Skip to main content

Adaptive Radiation of the Pineal System

  • Chapter
The Visual System in Vertebrates

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 5))

Abstract

In lower vertebrates an intracranial structure exists which contains typical photoreceptors and which responds to light falling on the surface of the head by an inhibition of neural activity. In higher vertebrates this structure lacks photoreceptors but its biochemical activity is influenced by light falling on the lateral eyes. This remarkable structure is the Pineal, and it is found in almost all vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adler, K.: Extraoptic phase shifting of circadian locomotor rhythm in salamanders. Science 164, 1290–1292 (1969).

    Google Scholar 

  • Adler, K.: The role of extraoptic photoreceptors in amphibian rhythms and orientation: A review. J. Herpetol. 4, 99–112 (1970).

    Google Scholar 

  • Adler, K.: Pineal end organ: role in extraoptic entrainment of circadian locomotor rhythm in frogs. In Menaker, M. (ed.): Biochronometry. pp. 342–350. Washington, D. C.: Nation. Acad. Sci. (1971).

    Google Scholar 

  • Adler, K., Taylor, D. H.: Extraocular perception of polarized light by orienting salamanders. J. comp. Physiol. 87, 203–212 (1973).

    Google Scholar 

  • Alexander, B., Dowd, A. J., Wolfson, A.: Pineal hydroxyindole-O-methyltransferase (HIOMT) activity in female Japanese quail (Coturnix coturnix japonica). Neuroendocrinology 6, 236–246 (1970).

    Google Scholar 

  • Anton-Tay, F.: Pineal-brain relationships. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland, pp. 213–227. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Axelrod, J.: Neural control of indoleamine metabolism in the pineal. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland. pp. 35–52. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Axelrod, J.: The pineal gland: A neurochemical transducer. Science 184, 1341–1348 (1974).

    Google Scholar 

  • Axelrod, J., Lauber,J.: Hydroxyindole-O-methyl trans ferase in several avian species. Biochem. Pharmacol. 17, 828–830 (1968).

    Google Scholar 

  • Axelrod, J., McLean, P. D., Albers, R. W., Weissbach, H.: Regional distribution of methyltransferase enzymes in the nervous system and glandular tissues. In: Kety, S. S., Elkes. J. (eds.): Regional neurochemistry. pp. 307–311. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Axelrod, J., Vesell, E. S.: Heterogeneity of N-and O-methyltransferases. Mol. Pharmacol. 6, 78–84 (1970).

    Google Scholar 

  • Axelrod, J., Wurtman, R. J., Snyder, S. H.: Control of hydroxyindole O-methyltransferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240, 949–955 (1965).

    Google Scholar 

  • Axelrod, J., Wurtman, R. J., Winget, C. M.: Melatonin synthesis in the hen pineal gland and its control by light. Nature (Lond). 201, 1134 (1964).

    Google Scholar 

  • Bagnara, J.T.: Pineal regulation of the body lightening reaction in amphibian larvae. Science 132, 1481–1483 (1960).

    Google Scholar 

  • Bagnara, J. T.: Independent actions of pineal and hypophysis in the regulation of chromatophores of anuran larvae. Gen. comp. Endocrin. 4, 299–306 (1964).

    Google Scholar 

  • Bagnara, J. T., Hadley, M. E.: Endocrinology of the amphibian pineal. Am. Zool. 10, 201–216 (1970).

    Google Scholar 

  • Baker, P. C., Quay, W. B., Axelrod, J.: Development of hydroxyindole-O-methyltransferase activity in the eye and brain of amphibian, Xenopus laevis. Life Sci. 4, 1981–1987 (1965).

    Google Scholar 

  • Bakker, R. T.: Dinosaur renaissance. Sci. Am. 232, 58–78 (1975).

    Google Scholar 

  • Barfuss, D. W., Ellis, L. C.: Seasonal cycles in melatonin synthesis by the pineal gland as related to testicular function in the house sparrow (Passer domesticus). Gen. comp. Endocrin. 17, 183–193 (1971).

    Google Scholar 

  • Baschieri, L., DeLuca, F., Cramarossa, L., DeMartino, C., Oliverio, A., Negri, M.: Modifications of thyroid activity by melatonin. Experientia 19, 15–17 (1963).

    Google Scholar 

  • Baumann, Ch.: Lichtabhangige langsame Potentiale aus dem Stirnorgan des Frosches. Pflug. Arch. ges. Physiol. 276, 56–65 (1962).

    Google Scholar 

  • Benoit, J.: The role of the eye and the hypothalamus in the photostimulation of the gonads in the duck. Ann. N.Y. Acad. Sci. 117, 204–216 (1964).

    Google Scholar 

  • Binkley, S., Kluth, E., Menaker, M.: Pineal function in sparrows: circadian rhythms and body temperature. Science 174, 311–314 (1971).

    Google Scholar 

  • Binkley, S., Kluth, E., Menaker, M.: Pineal locomotor activity: level and arrythmia in sparrows. J. comp. Physiol. 77,163-169 (1972).

    Google Scholar 

  • Binkley, S., MacBride, S. E., Klein, D. C., Ralph, C. L.: Pineal enzymes: Regulation of avian melatonin synthesis. Science 181, 273-275 (1973).

    Google Scholar 

  • Bogenschutz, H.: Extraokulare Steuerung des Farbwechsels bei Kaulquappen. Experientia 21, 451 (1965).

    Google Scholar 

  • Breder, C. M., Rasquin, P.: A preliminary report on the role of the pineal organ in the control of pigment cells and light reactions in recent teleost fishes. Science 111, 10-12 (1950).

    Google Scholar 

  • Brown, P. K.: Rhodopsin rotates in the visual receptor membrane. Nature New Biol. 236, 35-38 (1972).

    Google Scholar 

  • Brownstein, M. J., Heller, A.: Hydroxyindole-O-methyltransferase activity: Effect of sympathetic nerve stimulation. Science 162, 367-369 (1968).

