Skip to main content

Part of the book series: Handbook of Sensory Physiology ((1536,volume 7 / 5))

Abstract

Perhaps more than in any other class, vision evolved to its greatest complexity in reptiles (Walls, 1942). Apart from the birds, to which reptiles form a natural connection, vision and its attendant structures in other animals are more constrained. Fishes and amphibians, for example, animals restricted largely or completely to aquatic environments, have difficulty in seeing for any great distance. Water is a poor medium for light transmission: It is easily set in motion by wave action and its transparency is complicated by turbidity. Because of these factors, the virtuous properties of light are very much degraded or practically non-existent. In many animals of these classes, visual structure is less elaborated. Some mammals, too, display a debilitation of visual structure and function that is especially noteworthy in view of their other biological advantages. Many mammals are nocturnal, or they emphasize other sensory attributes. Only in primates, perhaps in squirrels too with their cone-rich retinas, does vision predominate to the same extent as in reptiles and birds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arden, G. B., Ernst, W.: The effect of ions on the photoreceptors of pigeon cones. J. Physiol. (Lond.) 211, 311–339 (1970).

    Google Scholar 

  • Arden, G. B., Ernst, W.: A comparison of the behaviour to ions of the P III component of the pigeon cone and rat rod electroretinogram. J. Physiol. (Lond.) 220, 479–497 (1972).

    Google Scholar 

  • Armington, J. C.: Spectral sensitivity of the turtle, Pseudemys. J. Comp. Physiol. Psychol. 47, 1–6 (1954).

    Google Scholar 

  • Baylor, D. A., Fettiplace, R.: Light path and photon capture in turtle photoreceptors. J. Physiol. (Lond.) 248, 433–464 (1975).

    Google Scholar 

  • Baylor, D. A., Fettiplace, R.: Transmission of signals from photoreceptors to ganglion cells in the eye of the turtle. Cold Spring Harb. Symp. Quant. Biol. 40, 529–536 (1976).

    Google Scholar 

  • Baylor, D. A., Fuortes, M. G. F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    Google Scholar 

  • Baylor, D. A., Hodgkin, A. L.: Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. (Lond.) 234, 163–198 (1973).

    Google Scholar 

  • Baylor, D. A., Hodgkin, A. L.: Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. (Lond.) 242, 729–758 (1974).

    Google Scholar 

  • Baylor, D. A., Fuortes, M. G. F., O'Bryan, P. M.: Receptive fields of cones in the retina of the turtle. J. Physiol. (Lond.) 214, 265–294 (1971).

    Google Scholar 

  • Baylor, D. A., Hodgkin, A. L., Lamb, T. D.: The electrical response of turtle cones to flashes and steps of light. J. Physiol. (Lond.) 242, 685–727 1974 a).

    Google Scholar 

  • Baylor, D. A., Hodgkin, A. L., Lamb, T. D.: Reconstruction of the electrical responses of turtle cones of flashes and steps of light. J. Physiol. (Lond.) 242, 759–791 (1974 b).

    Google Scholar 

  • Beer, T.: Die Akkomodation des Auges bei den Reptilien. Pflügers Arch. 69, 507-568 (1898).

    Google Scholar 

  • Borsellino, A., Fuortes, M. G. F., Smith, T. G.: Visual responses in Limulus. Cold Spring Harb. Symp. Quant. Biol. 30, 429–443 (1965).

    Google Scholar 

  • Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–636 (1964).

    Google Scholar 

  • Bortoff, A., Norton, A. L.: An electrical model of the vertebrate photoreceptor cell. Vision Res. 7, 252–263 (1967).

    Google Scholar 

  • Bowling,D. B.: Properties of ganglion cells in the retina of the turtle. Unpublished doctoral dissertation, University of Colorado, 194 p. (1976). (Written under D. A. Baylor.)

    Google Scholar 

  • Bridges, C.D.B.: Absorption properties, interconversions, and environmental adaptation of pigments from fish photoreceptors. Cold Spring Harb. Symp. Quant. Biol. 30, 317–334 (1965).

    Google Scholar 

  • Bridges, C.D.B.: The rhodopsin-porphyropsin visual system. In: Handbook of sensory physiology Vol. VII/I. New York: Springer 1972.

    Google Scholar 

  • Brown, K. T.: A linear area centralis extending across the turtle retina and stabilized to the horizon by non-visual cues. Vision Res. 9, 1053–1062 (1969).

