The Role of Periplasmic Proteins and Outer Membrane Receptors in the Process of Active Transport in E. coli

Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Two types of proteins are discussed in their role of facilitating the transport of maltose and sn-glycerol-3-phosphate in Escherichia coli. The first protein is the receptor for phage λ, known to be an outer membrane protein. By facilitating the diffusion of maltose and the higher maltodextrins through the outer membrane the effect of the X receptor is to decrease the Km of the transport system without influencing the Vmax of substrate flux.


Outer Membrane Energy Coupling Periplasmic Protein Shock Fluid Maltose Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, E.M., Kaback, H.R.: Mechanism of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and β-galactoside transport in Escherichia coli membrane vesicles. J. Biol. Chem. 246, 5518–5522 (1971)PubMedGoogle Scholar
  2. Berger, E.A., Heppel, L. A.: Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acids permease of Escherichia coli. J. Biol. Chem. 249, 7747–7755 (1974)PubMedGoogle Scholar
  3. Boos, W.: Pro and contra transport carriers; the role of the galactose-binding protein in the ß-methylgalactoside transport system of Escherichia coli. Current Topics Membranes Transport 5, 51–136 (1974a)Google Scholar
  4. Boos, W.: Bacterial transport. Ann. Rev. Biochem. 43, 123–146 (1974b)PubMedCrossRefGoogle Scholar
  5. Boos, W., Gordon, A.S.: Transport properties of the galactose-binding protein of Escherichia coli. Occurrence of two conformational states. J. Biol. Chem. 246, 621–628 (1971)PubMedGoogle Scholar
  6. Cozzarelli, N.R., Freedberg, W.B., Lin, E.C.C.: Genetic control of the L-α-glycerolphosphate system in E. coli. J. Molec. Biol. 31, 371–387 (1968)Google Scholar
  7. DiMasi, D.R., White, J.C., Schnaitman, C.A., Bradbeer, C.: Transport of vitamin B12 in Escherichia coli: Common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 (1973)Google Scholar
  8. Ferenci, T.: this volumeGoogle Scholar
  9. Freedberg, W.B., Lin, E.C.C.: Three kinds of controls affecting the expression of the glp regulon in Escherichia coli. J. Bacteriol. 115, 816–823 (1973)PubMedGoogle Scholar
  10. Hantke, K., Braun, V.: Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett. 49, 301–305 (1975)PubMedCrossRefGoogle Scholar
  11. Hayashi, S., Koch, J.P., Lin, E.C.C.: Active transport of L-α-glycerophosphate in Escherichia coli. J. Biol. Chem. 239, 3098–3105 (1964)PubMedGoogle Scholar
  12. Hazelbauer, G.L.: Maltose chemoreceptor of Escherichia coli. J. Bacterio. 122, 206–214 (1975)Google Scholar
  13. Hendlin, D., Stapley, E.O., Jackson, M., Wallick, H., Miller, A.K., Wolf, F. J., Miller, T.W., Chaiet, L., Kahan, F.M., Foltz, E.L., Woodruff, H.B.: Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 166, 122–123 (1969)PubMedCrossRefGoogle Scholar
  14. Heppel, L.A., Rosen, B.P., Friedberg, J., Berger, E.A., Weiner, J.H.: Studies on binding proteins, periplasmic enzymes and active transport in Escherichia coli. In: The Molecular Basis of Biological Transport. Woessner, J.F., Jr., Huijing, F. (eds.). New York-London: Academic Press, 1972, pp. 133–150Google Scholar
  15. Hofnung, M.: Divergent operons and the genetic structure of the maltose B region in Escherichia coli K-12. Genetics 76, 169–184 (1974)PubMedGoogle Scholar
  16. Inouye, M.: A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Natl. Acad. Sci. U.S. 71, 2396–2400 (1974)CrossRefGoogle Scholar
  17. Johnson, W.C., Silhavy, T.J., Boos, W.: Two-dimensional Polyacrylamide gel electrophoresis of envelope proteins of Escherichia coli. Appl. Microbiol. 29, 405–413 (1975)PubMedGoogle Scholar
  18. Kaback, H.R.: Transport across isolated bacterial cytoplasmic membrane. Biochim. Biophys. Acta 265, 367–416 (1972)PubMedGoogle Scholar
  19. Kellerman, O., Szmelcman, S.: Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose-binding protein. Europ. J. Biochem. 47, 139–149 (1974)CrossRefGoogle Scholar
  20. Kennedy, E.P.: The lactose permease system of Escherichia coli. In: The Lactose Operon. Beckwith, J.R., Zipser, D. (eds.). New York: Cold Spring Harbor Laboratory, 1970, pp. 49–92Google Scholar
  21. Kistler, W.S., Lin, E.C.C.: Anaerobic L-α-glycerophosphate dehydrogenase of Escherichia coli: Its genetic locus and its physiological role. J. Bacterid. 108, 1224–1234 (1971)Google Scholar