    Google Scholar 

  • Brownstein, M., Saavedra, J. M., Axelrod, J.: Control of pineal N-acetylserotonin by a beta adrenergic receptor. Mol. Pharmacol. 9, 605-611 (1973).

    Google Scholar 

  • Cardinali, D. P., Larin, F., Wurtman, R. J.: Action spectra for effects of light on hydroxyindole-Omethyltransferase in rat pineal, retina and Harderian gland. Endocrinology 91, 877-886 (1972). Cardinali, D. P., Nagle, C. A., Denari, J. H., DePerez Bedes, G., Rosner, J. M.: Lack of effects of light on the rat pineal in organ culture. Gen. comp. Endocrin. 21, 573-577 (1973).

    Google Scholar 

  • Charlton, H. M.: The uptake of 14C 5-hydroxytryptamine creatinine sulfate and 14C methylmethionine by the epiphysis of Xenopus laevis Daudin. Comp. Biochem. Physiol. 17, 777-785 (1966). Chase, P. A., Seiden, L. S., Moore, R. Y.: Behavioral and neuroendocrine responses to light mediated by separate visual pathways in the rat. Physiol. Behavior 4, 949-952 (1969).

    Google Scholar 

  • Clabough,J. W.: Ultrastructural study of pineal cytogenesis in fetal rats and hamsters. Anat. Rec. 166, 291 (1970).

    Google Scholar 

  • Clausen, H. J., Poris, E. G.: The effect of light upon sexual activity in the lizard, Anolis carolinensis, with especial reference to the pineal body. Anat. Rec. 69, 39-53 (1937).

    Google Scholar 

  • Collin,J.-P.: Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In Wolstenholme,G. E. W., Knight, J. (eds.): The pineal gland, pp. 79-125. Edinburgh and London Churchill L,ivingstone 1971.

    Google Scholar 

  • Collin,J.-P., Kappers, J. A.: Synapses of the ribbon type in the pineal organ of Lacerta vivipara (Reptiles, Lacertilians). Experientia 27, 1456-1457 (1971).

    Google Scholar 

  • Collu, R., Fraschini, F., Martini, L,.: Blockade of ovulation by melatonin. Experientia 27, 844-845 (1971).

    Google Scholar 

  • Deguchi, T.: Role of the beta adrenergic receptor in the elevation of adenosine cyclic 3', 5'-monophosphate and induction of serotonin N-acetyltransferase in rat pineal glands. Mol. Pharmacol. 9, 184-190 (1973).

    Google Scholar 

  • Deguchi,T., Axelrod,J.: Control of circadian change of serotonin N-acetyltransferase activity in the pineal organ by the f3-adrenergic receptor. Proc. Nat. Acad. Sci. USA 69, 2547-2550 (1972). Denton, E. J.: The contributions of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc. B, 150, 78-94 (1959).

    Google Scholar 

  • Dodt, E.: Aktivierung markhaltiger and markloser Fasern im Pinealnerven bei Belichtung des Stirnorgans. Prog. Brain Res. 5,201-205 (1964).

    Google Scholar 

  • Dodt, E.: Differences in data processing upon light stimulation between retina and pineal organ. Nova Acta Leopoldina N.F. 37,137-144 (1971).

    Google Scholar 

  • Dodt, E.: The parietal eye (Pineal and parietal organs) of lower vertebrates. In: Jung, R. (ed.): Handbook of Sensory Physiology. vol. V11/313. pp. 113-140. Berlin and New York: Springer-Verlag 1973.

    Google Scholar 

  • Dodt, E., Heerd, E.: Mode of action of pineal nerve fibers in frogs. J. Neurophysiol. 25, 405—429 (1962).

    Google Scholar 

  • Dodt, E., Jacobson, M.: Photosensitivity of a localized region of the frog diencephalon. J. Neurophysiol. 26,752-758 (1963).

    Google Scholar 

  • Dodt, E., Morita, Y.: Purkinje-Verschiebung, absolute Schwelle and adaptives Verhalten einzelner Elemente der intrakranialen Anuren-Epiphyse. Vision Res. 4,413—421 (1964).

    Google Scholar 

  • Dodt, E., Scherer, E.: Photic responses from the parietal eye of the lizard, Lacerta sicula campestris (De Betta). Vision Res. 8, 61-72 (1968).

    Google Scholar 

  • Dodt, E., Ueck, M., Oksche, A.: Relations of structure and function: The pineal organ of lower vertebrates. From: Proc. J. E. Purkyne Centenary Symposium. Prague (1971).

    Google Scholar 

  • Donley, C. S.: Color opponent slow potential interactions in the frontal organ of the frog: Rana pipiens. Vision Res. 15, 245-251(1975).

    Google Scholar 

  • Eakin, R. M.: The third eye. Univ. California Press: Berkeley, Calif. 1973.

    Google Scholar 

  • Eakin, R. M., Westfall, J. A.: Fine structure of the retina in the reptilian third eye. J. Biophys. Biochem. Cytol. 6, 133-134 (1959).

    Google Scholar 

  • Eakin, R. M., Westfall, J. A.: Further observations on the fine structure of the parietal eye of lizards. J. Biophys. Biochem. Cytol. 8,483—499 (1960).

    Google Scholar 

  • Eddy, J. M. P., Strahan, R.: The role of the pineal complex in the pigmentary effector system of the lampreys, Mordacia mordax (Richardson) and Geotria australis Gray. Gen. comp. Endocrin. 11, 528-534 (1968).

    Google Scholar 

  • Edinger, T.: The size of parietal foramen and organ in reptiles. Bull. Museum comp. Zool., Harvard Coll. 114, 3-34 (1955).

    Google Scholar 

  • Edinger, T., Paired pineal organs. In: Kappers, J. A. (ed.): Progress in Neurobiology. Amsterdam Elsevier 1956.