    Google Scholar 

  • Bush,W. G.: A qualitative and quantitative electron microscopic study of the retina of the turtle, Pseudemys scripta elegans. Unpublished doctoral dissertation submitted to the University of Delaware, 127 pp. (1973).

    Google Scholar 

  • Byzov, A.: Investigation of the receptive field of cells: source of the S-potentials of the turtle and frog retina. Biofizica 11, 861–870 (1966).

    Google Scholar 

  • Byzov, A. L.: Role of horizontal cells in the mechanism of retinal adaptation. Neurofiziologiya 1, 210–217 (1969). [In English translation, Neurosci. Transl.14, 63-70 (1970-1).]

    Google Scholar 

  • Cervetto, L.: Influence of sodium potassium and chloride ions on the intracellular responses of turtle photoreceptors. Nature 241, 401–403 (1973).

    Google Scholar 

  • Cervetto, L., Marchiafava, P. L., Pasino, E.: Influence of efferent retinal fibres on responsiveness of ganglion cells to light. Nature 260, 56–57 (1976).

    Google Scholar 

  • Cone, R. A.: The internal transmitter model for visual excitation: some quantitative implications. In Biochemistry and physiology of visual pigments. Langer, H. (ed.). Berlin: Springer 1973.

    Google Scholar 

  • Copenhagen, D. R., Owen, W. G.: Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. J. Physiol. (Lond.) 259, 251–282 (1976).

    Google Scholar 

  • Deane, H. W., Enroth-Cugell, C., Gongaware, M. A., Neyland, M., Fuobes, A.: Electroretinogram of freshwater turtle. J. Neurophysiol. 21, 45–61 (1958).

    Google Scholar 

  • Duke-Elder, S.: System of ophthalmology, Vol. I. The eye in evolution. St. Louis: C. V. Mosby, 1958.

    Google Scholar 

  • Dvorak, C. A., Taylor, T. M.: Computer analysis of spatial integration in vertebrate retinal horizontal cells. IEEE Trans. Biomed. Eng. 24,149-152 (1977).

    Google Scholar 

  • Ehrenfeld, D. W., Koch, A. L.: Visual accommodation in the green turtle. Science 155, 827-828 (1967). Fain, G. L., Granda, A. M., Maxwell, J. H.: Voltage signal of photoreceptors at visual threshold. Nature 265,181-183 (1977).

    Google Scholar 

  • Fujimoto, K., Yanase,T., Hanaoka, T.: Spectral transmittance of retinal coloured oil globules re-examined with microspectrophotometer. J. Physiol. Soc. Jpn. 7, 339-346 (1957).

    Google Scholar 

  • Fuortes, M. G. F.: Responses of cones and horizontal cells in the retina of the turtle. Invest. Ophthalmol.11, 275-284 (1972).

    Google Scholar 

  • Fuortes, M. G. F., Hodgkin, A. L.: Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. (Lond.)172, 239-263 (1964).

    Google Scholar 

  • Fuortes, M. G. F., O'Bryan, P.M.: Generator potentials in invertebrate photoreceptors. In: Handbook of sensory physiology, Vol. VII/2. Berlin: Springer 1972.

    Google Scholar 

  • Fuortes, M. G. F., Schwartz, E. A., Simon, E. J.: Colour-dependence of cone responses in the turtle retina. J. Physiol. (Lond.) 234,199-216 (1973).

    Google Scholar 

  • Fuortes, M. G. F., Simon, E. J.: Interactions leading to horizontal cell responses in the turtle retina. J. Physiol. (Lond.) 240,177-198 (1974).

    Google Scholar 

  • Graf, V.: A spectral sensitivity curve and wavelength discrimination for the turtle Chrysemys picta picta. Vision Res. 7,915-928 (1967).

    Google Scholar 

  • Granda, A.M.: Electrical responses of the light-and dark-adapted turtle eye. Vision Res. 2, 343-356 (1962).

    Google Scholar 

  • Granda, A. M., Haden, K. W.: Retinal oil globule counts and distributions in two species of turtles Pseudemys scripta elegans (Wied) and Chelonia mydas mydas (Linnaeus). Vision Res. 10, 79-84 (1970).