  22. Lieberman, M.A., Hong, J.-S.: Energization of osmotic shock-sensitive transport system in Escherichia coli requires more than ATP. Arch. Biochem. Biophys. 172, 312–315 (1976)PubMedCrossRefGoogle Scholar
  23. Lin, E.C.C: The genetics of bacterial transport systems. Ann. Rev. Genetics 4, 225–262 (1970)CrossRefGoogle Scholar
  24. Lin, E.C.C, Koch, J.P., Chused, T.M., Jorgensen, S.E.: Utilization of L-α-glycerophosphate by Escherichia coli without hydrolysis. Proc. Natl. Acad. Sci. U.S. 48, 2145–2150 (1962)CrossRefGoogle Scholar
  25. Lo, T.C.Y., Sanwal, B.D.: Isolation of the soluble substrate recognition component of the dicarboxylate transport system of Escherichia coli. J. Biol. Chem. 250, 1600–1602 (1975)PubMedGoogle Scholar
  26. Nakae, T.: Outer membrane of Salmonella typhimurium: Reconstitution of sucrose-permeable membrane vesicles. Biochem. Biophys. Res. Commun. 64, 1224–1230 (1975)PubMedCrossRefGoogle Scholar
  27. Nakae, T., Nikaido, H.: Outer membrane as a diffusion barrier in Salmonella typhimurium. J. Biol. Chem. 250, 7359–7365 (1975)PubMedGoogle Scholar
  28. Neu, H.C., Heppel, L.A.: The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 240, 3685–3692 (1965)PubMedGoogle Scholar
  29. Ordal, G.W., Adler, J.: Isolation and complementation of mutants in galactose taxis and transport. J. Bacteriol. 117, 509–516 (1974)PubMedGoogle Scholar
  30. Parnes, J.R., Boos, W.: Energy coupling of the β-methylgalactoside transport system of Escherichia coli. J. Biol. Chem. 248, 4436–4445 (1975)Google Scholar
  31. Paulus, H.: A rapid and sensitive method for measuring the binding of radioactive ligands to protein. Anal. Biochem. 32, 91–100 (1970)CrossRefGoogle Scholar
  32. Plate, C.A., Suit, J.L., Jetten, A.M., Luria, S.E.: Effects of Colicin K on a mutant of Escherichia coli deficient in Ca2+, Mg2+-activated adenosine triphosphatase. J. Biol. Chem. 249, 6138–6143 (1974)PubMedGoogle Scholar
  33. Randall-Hazelbauer, L., Schwartz, M.: Isolation of the bacteriophage lambda receptor from Escherichia coli. J. Bacteriol. 116, 1436–1446 (1973)PubMedGoogle Scholar
  34. Richey, D.P., Lin, E.C.C.: Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J. Bacteriol. 112, 784–790 (1972)PubMedGoogle Scholar
  35. Robbins, A.R., Rotman, B.: Evidence for binding protein-independent substrate translocation by the methylgalactoside transport system of Escherichia coli K12. Proc. Natl. Acad. Sci. U.S. 72, 423–427 (1975)CrossRefGoogle Scholar
  36. Silhavy, T.J., Boos, W., Kalckar, H.M.: The role of the Escherichia coli galactose-binding protein in galactose transport and Chemotaxis. In: 25th Mosbacher Coll. Biochem. Sensory Functions. L. Jaenicke (ed.). Berlin-Heidelberg-New York: Springer Verlag, 1974Google Scholar
  37. Silhavy, T.J., Hartig-Beecken, I., Boos, W.: A periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J. Bacterio. 126, 951–958 (1976)Google Scholar
  38. Szmelcman, S., Hofnung, M.: Maltose transport in Escherichia coli K12. Involvement of the bacteriophage lambda receptor. J. Bacteriol. 124, 112–118 (1975)PubMedGoogle Scholar
  39. Szmelcman, S., Schwartz, M., Silhavy, T.J., Boos, W.: Maltose transport in Escherichia coli K12. Europ. J. Biochem. 65, 13–19 (1976)Google Scholar
  40. Udenfriend, S.: Fluorescence Assay in biology and medicine. New York: Academic Press, 1962Google Scholar
  41. Venkateswasan, P.S., Wu, H.C.P.: Isolation and characterization of a phosphonomycin resistant mutant of Escherichia coli K12. J. Bacterid. 110, 935–944 (1972)Google Scholar
  42. Wang, C.C., Newton, A.: An additional step in the transport of iron defined by the trnB of Escherichia coli. J. Biol. Chem. 246, 2147–2151 (1971)PubMedGoogle Scholar
  43. Wiesmeyer, H., Cohn, M.: The characterization of the pathway of maltose utilization by Escherichia coli. III. A description of the concentrating mechanism. Biochim. Biophys. Acta 39, 440–447 (1960)PubMedCrossRefGoogle Scholar
  44. Willis, R.C., Furlong, C.E.: Purification and properties of a ribose-binding protein. J. Biol. Chem. 249, 6926–6929 (1974)PubMedGoogle Scholar
  45. Wilson, D.B.: Properties of the entry and exit reactions of the β-methylgalactoside transport system of Escherichia coli. J. Bacteriol. 126, 1156–1165 (1976)PubMedGoogle Scholar
  46. Winkler, H.H., Wilson, T.H.: The role of energy coupling in the transport of β-galactosides by Escherichia coli. J. Biol. Chem. 241, 2200–2211 (1966)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • W. Boos

There are no affiliations available

Personalised recommendations