    Google Scholar 

  • Emlen, S. T.: Bird migration: Influence of physiological state upon celestial orientation. Science 165, 716-718 (1969).

    Google Scholar 

  • Fain, W. B., Hadley, M. E.: In vitro response of melanophores of Fundulus heteroclitus to melatonin, adrenalin and noradrenalin. Am. Zool. 6, 596 (1966).

    Google Scholar 

  • Fenwick, J. C.: Demonstration and effect of melatonin in fish. Gen. comp. Endocrin. 14, 86-97 (1970 a).

    Google Scholar 

  • Fenwick,J.C.: The pineal organ: photoperiod and reproductive cycles in the goldfish, Carassius auratus, L. J. Endocrin. 46, 101-111(1970 b).

    Google Scholar 

  • Ferguson, D. E.: The sensory basis of orientation in amphibians. Ann. N.Y. Acad. Sci. 188, 30-36 (1971).

    Google Scholar 

  • Fiske, V. M., Bryant, K., Putnam, J.: Effect of light on the weight of the pineal in the rat. Endocrinology 66,489-491 (1960).

    Google Scholar 

  • Foa, C.: Hypertrophie des testicules et de la crete apres 1'extirpation de la gland pineale chez le coq. Arch. Ital. Biol. 57, 233-252 (1912).

    Google Scholar 

  • Forward, R. B., Jr., Waterman, T. H.: Evidence for e-vector and light intensity pattern discrimination by the teleost Dermogenys. J. comp. Physiol. 87, 189-202 (1973).

    Google Scholar 

  • Franschini, F., Collu, R., Martini, L.: Mechanisms of inhibitory action of pineal principles on gonadotropin secretion. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland, pp. 259-278. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Fraschini, F., Mess, B., Piva, F., Martini, L.: Brain receptors sensitive to indole compounds: Function in control of luteinizing hormone secretion. Science 159, 1104-1105 (1968).

    Google Scholar 

  • Gaston, S., Menaker, M.: Pineal function: The biological clock in the sparrow? Science 160, 11251127 (1968).

    Google Scholar 

  • Gates, D. M.: Spectral distribution of solar radiation at the earth’s surface. Science 151, 523-529 (1966).

    Google Scholar 

  • Glaser, R.: Increase locomotor activity following shielding of the parietal eye in night lizards. Science 128,1577-1578 (1958).

    Google Scholar 

  • Goodyear, C. P., Ferguson, D. E.: Sun-compass orientation in the mosquitofish, Gambusia affinis. Anim. Behav.17, 636-640 (1969).

    Google Scholar 

  • Gruber, S. H., Hamasaki, D. I., Davis, E. B.: Window to the epiphysis in sharks. Copeia 1975, 379-381 (1975).

    Google Scholar 

  • Gundy, G. C.: The evolutionary history and comparative morphology of the pineal complex in Lacertilia. Doct. Diss. Univ. Pittsburgh, Pa. (1974).

    Google Scholar 

  • Gwinner, E. G., Turek, F. W., Smith, S. D.: Extraocular light perception in photoperiodic responses of the white-crowned sparrow (Zonotrichia leucophrys) and of the golden-crowned sparrow (Z. atricapilla). Z. vergl. Physiol. 75, 323-331 (1971).

    Google Scholar 

  • Hafeez, M. A.: Effect of melatonin on body coloration and spontaneous swimming activity in rainbow trout, Salmo gairdneri. Comp. Biochem. Physiol. 36,639—656 (1970).

    Google Scholar 

  • Hafeez, M. A., Quay, W. B.: Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen. comp. Endocrin. 13, 211217(1969).

    Google Scholar 

  • Hafeez, M. A., Quay, W. B.: The role of the pineal organ in the control of phototaxis and body coloration in rainbow trout (Salmo gairdneri Richardson). Z. vergl. Physiol. 68, 402-416 (1970).

    Google Scholar 

  • Hamasaki, D. I.: Properties of the parietal eye of the green iguana. Vision Res. 8, 591–599 (1968 a).

    Google Scholar 

  • Hamasaki, D. I.: Spectral sensitivity of the lateral eye of the green iguana. Vision Res. 8, 1305–1314 (1968 b).

    Google Scholar 

  • Hamasaki, D. I.: Interaction of excitation and inhibition in the stirnorgan of the frog. Vision Res. 10, 307–316 (1970).

    Google Scholar 

  • Hamasaki, D. I., Dodt, E.: Light sensitivity of the lizard’s epiphysis cerebri. Pflüg. Arch. ges. Physiol. 313, 19–29 (1969).

    Google Scholar 

  • Hamasaki, D. I., Streck, P.: Properties of the epiphysis cerebri of the small-spotted dogfish shark, Scyliorhinus caniculus, L. Vision Res. 11, 189–198 (1971).

    Google Scholar 

  • Hartwig, H.-G., Baumann, Ch.: Evidence for photosensitive pigments in the pineal complex of the frog. Vision Res. 14, 597–598 (1974).

    Google Scholar 

  • Hedlung, L., Nalbandov, A. V.: Innervation of the avian pineal body. Am. Zool. 9, 1090 (1969).

    Google Scholar 

  • Hedlund, L., Ralph, C. L.: Daily variation of pineal serotonin in Japanese quail and Sprague-Dawley rats. Am. Zool. 7, 712 (1967).

    Google Scholar 

  • Hedlund, L., Ralph, C. L.: Effect of photoperiod phase and ganglionectomy on pineal serotonin in Japanese quail. Am. Zool. 8, 756 (1968).

    Google Scholar 

  • Herbert, J.: The role of the pineal gland in the control by light of the reproductive cycle of the ferret. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland, pp. 303-327. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Herbute, S., Bayle, J.D.: Multiple-unit activity in the pineal gland of the Japanese quail: Spontaneous firing and responses to photic stimulations. Neuroendocrinology 15, 52–64 (1974).

    Google Scholar 

  • Heusser, H.: Öber die Beziehungen der Erdkrote, Bufo bufo L., zu ihrem Laichplatz 11. Behav. 16, 94–109 (1960).

    Google Scholar 

  • Hoffman, R.A., Reiter, R. J.: Pineal gland: Influence on gonads of male hamsters. Science 148, 1609–1611 (1965).

    Google Scholar 

  • Holmgren, N.: Zur Frage der Epiphysen Innervation bei Teleostiern. Folia Neurobiol. 10, 1–35 (1917-1918).

    Google Scholar 

  • Homma, K., McFarland, L. Z., Wilson, W. O.: Response of the reproductive organs of the Japanese quail to pinealectomy and melatonin injections. Poultry Sci. 46, 314–319 (1967).

    Google Scholar 

  • Homma, K., Sakakibara, Y.: Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. In: Menaker, M. (ed.): Biochronometry. pp. 333–350. Washington, D. C.: National Acad. Sci. 1971.

    Google Scholar 

  • Homma, K., Wilson, W. O., Siopes, T. D.: Eyes have a role in photoperiodic control of sexual activity of Coturnix. Science 178, 421–423 (1972).

    Google Scholar 

  • Illnerova, H.: Effect of light on the serotonin content of the pineal gland. Life Sci. 10(i), 955–960 (1971).

    Google Scholar 

  • Joss, J. M.: Pineal-gonad relationships in the lamprey Lampetra fluviatilis. Gen. comp. Endocrin. 21, 118–122 (1973 a).

    Google Scholar 

  • Joss, J. M.: The pineal complex, melatonin, and color change in the lamprey Lampetra. Gen. comp. Endocrin. 21, 188–195 (1973 b).

    Google Scholar 

  • Juszkiewicz, T., Rakalska, Z.: Antioestrogenic effects of bovine pineal glands. Nature (Lond.) 200, 1329–1330 (1963).

    Google Scholar 

  • Juszkiewicz, T., Rakalska, Z.: Lack of the effect of melatonin on the frog spermatogenic reaction. J. Pharm. Pharmacol. 17, 189–190 (1965).

    Google Scholar 

  • Kappers, J.A.: The development, topographic relations and innervation of the Epiphysis cerebri in the albino rat. Z. Zellforsch. 52, 163–215 (1960).

    Google Scholar 

  • Kappers, J.A.: Preface to Structure and Function of the Epiphysis cerebri. Prog. Brain Res. 10, ix–xii (1965 a).

    Google Scholar 

  • Kappers, J.A.: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Prog. Brain Res. 10, 87–153 (19656).

    Google Scholar 

  • Kappers,J.A.: The pineal organ: An introduction. In: Wolstenholme,G.E.W., Knight,J. (eds.): The pineal gland. pp. 3-34. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Kappers,J. A., Schade, J. P., eds.: Structure and function of the epiphysis cerebri. Prog. Brain Res. vol. 10. Amsterdam: Elsevier 1965.

    Google Scholar 

  • Kato, M., Kato, Y., Oishi, T.: Radioluminous paints as activator of photoreceptor systems studied with swallow-tail butterfly and quail. Proc. Jap. Acad. Sci. 43, 220–223 (1967).

    Google Scholar 

  • Kelly, D. E., Smith, S. W.: Fine structure of the pineal organs of the adult frog, Rana pipiens. J. Cell Biol. 22, 653–674 (1964).

    Google Scholar 

  • Kenny, G.C.T.: The “nervus conarii” of the monkey (an experimental study). J. Neuropathol. exptl. Neurol. 20, 563-570 (1961).

    Google Scholar 

  • Kitay,J. I., Altschule, M. D.: The pineal gland-A review of the physiologic literature. Cambridge, Mass.: Harvard Univ. Press 1954.

    Google Scholar 

  • Klein, D. C., Bert, C. R., Weller, J.: Melatonin synthesis: Adenosine 3',5'-monophosphate and norepinephrine stimulate N-acetyltransferase. Science 168, 979-980 (1970).

    Google Scholar 

  • Klein, D. C., Weller, J. L.: Indole metabolism in the pineal gland: A circadian rhythm in N-acetyltransferase. Science 169,1093-1095 (1970).

    Google Scholar 

  • Klein, D. C., Weller, J. L.: Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177, 532-533 (1972).

    Google Scholar 

  • Kopin 1. J., Pare, C. M. B., Axelrod, J., Weissbach, H.: The fate of melatonin in animals. J. biol. Chem. 236,3072-3075(1961).

    Google Scholar 

  • Krockert, G.: Die Wirkung der Verfutterung von Schilddrusen-and Zirbeldrusen-Substanz an Lebistes reticulatus (Zahnkarpfen). Zeit. ges. exp. Med. 98, 214-220 (1936).

    Google Scholar 

  • Lauber, J. E., Boyd, J. E., Axelrod, J.: Enzymatic synthesis of melatonin in avian pineal body: Extraretinal response to light. Science 161, 489-490 (1968).

    Google Scholar 

  • Lerner,A.B., Case,J.D.: Pigment cell regulatory factors. J. invest. Dermatol. 32, 211-221 (1959). Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., Mori, W.: Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Ain. Chem. Soc. 80, 2587 (1958).

    Google Scholar 

  • Light, P.: Environmental control of annual testicular cycles in the lizard, Anolis carolinensis. I. Interaction of light and temperature in the initiation of testicular recrudescence. J. exp. Zool. 165, 505516 (1967).

    Google Scholar 

  • Light, P., Pearson, A. K.: Failure of parietalectomy to affect the testes in the lizard Anolis carolinensis. Copeia 1970, 172-173 (1970).

    Google Scholar 

  • Lynch,J.J.: Diurnal oscillations in pineal melatonin content. Life Sci. (1) 10, 791-795 (1971). Machado, C. R. S., Machado, A. B. M., Wragg, L. E.: Circadian serotonin rhythm control: Sympathetic and nonsympathetic pathways in rat pineals of different ages. Endocrinology 85, 846-848 (1969). McCord, C. P., Allen, F. P.: Evidences associating pineal gland function with alteration in pigmentation. J. exp. Zool. 23, 207-224 (1917).

    Google Scholar 

  • McMillan,J. P.: Pinealectomy abolishes the circadian rhythm of migratory restlessness. J. comp. Physiol. 79,105-112 (1972).

    Google Scholar 

  • Meiniel, A.: Etude cytophysiologique de 1'orange parapineal de Lamperta planeri. J. Neuro-Visc. Rel. 32,157-199 (1971).

    Google Scholar 

  • Meiniel, A., CollinJ.-P., Hartwig, H. G.: Pineale et troiseme oeil de Lacerta vivipara (J.), au cours de la vie embryonnaire et postnatale. Z. Zellforsch. 114, 89-115 (1973).

    Google Scholar 

  • Menaker, M.: Light perception by extra-retinal receptors in the brain of the sparrow. Proc. Am. Psychol. Assoc. 76th Ann. Conv., pp. 299-300 (1968).

    Google Scholar 

  • Menaker, M.: The pineal organ and circadian rhythmicity. Gen comp. Endocrin. 18, 608 (1972). Menaker, M., Roberts, R., Elliot, J., Underwood, H.: Extraretinal light perception in the sparrow, III The eyes do not participate in photoperiodic photoreception. Proc. Nat. Acad. Sci. USA 67, 320325(1970).

    Google Scholar 

  • Miller, W. H., Wolbarsht, M. L.: Neural activity in the parietal eye of a lizard. Science 135, 316-317 (1962).

    Google Scholar 

  • Moore, R. Y.: Pineal response to light: Mediation by the accessory optic system in the monkey. Nature (Lond.) 222, 781-782 (1969).

    Google Scholar 

  • Moore, R. Y., Heller, A., Bhatnagar, R. K., Wurtman, R. J., Axelrod, J.: Central control of the pineal gland: Visual pathways. Arch. Neurol. 18,208-218 (1968).

    Google Scholar 

  • Moore, R. Y., Heller, A., Wurtman, R. J., Axelrod, J.: Visual pathways mediating pineal response to environmental light. Science 155, 220-223 (1967).

    Google Scholar 

  • Moore, R. Y., Klein, D. C.: Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 71, 17-33 (1974).

    Google Scholar 

  • Morita, Y.: Extra-and intracellulare Abteilungen einzelner Elemente des lichtempfindlichen Zwischenhirns anurer Amphibien. Pflug. Arch. ges. Physiol. 286,97-108 (1965).

    Google Scholar 

  • Morita, Y.: Absence of electrical activity of the pigeon’s pineal organ in response to light. Experientia 22, 402 (1966 a).

    Google Scholar 

  • Morita, Y.: Entladungsmuster pinealer Neurone der Regenbogenforelle (Salmo irideus) bei Belichtung des Zwischenhirns. Pfliig. Arch. ges. Physiol. 289,155 167(1966b).

    Google Scholar 

  • Morita, Y.: Action spectra of ERG from lampreys, Petromyzon fluviatilis and Lampetra japonica. Physiol. Soc. Japan, April 1973.

    Google Scholar 

  • Morita, Y., Bergmann,G.: Physiologische Untersuchungen and weitere Bemerkungen zur Struktur des lichtempfindlichen Pinealorgans von Pterophyllum scalare Cuv. et Val. (Cichlidae, Teleostei). Z. Zellforsch. 119, 289-294 (1971).

    Google Scholar 

  • Morita, Y., Dodt, E.: Nervous activity of the frog’s epiphysis cerebri in relation to illumination. Experientia 21, 221-222 (1965).

    Google Scholar 

  • Morita,Y., Dodt,E.: Slow photic responses of the isolated pineal organ of lamprey. Nova Acta Leopoldina. N.F. 38, 331-339 (1973).

    Google Scholar 

  • Nagle, C. A., Cardinals, D. P., Rosner, J. M.: Light regulation of rat retinal hydroxyindole-O-methyltransferase (HIOMT) activity. Endocrinology 91,423—426 (1972).

    Google Scholar 

  • Nir, I., Behroozi, K., Assael, M., Ivriani, I., Sulman, F. G.: Changes in the electrical activity of the brain following pinealectomy. Neuroendocrinology 4,122-127 (1969).

    Google Scholar 

  • Noell, W. K., Walker, V. S., Kang, B. S., Herman, S.: Retinal damage by light in rats. Invest. Ophthal. 5, 450—473(1966).

    Google Scholar 

  • Oguri, M., Omura, Y., Hibiya, T.: Uptake of 14C-labelled 5-hydroxytryptophane into the pineal organ of rainbow trout. Bull. Japan Soc. Sci. Fisheries 34, 687-690 (1968).

    Google Scholar 

  • Oksche, A.: Survey of the development and comparative morphology of the pineal organ. Prog. Brain Res. 10, 3-29 (1965).

    Google Scholar 

  • Oksche, A.: Sensory and glandular elements of the pineal organ. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland. pp. 127-146. Edinburgh and London: Churchill Livingstone 1971. Oksche, A., Kirschstein, H.: Elektronenmikroskopische Untersuchungen am Pinealorgan von Passer domesticus. Z. Zellforsch. 102, 214-241 (1969).

    Google Scholar 

  • Oksche, A., Kirschstein, H., Kobayashi, H., Farner, D. S.: Electron microscopic and experimental studies of the pineal organ in the white-crowned sparrow, Zonotrichia leucophrys gambelli. Z. Zellforsch. 124, 247-274 (1972).

    Google Scholar 

  • Oksche, A., Vaupel-von Harnack, M.: Elektronenmikroskopische Untersuchungen an den Nervenbahnen des Pineal komplexes von Rana esculenta L. Z. Zellforsch. 68, 389-426 (1965).

    Google Scholar 

  • Oksche, A., von Harnack, M.: Elektronenmikroskopische Untersuchungen am Stirnorgan von Anuren (zur Frage der Lichtrezeptoren). Z. Zellforsch. 59, 239-288 (1963).

    Google Scholar 

  • Oldham, R. S.: Spring movements in the American toad, Bufo americanus. Cand. J. Zool. 44, 63-100 (1966).

    Google Scholar 

  • Owman, C., Riideberg, C.: Light, fluorescence, and electron microscope studies on the pineal organ of the pike, Esox lucius L., with special regard to 5-Hydroxytryptamine. Z. Zellforsch. 107, 522-550 (1970).

    Google Scholar 

  • Pang, P. K. T.: The effect of pinealectomy on the adult killifish, Fundulus heteroclitus. Am Zool. 7, 715 (1967).

    Google Scholar 

  • Paul, E.: Innervation and zentralnervose Verbindungen des Frontalorgans von Rana temporaria and Rana esculenta. Z. Zellforsch. 128, 504-511 (1972).

    Google Scholar 

  • Paul, E., Hartwig, H.-G., Oksche, A.: Neurone and zentralnervose Verbindungen des Pinealorgans der Anuren. Z. Zellforsch. 112,466—493 (1971).

    Google Scholar 

  • Pavel, S., Petrescu, S.: Inhibition of gondatropin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature (Lond.) 212, 1054 (1966).

    Google Scholar 

  • Pelham, R. W., Ralph, C. L.: Pineal hydroxyindole-O-methyltransferase (HIMOT) in the chicken: Effect of diurnal lighting and substrate concentration. Life Sci. (11) 11, 51-59 (1972).

    Google Scholar 

  • Peters,R. E.: Failure to detect an effect of pinealectomy in goldfish. Gen. comp. Endocrin. 10, 443-445 (1968).

    Google Scholar 

  • Petit,A.: Ultrastructure, innervation et fonction de 1'epiphyse de 1'orvet (Anguis fragilis L). Z. Zellforsch. 96,437-465 (1969).

    Google Scholar 

  • Pflugfelder, 0.: Wirkungen partieller Zerstorungen der Parietalregion von Lebistes reticulatus. Arch. Entwicklung mech. Organ. 147,42-60 (1954).

    Google Scholar 

  • Prosser, C. L., Brown, F. A., Jr.: Comparative animal physiology. Philadelphia: W. B. Saunders 1961. Quay, W. B.: Circadian rhythm in pineal serotonin and its modifications by estrous cycle and photoperiod. Gen. comp. Endocrin. 3,473—479 (1963).

    Google Scholar 

  • Quay, W. B.: Circadian and estrous rhythms in pineal melatonin and 5-hydroxyindole-3-acetic acid. Proc. Soc. exptl. Biol. Med. 115,710-713 (1964).

    Google Scholar 

  • Quay, W. B.: Retinal and pineal hydroxyindole-O-methyltransferase activity in vertebrates. Life Sci. 4, 983-991 (1965 a).

    Google Scholar 

  • Quay, W. B.: Experimental evidence for pineal participation in homeostasis of brain composition. Prog. Brain Res. 10, 646–653 (1965 b).

    Google Scholar 

  • Quay, W. B.: Rhythmic and light-induced changes in levels of pineal 5-hydroxyindoles in the pigeon (Columba livia). Gen. comp. Endocrin. 6, 371–377 (1966 a).

    Google Scholar 

  • Quay, W. B.: 24-hour rhythms in pineal 5-hydroxyindole-0-methyltransferase activity in the macaque. Proc. Soc. exptl. Biol. Med. 121, 946–948 (1966 b).

    Google Scholar 

  • Quay, W. B.: Endocrine effects of the mammalian pineal. Am Zool. 10, 237–246 (1970).

    Google Scholar 

  • Quay, W. B.: Pineal homeostatic regulation of shifts in the circadian activity rhythm during maturation and aging. Trans. N.Y. Acad. Sci. 34, 239–254 (1972).

    Google Scholar 

  • Quay, W. B.: Pineal chemistry in cellular and physiological mechanisms. Springfield. Ill.: C. C. Thomas 1974.

    Google Scholar 

  • Quay, W. B., Kappers, J. A., Jongkind, J. F.: Innervation and fluorescence histochemistry of monoamines in the pineal organ of a snake (Natrix natrix). J. Neuro-Visc. Rel. 31, 11–25 (1968).

    Google Scholar 

  • Ralph, C. L.: Structure and alleged functions of avian pineal s. Am. Zool. 10, 217–235 (1970).

    Google Scholar 

  • Ralph, C. L., Dawson, D. C.: Failure of the pineal body of two species of birds (Coturnix coturnix japonica and Passer demesticus) to show electrical responses to illumination. Experientia 24, 147–148 (1968).

    Google Scholar 

  • Ralph, C. L., Hedlund, L., Murphy, W. A.: Diurnal cycles of melatonin in bird pineal bodies. Comp. Biochem. Physiol. 22, 591–599 (1967).

    Google Scholar 

  • Ralph, C. L., Mull, D., Lynch, H. J., Hedlund, L.: A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89, 1361–1366 (1971).

    Google Scholar 

  • Rasquin, P.: Studies in the control of pigment cells and light reactions in recent teleost fishes. Bull. Am. Mus. Natur. Hist. 115, 1–68 (1958).

    Google Scholar 

  • Reed, B. L., Flinnin, B. C., Ruffin, N. E.: The effects of melatonin and epinephrine on the melanophores of fresh water teleosts. Life Sci. 8, 113–120 (1969).