    Google Scholar 

  • Granda, A. M., O’shea, P. J.: Spectral sensitivity of the green turtle (Chelonia mydas mydas) determined by electrical responses to heterochromatic light. Brain Behav. Evol. 5, 143-154 (1972). Granda, A. M., Stirling, C. E.: Differential spectral sensitivity in the optic tectum and eye of the turtle. J. gen. Physiol. 48,90t-917 (1965).

    Google Scholar 

  • Granda, A. M., Stirling, C. E.: The spectral sensitivity of the turtle’s eye to very dim lights. Vision Res. 6,143-152 (1966).

    Google Scholar 

  • Granda, A. M., Maxwell, J. H., Zwick, H.: The temporal course of dark-adaptation in the turtle, Pseudemys, using a behavioral avoidance paradigm. Vision Res. 12, 653-672 (1972).

    Google Scholar 

  • Hagins, W. A., Penn, R. D., Yoshikami, S.: Dark current and photocurrent in retinal rods. Biophys. J. 10,380-412 (1970).

    Google Scholar 

  • Hagins, W. A., Robinson, W. E., Yoshikami, S.: Ionic aspects of excitation in rod outer segments. In Energy transformation in biological systems. Ciba Found. Symp. 31, 169-189 (1975).

    Google Scholar 

  • Hannover, A.: Ober die Struktur der Netzhaut der Schildkrote. Arch. Anat., Physiol. Wissen. Med., 314-317 (1843).

    Google Scholar 

  • Hodgkin, A. L.: Address of the President at the Anniversary Meeting, 30. November 1971. Proc. R. Soc. Lond. (Biol.), B.180, v-xx (1972).

    Google Scholar 

  • Jain, M. K.: The bimolecular lipid membrance: a system. New York: Van Nostrand-Reinhold 1972. King-Smith, P. E.: Absorption spectra and function of the colored oil drops in the pigeon retina. Vision Res. 9, 1391-1399 (1969).

    Google Scholar 

  • Krause, W.: Ober die Endigung der Muskelnerven. Z. rat. Med. 20,1-18 (1863).

    Google Scholar 

  • Lasansky, A.: Synaptic organization of cone cells in the turtle retina. Philos. Trans. R. Soc. Lond. (Biol.), 262, 365-381 (1971).

    Google Scholar 

  • Lasansky, A.: Cell junctions at the outer synaptic layer of the retina. Invest. Ophthalmol. 11, 265-275 (1972).

    Google Scholar 

  • Laties, A. M., Liebman, P. A., Campbell, C. E. M.: Photoreceptor orientation in the primate eye. Nature (Lond.), 218,172-173 (1968).

    Google Scholar 

  • Liebman, P.A.: Microspectrophotometry of retinal cells. Ann. N.Y. Acad. Sci. 157, 250-264 (1969). Liebman, P. A.: Microspectrophotometry of photoreceptors. In: Handbook of sensory physiology, Vol. VII/1, New York: Springer 1972.

    Google Scholar 

  • Liebman, P. A., Granda, M.: Microspectrophotometric measurements of visual pigments in two species of turtle, Pseudemys scripta and Chelonia mydas. Vision Res. 11, 105-114 (1971).

    Google Scholar 

  • Liebman, P. A., Granda, A. M.: Super dense carotenoid spectra resolved in single cone oil droplets. Nature 253, 370-372 (1975).

    Google Scholar 

  • Lipetz, L. E., Hill, R. M.: Discrimination characteristics of the turtle’s retinal ganglion cells. Experientia 26, 373–374 (1970).

    Google Scholar 

  • Maksimova, Y. M.: Effect of intracellular polarization of horizontal cells on the activity of the gan-glionic cells of the retina of the fish. Biofizika 14:, 537–544 (1969).

    Google Scholar 

  • Marchiafava, P. L.: Centrifugal actions on amacrine and ganglion cells in the retina of the turtle. J. Physiol. (Lond.) 255, 137–155 (1976).

    Google Scholar 

  • Marmarelis, P. Z., Naka, K. I.: Spatial distribution of potential in a flat cell: application to the catfish horizontal cells layers. Biophys. J. 12, 1515–1532 (1972).

    Google Scholar 

  • Mastersj I.: Some applications in physics of the P function. J. Chem. Phys. 23, 1865-1874 (1955).

    Google Scholar 

  • Maxwell J. H. Granda A. M. An automated apparatus for the determination of visual thresholds in turtles. Physiol. Behav. 15 131-132 1975

    Google Scholar 

  • Michaelis, L., Menten, M. L.: Die Kinetik der Invertinwirkung. Biochem. Z. 49, 333–339 (1913).

    Google Scholar 

  • Miller, W. H., Hashimoto, Y., Saito, T., Tomita, T.: Physiological and morphological identification of L-and C-type S-potentials in the turtle retina. Vision Res. 13, 443–447 (1973).

    Google Scholar 

  • Naka, K.-I., Nye, P. W.: Role of H-cells in the organization of the catfish retinal receptive field. J. Neurophysiol. 34, 785–801 (1971).

    Google Scholar 

  • Naka, K. I., Rushton, W. A. H.: An attempt to analyse colour reception by electrophysiology. J. Physiol. (Lond.) 185, 556–586 (1966).

    Google Scholar 

  • Naka, K. I., Rushton, W. A. H.: The generation and spread of S-potentials in fish (Cyprinidae). J. Physiol. (Lond.) 192, 437–461 (1967).

    Google Scholar 

  • Neame, K. D., Richards, T. G.: Carrier transport. Elementary kinetics of membrane carrier transport. Oxford: Blackwell Scientific Publications 1972, pp. 16–40.

    Google Scholar 

  • O'Bryan, P. M.: Properties of the depolarizing synaptic potential evoked by peripheral illumination in cones of the turtle retina. J. Physiol. (Lond.) 235, 207–223 (1973).

    Google Scholar 

  • Peiponen, V. A.: Zur Bedeutung der Olkugeln im Farbensehen der Sauropsiden. Ann. Zool. Fenn. 1, 281–302 (1964).

    Google Scholar 

  • Penn, R. D., Hagins, W. A.: Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223, 201–205 (1969).

    Google Scholar 

  • Penn, R. D., Hagins, W. A.: Kinetics of the photocurrent of retinal rods. Biophys. J. 12, 1073–1094 (1972).

    Google Scholar 

  • Ramon Y Cajal, S.: The structure of the retina. Compiled and translated by S. A. Thorpe and M. Glickstein from editions published in 1892, 1894, and 1933. Springfield, Illinois: Carles C. Thomas 1972.

    Google Scholar 

  • Richter, A., Simon, E. J.: Electrical responses of double cones in the turtle retina. J. Physiol. (Lond.) 242, 673–683 (1974).

    Google Scholar 

  • Richter, A., Simon, E. J.: Properties of centre-hyperpolarizing red-sensitive bipolar cells in the turtle retina. J. Physiol. (Lond.) 248, 317–334 (1975).

    Google Scholar 

  • Robbins, D.O.: Coding of intensity and wavelength in optic tectal cells of the turtle. Brain, Behav., Evol. 5, 124–142 (1972).

    Google Scholar 

  • Saito, T., Miller, W. H., Tomita, T.: C-and L-type horizontal cells in the turtle retina. Vision Res. 14, 119–123 (1974).

    Google Scholar 

  • Schaeffer, S. F., Raviola, E.: Ultrastructural analysis of functional changes in the synaptic endings of turtle cone cells. Cold Spring Harb. Symp. Quant. Biol. 40, 521–528 (1976).

    Google Scholar 

  • Schwartz, E. A.: Organization of on-off cells in the retina of the turtle. J. Physiol. (Lond.) 230, 1–14 (1973a).

    Google Scholar 

  • Schwartz, E. A.: Responses of single rods in the retina of the turtle. J. Physiol. (Lond.) 232, 503–514 (1973b).

    Google Scholar 

  • Schwartz, E. A.: Responses of bipolar cells in the retina of the turtle. J. Physiol. (Lond.) 236, 211–224 (1974).

    Google Scholar 

  • Schwartz, E. A.: Rod-rod interaction in the retina of the turtle. J. Physiol. (Lond.) 246, 617–638 (1975a).

    Google Scholar 

  • Schwartz, E. A.: Cones excite rods in the retina of the turtle. J. Physiol. (Lond.) 246, 639–651 (1975b).

    Google Scholar 

  • Schwartz, E. A.: Electrical properties of the rod syncytium in the retina of the turtle. J. Physiol. (Lond.) 257, 379–406 (1976).

    Google Scholar 

  • Sillman, A. J., Ito, H., Tomita, T.: Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. Vision Res. 9, 1435–1442 (1969 a).

    Google Scholar 

  • Sillman, A. J., Ito, H., Tomita, T.: Studies on the mass receptor potential of the isolated frog retina. II. On the basis of the ionic mechanism. Vision Res. 9, 1443–1451 (1969 b).

    Google Scholar 

  • Simon, E. J.: Two types of luminosity horizontal cells in the retina of the turtle. J. Physiol. (Lond.) 230, 199-211 (1973).

    Google Scholar 

  • Sokol, S., Muntz, W. R. A.: The spectral sensitivity of the turtle, Chrysemys picta picta. Vision Res. 6, 285-292 (1966).

    Google Scholar 

  • Strother, G. K.: Absorption spectra of retinal oil globules in turkey, turtle and pigeon. Exp. Cell. Res. 29, 349-355 (1963).

    Google Scholar 

  • Tomita,T.: Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb. Symp. Quant. Biol. 30, 559-566 (1965).

    Google Scholar 

  • Tomita, T.: Light-induced potential and resistance changes in vertebrate photoreceptors. In: Hand-book of sensory physiology, Vol. VII/2. Berlin: Springer 1972.

    Google Scholar 

  • Tomita, T., Tosaka, T., Watanabe, K., Sato, Y.: The fish EIRG in response to different types of illumination. J. Physiol. Soc. Jpn. 8,41-50 (1958).

    Google Scholar 

  • Toyoda,J., Nosaki, H., Tomita,T.: Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9,453-463 (1969).

    Google Scholar 

  • Underwood, G.: The eye. In: Biology of the reptilia. New York: Academic Press 1970. Wald, G.: On the distribution of vitamin A 1 and A2. J. gen. Physiol. 22, 391-415 (1939 a). Wald,G.: The porphyropsin visual system. J. gen. Physiol. 22,775-794 (1939b). Wald,G.: The visual systems of euryphaline fishes. J. Gen. Physiol. 25,235-245 (1941). Wald, G.: Retinal chemistry and the physiology of vision. In: Visual problems of colour. National Physical Laboratory Symposium No. 8. London: H.M. Stationary Office 1958

    Google Scholar 

  • Wald, G.: The photoreceptor process in vision. In: Handbook of physiology. I. Neurophysiology, Vol. l. Washington, D.C.: American Physiological Society, 1959.

    Google Scholar 

  • Wald, G., Zussman, H.: Carotenoids of the chicken retina. Nature 140, 197 (1937).

    Google Scholar 

  • Wald, G., Brown, P. K., Smith, P. H.: Cyan opsin, a new pigment of cone vision. Science 118, 505-508 (1953).

    Google Scholar 

  • Walls, G. L.: The vertebrate eye and its adaptive radiation. Bloomfield Hills, Michigan: The Cran-brook Institute of Science 1942, p. 611.

    Google Scholar 

  • Walls, G. L., Judd, H. D.: The intra-ocular colour-filters of vertebrates. Br. J. Ophthal. mol. 17, 641675, 705-725 (1933).

    Google Scholar 

  • Werblin, F. S., Dowling, J. E.: Organization of the retina of the mudpuppy Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339-355 (1969).

    Google Scholar 

  • Wojtusiak,R.J.: Ober den Farbensinn der Schildkroten. Z. vergl. Physiol. 18, 393-436 (1933). Wood, C. A.: The Fundus Oculi of Birds. Chicago: H. A. Fox, 1917.

    Google Scholar 

  • Yazulla,S.: Cone input to horizontal cells in the turtle retina. Vision Res. 16, 727-735 (1976a). Yazulla, S.: Cone input to bipolar cells in the turtle retina. Vision Res. 16, 737-744 (1976 b). Yoshikami, S., Hagins, W. A.: Light, calcium and the photocurrent of rods and cones. Biophys. J. 11, Abstract TPM-E 16 (1971).

    Google Scholar 

  • Yoshikami, S., Hagins, W. A.: Control of the dark current in vertebrate rods and cones. In: Biochemistry and physiology of visual pigments. Heidelberg: Springer 1973.

    Google Scholar 

  • Zwick, H., Granda, A. M.: Behaviorally determined dark adaptation functions in the turtle, Pseude-mys. Psychon. Sci. 11, 239-240 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Granda, A., Dvorak, C. (1977). Vision in Turtles. In: Crescitelli, F. (eds) The Visual System in Vertebrates. Handbook of Sensory Physiology, vol 7 / 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66468-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66468-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66470-0

  • Online ISBN: 978-3-642-66468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics