properties of partially purified cytochrome P450 and reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase from rat liver microsomes. J. Biol. Chem. 249, 6302–6310 (1974).PubMedGoogle Scholar
  170. VAZQUEZ, D., BARBACID, M., FERNANDEZ-MUñOZ, R.: Antibiotic action on the ribosomal peptidyltransferase center. Topics Infectious Diseases 1, 193–216 (1975).Google Scholar
  171. WATERMAN, M.R., ULLRICH, V., ESTABROOK, R.W.: Effect of substrate on the spin state of cytochrome P450 in hepatic microsomes. Arch. Biochem. Biophys. 155, 355–360 (1973).PubMedGoogle Scholar
  172. WEISBURGER, J.H., WEISBURGER, E.K.: Biochemical formation and pharmacological, toxicological and pathological properties of hydroxyl-amines and hydroxamic acids. Pharmacol. Rev. 25, 1–66 (1973).PubMedGoogle Scholar
  173. WICKRAMASINGHE, R.H.: Biological aspects of cytochrome P450 and associated hydroxylation reactions. Enzyme 19, 348–376 (1975).PubMedGoogle Scholar
  174. WILLIAMS, R.T.: The biogenesis of conjugation and detoxication products. In: Biogenesis of Natural Compounds (Ed. P. BERNFELD), 2nd ed., pp. 589–639. New York: Pergamon Press, 1967.Google Scholar
  175. YAMAMOTO, S., BLOCH, K.: Enzymes catalyzing the transformation of squalene to lanosterol. Proc. Biochem. Soc. Biochem. J. 113, 19–20P (1969).Google Scholar
  176. YANG, C.S.: The association between cytochrome P450 and NADPH cytochrome P450 reductase in microsomal membrane. FEBS Letters 54, 61–64 (1975).PubMedGoogle Scholar
  177. YU, C.A., GUNSALUS, I.C: Cytochrome P450 cam. II. Inter conversion with P420. J. Biol. Chem. 249, 102–106 (1974).PubMedGoogle Scholar
  178. YU, C.A., GUNSALUS, I.C., KATAGIRI, M., SUHARA, K., TAKEMORI, S.: Cytochrome P450 cam. I. Crystallization and properties. J. Biol. Chem. 249, 94–101 (1974).PubMedGoogle Scholar
  179. ZAKIM, D., GOLDENBERG, J., VESSEY, D.A.: Effects of metals on the properties of hepatic microsomal uridine diphosphate glucuronyl-transferase. Biochemistry 12, 4068–4074 (1973a).PubMedGoogle Scholar
  180. ZAKIM, D., GOLDENBERG, J., VESSEY, D.A.: Influence of membrane lipids on the regulatory properties of UDP-glucuronyl transferase. Europ. J. Biochem. 38, 59–63 (1973b).PubMedGoogle Scholar
  181. ZIEGLER, D.M., MCKEE, E.M., POULSEN, L.L.: Microsomal flavoprotein-catalyzed N-oxidation of arylamides. Drug Metabolism Disposition 1, 314–321 (1973).Google Scholar
  182. ZIEGLER, D.M., MITCHELL, C.H.: Microsomal oxidase. IV. properties of a mixed function amine oxidase isolated from pig liver microsomes. Arch. Biochem. Biophys. 150, 116–125 (1972).PubMedGoogle Scholar
  183. ZIEGLER, D.M., PETTIT, F.H.: Microsomal oxidases. I. The isolation and dialkylarylamine oxygenase activity of pork liver microsomes. Biochemistry 5, 2932–2938 (1966).PubMedGoogle Scholar
  184. ZIEGLER, D.M., POULSEN, L.L., MCKEE, E.M.: Interaction of primary amines with a mixed function amine oxidase isolated from pig liver microsomes. Xenobiotica 1, 523–531 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • Ingeborg Schuster

There are no affiliations available

Personalised recommendations