    Google Scholar 

  • Reiter, R. J.: The effect of pineal grafts, pinealectomy and denervation of the pineal gland on the reproductive organs of male hamsters. Neuroendocrinology 2, 138–146 (1967).

    Google Scholar 

  • Reiter, R. J.: Comparative endocrinology of the pineal (A symposium). Am. Zool. 10, 187–267 (1970).

    Google Scholar 

  • Reiter, R. J.: Comparative physiology: pineal gland. Ann. Rev. Physiol. 35, 305–328 (1973).

    Google Scholar 

  • Reiter, R. J., Hester, R. J.: Interrelationships of the pineal gland, the superior cervical ganglia and the photoperiod in the regulation of the endocrine systems of hamsters. Endocrinology 79, 1168–1170 (1965).

    Google Scholar 

  • Reiter, R. J., Sorrentino, S., Jr.: Factors influential in determining the gonad-inhibiting activity of the pineal gland. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland. pp. 329–344. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Rosner, J. M., de Perez Bedes, G. D., Cardinals, D. P.: Direct effect of light on duck pineal explants. Life Sci. (11) 10, 1065–1069 (1971).

    Google Scholar 

  • Rowan, W. C.: Reaction of light and bird migration and developmental changes. Nature (Lond.) 115, 494–495 (1925).

    Google Scholar 

  • Rudeberg, C.: Light and electron microscopic studies on the pineal organ of the dogfish, Scyliorhinus canicula, L.Z. Zellforsch. 96, 548–581 (1969).

    Google Scholar 

  • Rudeberg, C.: Structure of the pineal organs of Anguilla L. and L,ebistes reticulatus Peters (Teleostei). Z. Zellforsch. 122, 227–243 (1971).

    Google Scholar 

  • Sayler, A., Wolfson, A.: Influence of the pineal gland on gonadal maturation in the Japanese quail. Endocrinology 83, 1237–1246 (1968 a).

    Google Scholar 

  • Sayler, A., Wolfson, A.: Role of the eyes and superior cervical ganglia on the effects of light on the pineal and gonads of the Japanese quail. Arch. Anat. Histol. Embryol. 51, 615–626 (1968b).

    Google Scholar 

  • Sayler, A., Wolfson, A.: Hydroxyindole-O-methyltransferase (H IOMT) activity in the Japanese quail in relation to sexual maturation and light. Neuroendocrinology 5, 322–332 (1969).

    Google Scholar 

  • Schafer, O.: Spektrale Empfindlichkeit and absolute Schwelle des Farbwechsels geblendeter Elritzen (Phoxinus phoxinus L.). Biol. Zbl. 83, 47–66 (1964).

    Google Scholar 

  • Schonherr,J.: Ober die Abhangigkeit der Instinkthandlungen vom Vorderhirn and Zwischenhirn (Epiphyse) bei Gasterosteus aculeatus L. Zool. Jahrb. Abt. Allgem. Zool. Physiol. 65, 357-386 (1955).

    Google Scholar 

  • Shapiro, S., Salas, M.: Effects of age, light and sympathetic innervation on electrical activity of the rat pineal gland. Brain Res. 28, 47-55 (1971).

    Google Scholar 

  • Shein, H. M.: Control of melatonin synthesis by noradrenaline in rat pineal organ cultures. In: Wolstenholme, G. E. W., Knight, J. (eds.): The pineal gland, pp. 197-212. Edinburgh and London Churchill Livingstone 1971.

    Google Scholar 

  • Shein, H. M., Wurtman, R. J.: Cyclic adenosine monophosphate: Stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519-520 (1969).

    Google Scholar 

  • Shellabarger, C. J.: Pinealectomy vs. pineal injection in young cockerel. Endocrinology 51, 152-154 (1952).

    Google Scholar 

  • Shellabarger, C. J.: Observations of the pineal in the white leghorn capon and cockerel. Poultry Sci. 32, 189-197 (1953).

    Google Scholar 

  • Snyder, A. W.: How fish detect polarized light. Invest. Ophthal. 12, 78-79 (1973).

    Google Scholar 

  • Snyder, S. H., Zweig, M., Axelrod, J., Fischer, J. E.: Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. Nat. Acad. Sci. USA 53, 301-305 (1965).

    Google Scholar 

  • Stebbins, R. C.: The effect of parietalectomy on testicular activity and exposure to light in the Desert Night Lizard (Xanthusia vigilis). Copeia 1970, 261-270 (1970).

    Google Scholar 

  • Stebbins, R. C., Cohen, N. W.: The effect of parietalectomy on the thyroid and gonads in free-living western fence lizards (Sceloporus occidentalis). Copeia 1973, 662-668 (1973).

    Google Scholar 

  • Stebbins, R. C., Eakin, R. M.: The role of the “third eye” in reptilian behavior. Am. Mus. Nov. 1870, 140(1958).

    Google Scholar 

  • Stetson, M. H.: Neuroendocrine control of photoperiodically induced fat deposition in white-crowned sparrows. J. exper. Zool. 176,409-413 (1971).

    Google Scholar 

  • Steyn, W.: Ultrastructure of pineal eye sensory cells. Nature (Lond.) 183, 764-765 (1959).

    Google Scholar 

  • Steyn, W.: Observations on the ultrastructure of the pineal eye. J. Roy. Micr. Soc. 79, 47-58 (1960). Studnicka, F. K.: Die Parietalorgane. In: Oppel, A. (ed.): Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere, part 5. Jena: Gustav Fischer 1905.

    Google Scholar 

  • Takahashi, H.: Light and electron microscopic studies on the pineal organ of the goldfish, Carassius auratus L. Bull. Fac. Fish., Hokkaido Univ. 20,143-158 (1969).

    Google Scholar 

  • Taylor,A. N., Wilson, R. W.: Electrophysiological evidence for the action of light on the pineal gland in the rat. Experientia 26, 267-269 (1970).

    Google Scholar 

  • Taylor, D. H., Adler, K.: Spatial orientation by salamanders using plane-polarized light. Science 181, 285-287 (1973).

    Google Scholar 

  • Tilney, F., Warren, L. F.: The morphology and evolutional significance of the pineal body. The American Anatomical Memoirs, No. 9. Philadelphia: The Wistar Institute 1919.

    Google Scholar 

  • Ueck, M.: Weitere Untersuchungen zur Feinstruktur and Innervation des Pinealorgans von Passer domesticus L. Z. Zellforsch.105, 276-302 (1970).

    Google Scholar 

  • Van de Veerdonk, F. C. G.: Demonstration of melatonin in Amphibia. Curr. Mod. Biol. 1, 175-177 (1967).

    Google Scholar 

  • Vaughan, M. K., Vaughan, G. M., Klein, D. C.: Arginine vasotocin: Effects on development of reproductive organs. Science 186, 938-939 (1974).

    Google Scholar 

  • Vivien-Roels,B.: Ultrastructure, innervation et fonction de 1'epiphyse chez les Cheloniens. Z. Zellforsch. 104,429—448 (1970).

    Google Scholar 

  • Vlahakes, G. J., Wurtman, R. J.: A Mg` + dependent hydroxyindole-O-methyltransferase in rat Harderian gland. Biochem. Biophys. Acta 261, 194-197 (1972).

    Google Scholar 

  • Volkman, P. H., Heller, A.: Pineal N-acetyltransferase activity: Effect of sympathetic stimulation. Science 173, 839-840 (1971).

    Google Scholar 

  • Vollrath,L.: Synaptic ribbons of a mammalian pineal gland circadian changes. Z. Zellforsch. 145, 171-183 (1973).

    Google Scholar 

  • Vollrath, L., Huss, H.: The synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z. Zellforsch. 139,417-429 (1973).

    Google Scholar 

  • Von Frisch, K.: Beitrage zur Physiologie der Pigmentzellen in der Fischhaut. Mg. Arch. ges. Physiol. 138,319-387 (1911).

    Google Scholar 

  • Walls, G. L.: The vertebrate eye and its adaptive radiation. Bloomfield Hills, Mich.: Cranbrook Institute of Science 1942.

    Google Scholar 

  • Waring, H.: Colour change mechanisms of cold-blooded vertebrates. London and New York: Academic Press 1963.

    Google Scholar 

  • Wartman, S. A., Branch, B. J., George, R., Tayler, A. N.: Evidence for a cholinergic influence on pineal hydroxyindole-O-methyltransfer ase activity with changes in environmental lighting. Life Sci. (1) 8, 1263-1270 (1969).

    Google Scholar 

  • Waterman, T. H., Forward, R. B., Jr.: Field demonstration of polarotaxis in the fish Zenarchopterus. J. exp. Zool. 180, 33–54 (1972).

    Google Scholar 

  • Weiss, B., Crayton, J.: Gonadal hormone as regulators of pineal adenyl cyclase activity. Endocrinology 87, 527–533 (1970).

    Google Scholar 

  • Wilson, J. F., Dodd, J. M.: The role of the pineal complex and lateral eyes in the colour change response of the dogfish, Scyliorhinus canicula L. J. Endocrin. 58, 591–598 (1973).

    Google Scholar 

  • Winget, C. M., Warren, C. A., DeRoshia, C. W.: Interrelationships of the pineal gland, the diencephalon and the pituitary (Gallus domesticus). Am. Zool. 7, 732 (1967).

    Google Scholar 

  • Wolfe, D. E.: The epiphyseal cell: an electron-microscopic study of its intercellular relationships and intracellular morphology in the pineal body of the albino rat. Prog. Brain Res. 10, 332–376 (1965).

    Google Scholar 

  • Wolstenholme,G. E. W., Knight,J., eds.: The pineal gland. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Wurtman, R. J.: Summary of symposium. In: Wolstenholme G. E. W., Knight, J. (eds.): The pineal gland. pp. 379–389. Edinburgh and London: Churchill Livingstone 1971.

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Fischer, J. E.: Melatonin synthesis in the pineal gland: Effect of light mediated by the sympathetic nervous system. Science 143, 1328–1330 (1964).

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Kelly, D. E.: The pineal. New York and London: Academic Press 1968.

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Phillips, L. S.: Melatonin synthesis in the pineal gland: Control by light. Science 142, 1071–1073 (1963).

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Sedvall, G., Moore, R. Y.: Photic and neural control of the 24-hour norepinephrine rhythm in the rat pineal gland. J. Pharmacol. exptl. Ther. 157, 487–492 (1967).

    Google Scholar 

  • Wurtman, R. J., Axelrod, J., Snyder, S. H., Chu, E. W.: Changes in the enzymatic synthesis of melatonin in the pineal during the estrous cycle. Endocrinology 76, 798–800 (1965).

    Google Scholar 

  • Wurtman, R. J., Roth, W., Altschule, M. D., Wurtman, J. J.: Interactions of the pineal and exposure to continuous light on organ weights of female rats. Acta Endocrin. 36, 617–624 (1961).

    Google Scholar 

  • Young, J.Z.: The photoreceptors of lampreys. 11. The function of the pineal complex. J. exp. Biol. 12, 254–270 (1935).

    Google Scholar 

  • Zweig, M., Snyder, S. H., Axelrod, J.: Evidence for a nonretinal pathway of light in the pineal gland of newborn rats. Proc. Nat. Acad. Sci. USA 56, 515–520 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamasaki, D., Eder, D. (1977). Adaptive Radiation of the Pineal System. In: Crescitelli, F. (eds) The Visual System in Vertebrates. Handbook of Sensory Physiology, vol 7 / 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66468-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66468-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66470-0

  • Online ISBN: 978-3-642-66468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics