The Topography of Vision in Mammals of Contrasting Life Style: Comparative Optics and Retinal Organisation

  • Austin Hughes
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 7 / 5)


The eye to this day gives me a cold shudder


Ganglion Cell Receptive Field Retinal Ganglion Cell Retinal Image Binocular Vision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M.: Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247 (1946).Google Scholar
  2. Adams, A. D., Forrester, J. M.: The projection of the rat’s visual field on the cerebral cortex. Quart. J. exp. Physiol. 53, 327–336 (1968).Google Scholar
  3. Ajo, A.: On the refractive index of the retina. Acta. physiol. scand. 13, 130–149 (1949).Google Scholar
  4. Andrews, D. P.: Perception of contour orientation in the central fovea. Part II. Spatial integration. Vision Res. 7, 999–1013 (1967).Google Scholar
  5. Andrews, D. P., Butcher, A. K., Buckley, B. R.: Acuities for spatial arrangement in line figures: Human and ideal observers compared. Vision Res. 13, 599–620 (1973).Google Scholar
  6. Andrews, D. P., Hammond, P.: Mesopic increment threshold spectral sensitivity of single optic tract fibres in the cat: Cone rod interaction. J. Physiol. (Lond.) 209, 65–81 (1970a).Google Scholar
  7. Andrews, D. P., Hammond, P.: Suprathreshold spectral properties of single optic tract fibres in cat under mesopic adaptation: cone: Rod interaction. J. Physiol. (Lond.) 209, 83–103 (1970 b).Google Scholar
  8. Appelle, S.: Perception and discrimination as a function of stimulus orientation; the “oblique effect” in man and animals. Psychol. Bull. 87, 266–278 (1972).Google Scholar
  9. Apter, J.T.: Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol. 9, 73–86 (1946).Google Scholar
  10. Arey, L. B., Gore, M.: The numerical relationship between the ganglion cells of the retina and the fibres in the optic nerve of the dog. J. comp. Neurol. 77, 609–617 (1942).Google Scholar
  11. Armaly, M. F.: Studies on intraocular effects of the orbital parasympathetic pathway. Arch. Ophthal. (Chicago) 61, 14–29 (1959).Google Scholar
  12. Attneave, F.: Informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954).Google Scholar
  13. Aubert, H.: Die Bewegungsempfindung. Arch. ges. Physiol. 39, 347–370 (1886).Google Scholar
  14. Aubert, H.: Die Bewegungsempfindung. Arch. ges. Physiol. 40, 459–480 (1887).Google Scholar
  15. Aubert, H., Forster, R.: Beitrage zur Kenotniss des indirecten Sehens. (1) Untersuchungen fiber den Raumsinn der Retina. Arch. Ophthal. 3, 1–37 (1857).Google Scholar
  16. Bachl, A., Lukosz, W.: Experiments on super-resolution imaging of a reduced object field. J. opt. Soc. Amer. 57, 163–169 (1967).Google Scholar
  17. Baird, J. C.: Psychophysical Analysis of Visual Space. London: Pergamon Press 1970.Google Scholar
  18. Baldwin, W. R.: Some relationships between ocular, anthropometric and refractive variables in myopia. Doctoral Thesis, Indiana University 1964.Google Scholar
  19. Barany, E. H.: A theory of visual acuity and an analysis of the variability of visual acuity. Acta ophthal. (Kbh.) 24, 63–92 (1946).Google Scholar
  20. Barlow, H. B.: Possible principles underlying the transformation of sensory messages. In: Sensory Communication, Rosenblith, W. A. (ed.). New York: M.I.T. & Wiley 1961.Google Scholar
  21. Barlow, H. B.: Three points about lateral inhibition. In: Sensory Communication, Rosenblith, W. A. (ed.). New York: M.I.T. & Wiley 1961.Google Scholar
  22. Barlow, H. B.: The physical limits of visual discrimination. In: Photophysiology. vol. Ii, Giese, A. C. (ed.). New York: Academic Press 1964.Google Scholar
  23. Barlow, H. B.: Visual resolution and the diffraction limit. Science 149, 553–555 (1965).Google Scholar
  24. Barlow, H. B., Blakemore, C. B., Pettigrew, J. D.: The neural mechanisms of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).Google Scholar
  25. Barlow, H. B., Fitzhugh, R., Kuffler, S. W.: Change of organization in the receptive fields of the cat’s retina during dark adaptation. J. Physiol. (Lond.) 137, 338-354 (1957 a).Google Scholar
  26. Barlow, H. B., Fitzhugh, R., Kuffler, S. W.: Dark-adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (Lond.) 137, 327-337 (1957 b).Google Scholar
  27. Barlow, H. B., Hill, R. M., Levick, W. R.: Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (Lond.) 173, 377-407 (1964).Google Scholar
  28. Barlow, H. B., Levick, W. R.: The mechanism of directionally selective units in the rabbit’s retina. J. Physiol. (Lond.)178, 477-504 (1965).Google Scholar
  29. Barlow, H. B., Pettigrew, J. D.: Lack of specificity of neurones in the visual cortex of young kittens. J. Physiol. (Lond.) 218,98P-100P (1971).Google Scholar
  30. Barnett, S. A.: A Study in Behaviour. London: Methuen 1963.Google Scholar
  31. Baron,J., Verrier, M. L.: Refraction et cerveau des poissons a fovea. Contribution a 1'etude des correlations organiques. Bull. Biol. Fr. Belg. 85, 105-111 (1951).Google Scholar
  32. Barrett,J. W.: Do animals accommodate? Ophthal. Rev. 7, 255-270 (1898).Google Scholar
  33. Bartels, M.: Vergleichendes uber Augenbewegungen. In: Handbuch der normalen and pathologischen Physiologie. Berlin: Springer 12, 1920, pp. 1113-1165.Google Scholar
  34. Baylor, D. A., Fettiplace, R.: Light path and photon capture in turtle photoreceptors. J. Physiol. (Lond.) 248,433—464 (1975).Google Scholar
  35. Baylor, E. R., Shaw, E..: Refractive error and vision in fishes. Science, 136, 157-158 (1962). Beer, T.: Die Accommodation des Fischauges. Pflugers Arch. ges. Physiol. 58, 523-650 (1894). Bellairs, A.: The Life of Reptiles. London: Weidenfeld & Nicolson 1969.Google Scholar
  36. Bellhorn, R. W., Aguirre, G. D., Bellhorn, M. B.: Feline central retinal degeneration. Invest. Ophthal. 13,608—616 (1974).Google Scholar
  37. Bellhorn, R. W., Fischer, C. A.: Feline central retinal degeneration. J. anat. vet. med. Ass. 157, 842-849 (1970).Google Scholar
  38. Bennett, A. G., Francis, J. L.: Visual optics and the optical space sense. In: The Eye. Davson, H. (ed.). 2nd ed. London: Academic Press 1962.Google Scholar
  39. Berkley, M. A., Kitterle, F., Watkins, D. W.: Grating visibility as a function of orientation and retinal eccentricity. Vision Res. 15, 239-244 (1975).Google Scholar
  40. Berkley, M. A., Watkins, D. W.: Grating resolution and refraction in the cat estimated from evoked cerebral potentials. Vision Res. 13, 403-415 (1973).Google Scholar
  41. Berlin, R.: Ober die Schatzung der Entfernung bei Thieren. Z. vergl. Augenheilk. 7, 1-97 (1893). Berry, R. N.: Quantitative relations among vernier, real depth and stereoscopic depth acuities. J. exp. Psychol. 38,708 (1948).Google Scholar
  42. Bhatia, B.: Minimum separabile as a function of speed of moving object. Vision Res. 15, 23-33 (1975). Bickerdyke,J.: The Book of the All-Round Angler. London: Upcott Gill 1889.Google Scholar
  43. Binggeli, R. L., Paule, W. J.: The pigeon retina: Quantitative aspects of the optic nerve and ganglion cell layer. J. comp. Neurol. 137, 1-18 (1969).Google Scholar
  44. Bishop, A.: Use of the hand in lower primates. In: Evolutionary and Genetic Biology of Primates. Buettner-Janusch, J. (ed.). New York: Academic Press 1964.Google Scholar
  45. Bishop, P.O.: Neurophysiology of binocular single vision and stereopsis. In: Handbook of Sensory Physiology, vii/3 A, Jung, R. (ed.). Berlin: Springer-Verlag 1973, pp. 255-305.Google Scholar
  46. Bishop, P. O., Kozak, W., Vakkur, G. J.: Some quantitative aspects of the cat’s eye: Axis and plane of reference, visual field coordinates and optics. J. Physiol. (Lond.)163, 466-502 (1962).Google Scholar
  47. Bishop, G. H., Clare, M. H.: Organisation and distribution of fibers in the optic tract of the cat. J. comp. Neurol. 103,269-304 (1955).Google Scholar
  48. Bisti, S., Maffei, L.: Behavioural contrast sensitivity of the cat in various visual meridians. J. Physiol. (Lond.) 241, 201-210 (1974).Google Scholar
  49. Blake, R., Cool, S. J., Crawford, M. L. J.: Visual resolution in the cat. Vision Res. 14, 1211-1217 (1974). Blakemore, C.: The representation of three-dimensional visual space in the cat’s striate cortex. J. Physiol. (Lond.) 209,155-179 (1970).Google Scholar
  50. Blakemore, C., Fiorentini, A., Maffei, L.: A second neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 226, 725-739 (1972).Google Scholar
  51. Blakemore, C., Van Sluyters, R. C.: Innate and environmental factors in the development of the kitten’s visual cortex. J. Physiol. (Lond.) 248, 663-716 (1975).Google Scholar
  52. Block, M. T.: A note on the refraction and image formation of the rat’s eye. Vision Res. 9, 705-711 (1969).Google Scholar
  53. Bloom, M., Berkley, M. A.: Behavioural determination of the cat’s near point of accommodation. ARVO Proc., Sarasota, 1976.Google Scholar
  54. Bonds, A. B.: Optical quality of the living cat eye. J. Physiol. (Lond.) 243, 777-795 (1974).Google Scholar
  55. Bonds, A. B., Enroth-Cugell, C., Pinto, L. H.: Image quality of the cat eye measured during retinal ganglion cell experiments. J. Physiol. (Lund.) 220, 383—401 (1972).Google Scholar
  56. Bough, E. W.: Stereoscopic vision in the macaque monkey: A behavioural demonstration. Nature (Lond.) 225,42-44 (1970).Google Scholar
  57. Bourdon, B.: La Perception Visuelle de 1'Espace. Paris, 1902.Google Scholar
  58. Boycott, B. B., Dowling, J. E.: Organisation of the primate retina: Light microscopy. Phil. Trans. B. 255,109-184 (1969).Google Scholar
  59. Boycott, B. B., Kolb. H.: The connections between bipolar cells and photoreceptors in the retina of the domestic cat. J. comp. Neurol. 148,91-114 (1973).Google Scholar
  60. Boycott, B. B., Wassle, H.: The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. (Lond.) 240, 397-419 (1974).Google Scholar
  61. Boynton, R. M.: The visual system: environmental information. In: Handbook of Perception: Seeing. Vol. 1. Carterette, E. C. and Friedman, M. P. (eds.). Berlin: Springer 1975, pp. 285-306. Bracewell,R.: The Fourier Transform and its Applications. New York: McGraw Hill (1965).Google Scholar
  62. Brandle, K., Stirling, R. V.: Development of the ipsilateral visual projection in axolotls treated with thyroxine. J. Physiol. (Lond.) 250, 30-31 P (1975).Google Scholar
  63. Brecher, G. A.: Optisch ausgeloste Augen-and Korperreflexe am Kaninchen. Z. vergl. Physiol. 23 374-390 (1936).Google Scholar
  64. Brett, J. R.: The sense organs: The eye. In: The Physiology of Fishes. Brown, M. E. (ed.). New York Academic Press 1957.Google Scholar
  65. Brewster, D.: On the structure of the crystalline lens in fishes and quadrupeds as ascertained by its action on polarised light. Phil. Trans. 311-317 (1816).Google Scholar
  66. Brewster, Sir David: A Treatise on Optics. London: Longman, Brown, Green & Longman, 1830. Brewster, Sir David: Memoirs of the Life, Writings and Discoveries of Sir Isaac Newton. Edinburgh Edmonston & Douglas 1860.Google Scholar
  67. Brillouin, L.: Science and Information Theory. London: Academic Press, 1962.Google Scholar
  68. Brindley, G. S.: The deformation phosphene and the funnelling of light into rods and cones. J. Physiol. (Lond.)188,24-25P (1966).Google Scholar
  69. Brindley,G. S.: Physiology of the Retina and Visual Pathway. London: Edward Arnold 1970.Google Scholar
  70. Brindley, G. S., Hamasaki, D. I.: Histological evidence against the view that the cat’s optic nerve contains centrifugal fibres. J. Physiol. (Lond.) 184, 444-449 (1966).Google Scholar
  71. Brindley, G. S., Lewin, W. S.: The sensations produced by electrical stimulation of the visual cortex. J. Physiol. (Lond.)196, 479-493 (1968).Google Scholar
  72. Brooke, R. N. L., Downer, J. de C., Powell, T. P. S.: Centrifugal fibres to the retina in the monkey and cat. Nature (Lond.) 207,1365-1367 (1965).Google Scholar
  73. Brown, K. T.: A linear area centralis extending across the turtle retina and stabilized to the horizon by nonvisual cues. Vision Res. 9, 1053-1062 (1969).Google Scholar
  74. Brown, J. E., Rojas, J. A.: Rat retinal ganglion cells; receptive field organisation and maintained activity. J. Neurophysiol. 28,1073-1090 (1965).Google Scholar
  75. Browne, T.: The Works of Sir Thomas Browne. Edinburgh; Grant 1912.Google Scholar
  76. Briickner, R.: Beitrage zur Biologie des Auges. 1. Mitteilung: Ober die Netzhaut von Feliden and Caniden. Biol. Zbl. 80, 37-66 (1961 a).Google Scholar
  77. Briickner, R.: Beitrage zur Biologie des Auges. 2. Mitteilung: Ober die Netzhaut von Huftieren. Biol. Zbl. 80,129-136 (1961 b).Google Scholar
  78. Bruesch, S. R., Arey, L. B.: The number of myelinated and unmyelinated fibres in the optic nerve of vertebrates. J. comp. Neurol. 77, 631-665 (1942).Google Scholar
  79. Buffon, Count of.: Buffon’s Natural History. Vol. 6. London: Symonds 1812.Google Scholar
  80. Buchdahl, H. A.: An Introduction to Hamiltonian Optics. New York: Cambridge University Press 1970.Google Scholar
  81. Buissert, P., Imbert, M.: Visual cortical cells: their developmental properties in normal and dark reared kittens. J. Physiol. (Lond.) 255, 511-525 (1976).Google Scholar
  82. Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., Fuchs, A. F.: Monkey retinal ganglion cells Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J. comp. Neurol. 164, 265-286 (1975).Google Scholar
  83. Bunt, A. H., Lund, R. D., Lund, J. S.: Retrograde axonal transport of horseradish peroxidase by ganglion cells of the albino rat retina. Brain Res. 73, 215-228 (1974).Google Scholar
  84. Burton, G. J.: Evidence for nonlinear response processes in the human visual system from measurements on the thresholds of spatial beat frequencies. Vision Res. 13, 1211-1225 (1973).Google Scholar
  85. Burt, E. T., Catton, W. T.: A diffraction theory of insect vision. I. An experimental study of visual acuity in certain insects. Proc. roy. Soc. B 157, 53–67 (1962).Google Scholar
  86. Butcher, E.O.: The structure of the retina of Fundulus heteroclitus and the regions of the retina associated with the different chromatophoric responses. J. exp. Zool. 79, 275–293 (1938).Google Scholar
  87. Byram, G. M.: The physical and photochemical basis of visual resolving power. Pt. II Visual acuity and the photochemistry of the retina. J. opt. Soc. Amer. 34, 718–738 (1944).Google Scholar
  88. Cajal, Ramon y.S.: La Retine des Vertebres. Cellule 9, 119 (1892).Google Scholar
  89. Cajal, Ramon y.S.: Histologie du Systeme Nerveaux. Madrid: Conseijo Superior de Investigaciones Cientificas 1955.Google Scholar
  90. Campbell, F. W.: Twilight myopia. J. opt. Soc. Amer. 43, 925–926 (1953).Google Scholar
  91. Campbell, F. W.: The transmission of spatial information through the visual system. In: The Neurosciences, Third Study Program. Cambridge, Mass.: M.I.T. Press 1974.Google Scholar
  92. Campbell, F. W., Cooper, G. F., Robson, J. G., Sachs, M. B.: The spatial selectivity of visual cells of the cat and the squirrel monkey. J. Physiol. (Lond.) 204, 120P–121P (1969).Google Scholar
  93. Campbell, F. W., Green, D. G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965).Google Scholar
  94. Campbell, F. W., Gregory, A. H.: Effect of size of pupil on visual acuity. Nature (Lond.) 187, 1121–1123 (1960).Google Scholar
  95. Campbell, F. W., Gubisch, R. W.: Optical quality of the human eye. J. Physiol. (Lond.) 186, 558–578 (1966).Google Scholar
  96. Campbell, F. W., Kulikowski, J. J., Levinson, J.: The effect of orientation on the visual resolution of gratings. J. Physiol. (Lond.) 187, 427–436 (1966).Google Scholar
  97. Campbell, F. W., Maffei, L.: Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. J. Physiol. (Lond.) 207, 635–652 (1970).Google Scholar
  98. Campbell, F. W., Maffei, L., Piccolino, M.: The contrast sensitivity of the cat. J. Physiol. (Lond.) 229, 719–731 (1973).Google Scholar
  99. Campbell, F. W., Primrose, J. A. E.: The state of accommodation of the human eye in darkness. Trans. ophthal. Soc. U.K. 73, 353–361 (1953).Google Scholar
  100. Campbell, F. W., Robson, J. G.: High speed infra-red optometer. J. opt. Soc. Amer. 49, 268–272 (1959).Google Scholar
  101. Campbell, F. W., Robson, J. G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968).Google Scholar
  102. Canella, F.: Quelques recherches sur la vision monoculaire. C.R. Soc. Biol. (Paris) 122, 1221–1224 (1936a).Google Scholar
  103. Canella, F.: Les problemes du chiasma et de la vision binoculaire. Quelques recherches sur la vision monoculaire. J. Psychol. norm. path. 33, 696–711 (1936 b).Google Scholar
  104. Cartmill, M.: Arboreal adaptations and the origin of the order Primates. In: The Functional and Evolutionary Biology of Primates. Tuttle, R. (ed.). Chicago: Aldine/Alherton 1972.Google Scholar
  105. Cartmill, M.: Rethinking primate origins. Science, 184, 436–443 (1974).Google Scholar
  106. Catford, G. V., Oliver, A.: Development of visual acuity. Arch. Dis. Childh. 48, 47–50 (1973).Google Scholar
  107. Cauchy, A. D.: Memoire sur diverses formules d'analyse. C.R. Acad. Sci. (Paris) Paris 12, 283–298 (1841).Google Scholar
  108. Charman, W.N., Tucker, J.: The optical system of the goldfish eye. Vision Res. 13, 1–8 (1973).Google Scholar
  109. Chievitz, J. H.: Untersuchungen uber die Area centralis retinae. Arch. Anat. Physiol. Lpz. Anat. Abteil. Supp1., 139–396 (1889).Google Scholar
  110. Chievitz, J. H.: Ober das Vorkommen der area centralis retinae in den vier hoheren Wirbelthierklassen. Arch. J. Anat. Physiol. Suppl. 15, 311–334 (1891).Google Scholar
  111. Chin, N. B., Ishikawa, S., Lappin, H., Davidowitz, J., Breinin, G. M.: Accommodation in monkeys induced by midbrain stimulation. Invest. Ophthal. 7, 386–396 (1968).Google Scholar
  112. Chirlian, P.M.: The effective bandwidth of a system. Quart. J. Applied Math. 25, 311–312 (1967).Google Scholar
  113. Chow, K. L., Spear, P. D.: Morphological and functional effects of visual deprivation on the rabbit visual system. Exp. Neurol. 42, 429–447 (1974).Google Scholar
  114. Citron, M. C., Pinto, L. H.: Retinal image: Larger and more illuminous for a nocturnal than for a diurnal lizard. Vision Res. 13, 873–876 (1973).Google Scholar
  115. Clarke, P.G.H.: The organization of visual processing in pigeon cerebellum. J. Physiol. (Lond.) 243, 267–285 (1974).Google Scholar
  116. Clarke, P. G. H., Whitteridge, D.: The cortical visual areas of the sheep. J. Physiol. (Lond.) 256, 497–508 (1976).Google Scholar
  117. Clarke, P. G. H., Donaldson, I. M. L., Whitteridge, D.: Binocular visual mechanisms in cortical areas I and II of the sheep. J. Physiol. (Lond.) 256, 509-526 (1976).Google Scholar
  118. Cleland, B. G., Dubin, W. M., Levick, W. R.: Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol. (Lond.) 217, 475-496 (1971).Google Scholar
  119. Cleland, B. G., Levick, W. R.: Brisk and sluggish concentrically organised cells in the cat’s retina. J. Physiol. (Lond.) 240,421—456 (1974a).Google Scholar
  120. Cleland, B. G., Levick, W. R.: Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. (Lond.) 240, 457-492 (1974 b).Google Scholar
  121. Cleland, B. G., Levick, W. R., Wassle, H.: Physiological identification of a morphological class of cat retinal ganglion cells. J. Physiol. (Lond.) 248,151-171 (1975).Google Scholar
  122. Cleland, B. G., Morstyn, R., Wagner, H. G., Levick, W. R.: Long-latency retinal input to lateral geniculate neurones of the cat. Brain Res. 91, 306-310 (1975).Google Scholar
  123. Cohn,T. E.: Quantum fluctuation limit in foveal vision. Vision Res. 16, 573-579 (1976). Colbert, E. H.: Evolution of the Vertebrates. New York: Wiley 1967.Google Scholar
  124. Coleman, E.: The Echidna under domestication. Vict. Nat. 51, 12-21(1934). Coleman, E.: The Echidna under domestication. Vict. Nat. 52, 151-154 (1935). Collet,T.: Stereopsis in toads. Nature (Lond.) 267, 349-351(1977).Google Scholar
  125. Collewijn, H.: The optokinetic system of the rabbit. Docum. ophthal. (Den Haag) 30, 205-226 (1971). Collewijn, H.: Eye and head movements in freely moving rabbits. J. Physiol. (Lond.) 266, 471-498 (1977).Google Scholar
  126. Collewijn, H., Zuidam, I.: Eye and head movements in the freely moving rabbit. Brain Res. 127, 360361(1977).Google Scholar
  127. Collins, E. T.: The Bowman Lecture: Changes in the visual organs correlated with the adoption of arboreal life and with the assumption of the erect posture. Trans. ophthal. Soc. U.K. 41, 10-90 (1921).Google Scholar
  128. Cone, R. A.: Quantitative relations of the rat electroretinogram. J. gen. Physiol. 46, 1267-1286 (1963). Cott, H. B.: Adaptive coloration in Animals. London: Methuen 1966.Google Scholar
  129. Cowan, W. M., Powell, J. P. S.: Centrifugal fibres in the avian visual system. Proc. roy. Soc. B 158, 232252(1963).Google Scholar
  130. Cowey, A., Rolls, E. T.: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447—454 (1974).Google Scholar
  131. Cragg, B. G.: Centrifugal fibres to the retina and olfactory bulb, and composition of the supraoptic commissures in the rabbit. Exp. Neurol. 5,406—427 (1962).Google Scholar
  132. Currie,J., Cowan, W. M.: Evidence for the late development of the uncrossed retino-thalamic projections in the frog Rana pipiens. Brain Res. 71, 133-139 (1974).Google Scholar
  133. Daniel, P. M., Whitteridge, D.: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203-221(1961).Google Scholar
  134. Darwin, C. R.: In: The Autobiography of Charles Darwin and Selected Letters. Darwin, F. (ed.). London: Murray 1860.Google Scholar
  135. Daw, N. W., Pearlman, A. L.: Cat colour vision: One cone process or several? J. Physiol. (Lond.) 201, 745-764 (1969).Google Scholar
  136. De Graauw, J. G., Van Hof, M. W.: The relation between behaviour and eye refraction in the rabbit. Brain Res. 127, 360 (1977).Google Scholar
  137. De Groot, S. G., Gebhard,J. W.: Pupil size as determined by adapting luminances. J. opt. Soc. Amer. 42,492—495(1952).Google Scholar
  138. De Monasterio, F. M., Gouras, P.: Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251, 167-195 (1975).Google Scholar
  139. De Oliveria, L. F., Ripps, H.: The “area centralis” of the owl monkey (Aotes trivirgatus). Vision Res. 8, 223-228 (1968).Google Scholar
  140. Detwiler, S. R.: Vertebrate Photoreceptors. New York: Macmillan 1943.Google Scholar
  141. De Valois, R. L., Morgan, H., Snodderly, D. M.: Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res. 14, 75-81 (1974).Google Scholar
  142. Ditchburn,R. W.: Eye movements in relation to retinal action. Optica Acta. 1, 171-176 (1955). Ditchburn, R. W.: Eye Movements and Visual Perception. Clarendon Press: Oxford 1973.Google Scholar
  143. Ditchburn, R. W.: Light. 3rd ed. Academic Press: London 1976.Google Scholar
  144. Dobree, J. H., Weale, R. A.: (In: Weale, R. A.: Problems of Peripheral Vision, 1956) Brit J. Ophthal. 40, 392—414 (1954).Google Scholar
  145. Doesschate,J.ten.: Visual acuity and distribution of percipient elements on retina. Ophthalmologica (Basel)112, 1-18 (1946).Google Scholar
  146. Donner, K. O., Reuter, T.: The dark adaptation of single units in the frog’s retina and its relation to the regeneration of rhodopsin. Vision Res. 5, 615—632 (1965).Google Scholar
  147. Donovan,A.: The nerve fibre composition of the cat optic nerve. J. Anat. 101, 1-11(1967).Google Scholar
  148. Dor,H.: Beitrage zur Elektrotherapie der Augenkrankheiten. Arch. Ophthal. 19, 316-321 (1873). Dowling, J. E.: Structure and function in the all-cone retina of the ground squirrel. In: The Physiological Basis for Form recognition. 17-23, N.I.H. sponsored at Brown University, Providence R.I. 1964.Google Scholar
  149. Dowling,J. E., Boycott, B. B.: Organization of the primate retina: Electron microscopy. Proc. roy. Soc. B 166, 80-111(1966).Google Scholar
  150. Drasdo,N.: The neural representation of visual space. Nature (Lond.) 266, 554-556 (1977).Google Scholar
  151. Drasdo, N., Fowler, C. W.: Nonlinear projection of the retinal image in a wide angle schematic eye. Brit. J. Ophthal. 58,709-714 (1974).Google Scholar
  152. Dreher, B., Zernicki, B.: Visual fixation reflex: behavioural properties and neural mechanism. Acta biol. exp. 29,359-383 (1969).Google Scholar
  153. Dubar,J., Thieulin, G.: L'etat de refraction des yeux des Mammiferes domestiques. Rev. gen. Med. vet. 36,361-565 (1927).Google Scholar
  154. Dubin, M. W.: Anatomy of the vertebrate retina. In: The Eye: Comparative physiology. Davson. H. and Graham, L. T. (eds.). Vol. 6. London: Academic Press 1974, pp. 227-256.Google Scholar
  155. Duijm, M.: On the position of a ribbon-like central area in the eyes of some birds. Arch. neerl. Zool. 13, Suppl., 128-145 (1959).Google Scholar
  156. Duke-Elder, W. S.: Text-book of Ophthalmology, Vol. 1. London: Henry Kimpton 1932.Google Scholar
  157. Duke-Elder, W. S.: System of Ophthalmology. Vol. 1. In: The Eye in Evolution. London: Henry Kimpton 1958.Google Scholar
  158. Duke-Elder, W. S.: System of Ophthalmology. Vol. 5. In: Ophthalmic Optics and Refraction. London Henry Kimpton 1970.Google Scholar
  159. Du Pont, J., De Groot, P. J.: A schematic dioptric apparatus for the frog’s eye. Vision Res. 16, 803-810 (1976).Google Scholar
  160. Eayrs,J. T.:Relationship between the ganglion cell layer of the retina and the optic nerve in the rat. Brit. J. Ophthal. 36,453 (1952).Google Scholar
  161. Edey, M.: The Cats of Africa. New York: Time-Life 1968.Google Scholar
  162. Eisenberg, J. F., Leyhausen, P.: The phylogenesis of predatory behaviour in mammals. Z. Tierpsychol. 30, 59-93 (1972).Google Scholar
  163. Elliot Smith, G.: Presidential address to the Anthropological Section. In: Report of the British Association, Dundee, 575-598 (1912).Google Scholar
  164. Elliot Smith, G.: Evolution of Man. London: Humphrey Milford 1924. Elliot Smith, G.: The new vision. Nature (Lond.) 121, 680-681(1928). Elliot Smith, G.: New light on vision. Nature (Lond.) 125, 820-824 (1930). Elul, R., Marchiafava, P. L.: Accommodation of the eye as related to behaviour in the cat. Arch. ital. Biol. 102,616-644 (1964).Google Scholar
  165. Engstr6m, K.: Cone types and cone arrangements in teleost retinae. Acta. zool. (Stockh.) 44, 179-243 (1963).Google Scholar
  166. Enoch,J. M.: Waveguide modes in retinal receptors. Science. 133,1353-1354 (1961).Google Scholar
  167. Enoch, J. M.: Marked accommodation, retinal stretch, monocular space perception and retinal receptor orientation. Amer. J. Optom. Physiol. Opt. 52, 376-392 (1975).Google Scholar
  168. Enoch,J. M.: Retinal receptor orientation and the role of fiber optics in vision. Amer. J. Optom. 49, 455-471(1972).Google Scholar
  169. Enoch, J. M., Hope. G. M.: An analysis of retinal receptor orientation. III. Results of initial psycho-physical tests. Invest. Ophthal. 11, 765-782 (1972).Google Scholar
  170. Enroth-Cugell, C., Pinto, L. H.: Properties of the surround response mechanism of cat retinal ganglion cells and centre-surround interaction. J. Physiol. (Lond.) 220, 403-439 (1972).Google Scholar
  171. Enroth-Cugell, C., Robson,J. G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517-552 (1966).Google Scholar
  172. Enroth-Cugell, C., Robson,J. G.: Direct measurement of image quality in the cat eye. J. Physiol. (Lond.) 239, 31 P-33 P (1974).Google Scholar
  173. Errington, P. L.: Of Predation and Life. Iowa State Univ. Press. Ohio 1967. Ewer, R. F.: The Carnivores. London: Wiedenfeld & Nicolson 1973.Google Scholar
  174. Ferree, C. E., Rand, G.: Report of a Joint Discussion on Vision by the Physical and Optical Societies. Cambridge, Mass.: University Press 1932, p. 244.Google Scholar
  175. Fick, A.E.: Ober Stabchensehscharfeand Zapfenscharfe. Arch. Ophthal. 45, 336–356 (1898).Google Scholar
  176. Fiennes, R., Fiennes, A.: The Natural History of the Dog. London: Weidenfeld & Nicholson 1968.Google Scholar
  177. Fincham, E.F.: The mechanism of accommodation. Brit. J. Ophthal. 2 Monograph Suppl. 8 (1937).Google Scholar
  178. Fischer, B.: The overlap of receptive field centres and representation of the visual field in the cat’s optic tract. Vision Res. 13, 2113–2120 (1973).Google Scholar
  179. Fisher, B., May, H.O.: Invariances in the cat retina: Principles in the relations between sensitivity size and position of receptive fields of ganglion cells. Exp. Brain. Res. 11, 448–464 (1970).Google Scholar
  180. Fischer, F.: Ober Fixierung der Linsenform mittels der Gefriermethode. Arch. Augenheilk. 56, 342 (1907).Google Scholar
  181. Fisher, R. F.: The elastic constants of the human lens capsule. J. Physiol. (Lond.) 201, 1–19 (1969 a).Google Scholar
  182. Fisher, R. F.: The significance of the shape of the lens and capsular energy changes in accommodation. J. Physiol. (Lond.) 201, 21–47 (1969 b).Google Scholar
  183. Fisher, R. F.: The elastic constants of the human lens. J. Physiol. (Lond.) 212, 147–180 (1971).Google Scholar
  184. Fisher, R. F.: Presbyopia and the changes with ageing in the human crystalline lens. J. Physiol. (Lond.) 228, 765–779 (1973).Google Scholar
  185. Fite, K. V.: Single unit analysis of binocular neurons in the frog optic tectum. Exp. Neurol. 24, 475–486 (1969).Google Scholar
  186. Fite, K. V., Rosenfield-Wessels, S.: A comparative study of deep avian foveas. Brain Behav. Evol. 12, 97–115 (1975).Google Scholar
  187. Flamant, F.: Etude de la repartition de lumi&e dans 1'image retinienne d'une fente. Rev. Opt. 34, 433–459 (1955).Google Scholar
  188. Fleisch, A.: Tonische Labyrinth reflex e auf die Augenstellung. 194, 554–573 (1922).Google Scholar
  189. Fletcher, A., Murphy, T., Young, A.: Solutions of two optical problems. Proc. roy. Soc. A 223, 216–225 (1954).Google Scholar
  190. Flom, M. C.: The empirical longitudinal horopter in anomalous correspondence. Ph.D. Thesis, Univ. of California, Berkeley 1957.Google Scholar
  191. Forrester, J. M.: Rolling movements of the sheep’s eye. J. Physiol. (Lond.) 244, 72P (1975).Google Scholar
  192. Forrester, J. M., Peters, A.: Nerve fibres in optic nerve of rat. Nature (Lond.) 214, 245–247 (1967).Google Scholar
  193. Fox, M. W.: Ontogeny of prey-killing behaviour in canidae. Behaviour 35, 259–272 (1969).Google Scholar
  194. Fox, R., Blake, R. R.: Stereoscopic vision in the cat. Nature (Lond.) 255, 55–56 (1971).Google Scholar
  195. Fox, R., Lehmkuhle, S., Westendorf, D. H.: Falcon visual acuity. Science 192, 263–265 (1976).Google Scholar
  196. Franz, V.: Die Akkommodation des Selachierauges and seine Abblendungsapparate, nebst Befunden and der Retina. Zool. Jb. Abt. allg. Zool. Physiol. Tiere 49, 323–462 (1931).Google Scholar
  197. Franz, V.: Vergleichende Anatomie des Wirbeltierauges. In: Handbuch der vergleichenden Anatomie der Wirbeltiere. Bolk, Goppert, Kallius, and Lubosch (eds.). 2, Berlin: Urban & Schwarzenberg 1934, pp. 989–1292.Google Scholar
  198. Frazetta, T. H.: Studies on the morphology and function of the skull in the Boidae Serpentes. II. Morphology and function of the jaw apparatus in Python sebae and Python Molurus. J. Morph. 118, 217–296 (1966).Google Scholar
  199. Freeman, R., Thibos, L.: Electrophysiological evidence that abnormal early visual experience can modify the human brain. Science, N.Y. 180, 876–878 (1973).Google Scholar
  200. French, A. S., Snyder, A. W., Stavenga, D. G.: Image degradation by a non-uniform retinal mosaic. Biol. Cybern. in press (1977).Google Scholar
  201. Freytag, G.: Die Brechungsindices der Linse and der flussigen Augenmedien bei der Katze and beim Kaninchen. Arch. vergl. Ophthal. 1, 61–72 (1910).Google Scholar
  202. Frieden, B. R.: Optical transfer of the three-dimensional object. J. opt. Soc. Amer.. 57, 56–66 (1967).Google Scholar
  203. Frisen, L., Frisen, M.: A simple relationship between the probability distribution of visual acuity and the density of retinal output channels. Acta Ophthalmol. 54, 437–443 (1976).Google Scholar
  204. Frisen, L., Glansholm, A.: Optical and neural resolution in peripheral vision. Invest. Ophthal. 14, 528–536 (1975).Google Scholar
  205. Frith, H. J.: Wildlife Conservation. Sydney: Angus & Robertson 1973.Google Scholar
  206. Fry, G. A.: Factors contributing to the discrepancy between subjective and stereoscopic determina-tions of the refraction of the eye. The O-Eye-O, 33, 16–25 (1967).Google Scholar
  207. Fry, G. A.: The optical performance of the human eye. Prog. in Optics 8, 23–131 (1970).Google Scholar
  208. Fuchs, A. F.: Saccadic and smooth pursuit eye movements in the monkey. J. Physiol. (Lond.) 191, 609–631 (1967).Google Scholar
  209. Fukuda, Y.: A three group classification of rat retinal ganglion cells; histological and physiological studies. Brain Res. 19, 327–344 (1977).Google Scholar
  210. Fukuda,Y., Stone,J.: The retinal distribution and central projection of Y, X and W cells of the cut’s retina. J. Neurophysiol. 37, 749-772 (1974).Google Scholar
  211. Gabor,D.: Progress in Optics, vol. I. Wolf, E. (ed.) Amsterdam: North-Holland (1961).Google Scholar
  212. Gallego,A.: Horizontal and amacrine cells in the mammal’s retina. Vision Res. Suppl. 3, 33-50 (1971). Gaupp, E.: Lehre von den Eingeweiden, dem Integument and den Sinnesorganen. Ecker’s u. Wiederheim’s Anatomie des Frosches. Braunschweig 3 (1904).Google Scholar
  213. Gauss,J. K. F.: Dioptrische Untersuchungen. Gottingen, 1841.Google Scholar
  214. Gaze, R. M.: The Formation of Nerve Connections. London: Medical Books Ltd. 1970.Google Scholar
  215. Gaze, R. M., Jacobson, M.: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47,273-280 (1962).Google Scholar
  216. Gaze, R. M., Jacobson, M.: The path from the retina to the ipsilateral optic tectum of the frog. J. Physiol. (Lond.) 165, 73-74 (1963).Google Scholar
  217. Gaze, M., Keating, M. J.: Further studies on the restoration of the contralateral retina tectal projection following regeneration of the optic nerve in the frog. Brain Res. 21, 207-216 (1970).Google Scholar
  218. Gaze, R. M., Keating, M. J., Szekely, G., Beazley, L.: Binocular interaction in the formation of specific intertectal neuronal connections. Proc. roy. Soc. B.175, 107-147 (1970).Google Scholar
  219. Geiger, G., Poggio, T.: The Miiller-Lyer-Figure and the fly. Science 190,479—480 (1975).Google Scholar
  220. Georgeson, M. A., Sullivan, G. D.: Contrast constancy: Deblurring in human vision by spatial fre-quency channels. J. Physiol. (Lond.) 252, 627-656 (1975).Google Scholar
  221. Gibson, J. J.: The Perception of the Visual World. Boston: Houghton-Mifflin 1950.Google Scholar
  222. Gibson, J. J.: The Senses Considered as Perceptual Systems. Boston: Houghton-Mifflin 1966.Google Scholar
  223. Gilbert, D. S., Fender, D. H.: Contrast thresholds measured with stabilised and non-stabilised sine wave gratings. Optica acta 16,191-204 (1969).Google Scholar
  224. Glickstein, M., Millodot, M.: Retinoscopy and eye size. Science, 168, 605-606 (1970).Google Scholar
  225. Goodge, W. R.: Adaptations for amphibious vision in the dipper (Cinclus mexicanus). J. Morph. 107, 79-91(1960).Google Scholar
  226. Gordon, D. A.: Static and dynamic fields in human space perception. J. opt. Soc. Amer. 55, 1296-1303 (1965).Google Scholar
  227. Gouras, P.: The effects of light adaptation on rod and cone receptive field organization of monkey ganglion cells. J. Physiol. (Lond.) 192, 747-760 (1967).Google Scholar
  228. Gouras, P.: The function of the midget cell system in primate color vision. Vision Res. Suppl. 3, 397410(1971).Google Scholar
  229. Gouras, P., Link, K.: Rod and cone interaction in dark-adapted monkey ganglion cells. J. Physiol. (Lond.)184, 499-510 (1966).Google Scholar
  230. Graham, M. V., Gray, O. P.: Refraction of premature babies eyes. Brit. med. J. 1, 1452-1454 (1963). Green, D. G.: Regional variations in the visual acuity for interference fringes on the retina. J. Physiol. (Lond.) 207, 351-356 (1970).Google Scholar
  231. Gregory, R. L.: Distortion of visual space as inappropriate constancy scaling. Nature (Lond.) 199, 678—680 (1963).Google Scholar
  232. Gregory, R. L., Harris, J. P.: Illusion destruction by appropriate scaling. Perception 4, 203-220 (1975). Grossman, K., Meyerhausen, M.: Beitrag zur Lehre vom Gesichtsfeld bei Saugethieren. Arch. Ophthal. 23,217 (1877).Google Scholar
  233. Gullstrand, A.: Die optische Abbildung in heterogenen Medien and die Dioptrik der Kristallinse des Menschen. K. sv. vet. Handl. 43,1-58 (1908).Google Scholar
  234. Gullstrand, A.: Appendix in Helmholtz' Physiologische Optik, 3rd ed. 1909 (Rep. Dover, New York 1962 of trans. by J.P.C. Soothall for Am. Opt. Soc.) 1924.Google Scholar
  235. Hage, S. G. el, Berny, F.: Contribution of the crystalline lens to the spherical aberration of the eye. J. opt. Soc. Amer. 63, 205-211(1973).Google Scholar
  236. Haines,R. W.: Arboreal or terrestrial ancestry of placental animals. Quart. Rev. Biol. 33, 1-23 (1958). Hall, W. C., Kaas, J. H., Killackey, H., Diamond, I. T.: Cortical visual areas in the grey squirrel (Sciurus carolinesis): A correlation between cortical evoked potential maps and architectonic subdivisions. J. Neurophysiol. 34,437—451 (1971).Google Scholar
  237. Haller,A.: Elementa Physiologae Corporis Humani. Lausannae: Fransisci Grasset & Sociorum 1769. Hamdi, F. A., Whitteridge, D.: The representation of the retina on the optic tectum of the pigeon. Quart. J. exp. Physiol. 39,111-119 (1954).Google Scholar
  238. Harkness, L.: Chameleons use accommodation cues to judge distance. Nature (Lond.) 267, 346-349 (1977).Google Scholar
  239. Harris, C. J.: Otters. London: World Naturalist Series, Weidenfeld Nicholson 1968.Google Scholar
  240. Harris, W.: Binocular and stereoscopic vision in man and other vertebrates with its relation to the decussation of the optic nerves, the ocular movements, and the pupil light reflex. Brain 27, 107147(1904).Google Scholar
  241. Hartridge, H.: The limit to peripheral vision. J. Physiol. (Lond.) 53, xvii-xviii (1919).Google Scholar
  242. Hartridge, H.: The special senses. In: Principles of Human Physiology. Evans, C. L. (ed.). London Churchill 1952, pp. 377—455.Google Scholar
  243. Hartridge, H., Yamada, K.: Accommodation and other optical properties of the eye of the cat. Brit. J. Ophthal. 6,481-492 (1922).Google Scholar
  244. Hay, G. A., Chesters, M. S.: Signal-transfer functions in threshold and suprathreshold vision. J. opt. Soc. Amer. 62,990-998 (1972).Google Scholar
  245. Hecht, S., Mintz, E. V.: The visibility of single lines at various illuminations and the retinal basis of visual resolution. J. gen. Physiol. 22, 593-612 (1939).Google Scholar
  246. Hecht, S., Shlaer, S., Pirenne, M. H.: Energy quanta and vision. J. gen. Physiol. 25, 819-840 (1942). Helmholtz, H. von: Uber die Accommodation des Auges. Arch. Ophthal. 1(1855).Google Scholar
  247. Helmholtz, H. von: Handbuch der Physiologischen Optik (1856-1866), Gullstrand, A., Kries, J., Nagel, W. (eds.). 3rd ed. 1909. Rep. New York: Dover 1962, of trans. by J.P.C. Southall for Amer. opt. Soc., 1924.Google Scholar
  248. Hendrickson, A. C., Wilson, M. E., Toyne, M. J.: The distribution of optic nerve fibres in Macaca mulatta. Brain Res. 23,425—427 (1970).Google Scholar
  249. Hennessy, R. T., Iida, T., Shiina, K., Leibowitz, H. W.: The effect of pupil size on accommodation. Vision Res. 16, 587-589 (1976).Google Scholar
  250. Henning, G. B., Hertz, B. G., Broadbent, D. E.: Some experiments bearing on the hypothesis that the visual system analyses spatial patterns in independent bands of spatial frequency. Vision Res. 15, 887-897 (1975).Google Scholar
  251. Hensen, V., Volcker, C.: Experimental Untersuchungen Uber dem Mechanismus Akkommodation. Kiel 1868.Google Scholar
  252. Heric, T. M., Kruger, L.: Organization of the visual projection upon the optic tectum of a reptile (Alligator mississippiensis). J. comp. Neurol. 124, 101-111 (1965).Google Scholar
  253. Hering, E.: Der Raumsinn and die Bewegungen der Augen. In: Handbuch der Physiologie, 3. Her-mann, L. (ed.) Leipzig: Vogel 1879, pp. 343-601.Google Scholar
  254. Hermann, G.: Beitrage zur Physiologie des Rattenauges. Z. Tierpsychol. 15, 462-518 (1958).Google Scholar
  255. Hess, C.: Gesichtsinn.: Handbuch der vergleichenden Physiologie. Winterstein, H. (ed.). Jena: Fischer 1913.Google Scholar
  256. Hess, C., Heine, L.: Arbeiten aus dem Gebiete der Accommodationslehre. Arch. Ophthal. 46, 243-276 (1898).Google Scholar
  257. Higgins, G. E., Stultz, K.: Variation of visual acuity with various test objects orientations and viewing conditions. J. opt. Soc. Amer. 40,135-137(1950).Google Scholar
  258. Hill, R. M., Ikeda, H.: “Refracting” a single retinal ganglion cell. Arch. Ophthal. 85, 592-596 (1971). Hill, W. C. 0.: Evolutionary biology of the primates. London: Academic Press 1972.Google Scholar
  259. Hirschberg,J.: Zur Dioptrik and Ophthalmoskopie der Fisch-and Amphibienaugen. Arch. Anat. Physiol. Lpz. 6,493-526 (1882).Google Scholar
  260. Hisdal,E.: Detectable information in a photon beam. J. opt. Soc. Amer. 57, 35-43 (1967).Google Scholar
  261. Horridge, G. A. (ed.): The Compound Eye and Vision in Insects. Oxford: Clarendon Press 1975. Howells, W. W.: Mankind so far. New York: Doubleday 1947.Google Scholar
  262. Hubel, D. H., Wiesel, T. N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. (Lond.) 148, 574-591 (1959).Google Scholar
  263. Hubel, D. H., Wiesel, T. N.: Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J. Neurophysiol. 26, 994-1002 (1963).Google Scholar
  264. Hubel, D. H., Wiesel, T. N.: The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206,419—436 (1970).Google Scholar
  265. Hubel,D. H., Wiesel,T. N.: Cells sensitive to binocular depth in area 18 of the Macaque monkey cortex. Nature (Loud.) 225,41-42 (1970).Google Scholar
  266. Hughes, A.: Topographical relationships between the anatomy and physiology of the rabbit visual system. Docum. ophthal. (Den Haag) 30, 33-159 (1971).Google Scholar
  267. Hughes, A.: A schematic eye for the rabbit. Vision Res. 12, 123-138 (1972). Hughes,A.: Vergence in the cat. Vision Res. 11,1961-1994 (1972).Google Scholar
  268. Hughes, A.: Observing accommodation in the cat. Vision Res. 13,481-482 (1973).Google Scholar
  269. Hughes, A.: A comparison of retinal ganglion cell topography in the plains and tree kangaroo. J. Physiol. (Lond.) 244, 61-63 P (1975 a).Google Scholar
  270. Hughes, A.: A quantitative analysis of cat retinal ganglion cell topography. J. comp. Neurol. 163, 107–128 (1975 b).Google Scholar
  271. Hughes, A.: A supplement to the cat schematic eye. Vision Res. 16, 149–154 (1976 a).Google Scholar
  272. Hughes, A.: The refractive state of the rat eye. Vision Res. 17, 927–939 (1977 b).Google Scholar
  273. Hughes, A.: A schematic eye for the rat. Vision Res. in press (1977).Google Scholar
  274. Hughes, A.: Directional units in rat optic nerve. Brain Res. submitted (1977d).Google Scholar
  275. Hughes, A.: The pigmented rat optic nerve: fibre count and diameter spectrum. J. comp. Neurol. 176, 263–268 (1977).Google Scholar
  276. Hughes, A.: A comparison of the retinal ganglion cell diameter spectrum in different regions of the cat retina. J. comp. Neurol., submitted (1977).Google Scholar
  277. Hughes, A., Vaney, D. I.: Optometric refraction of the rabbit at various eccentricities. Vision Res. submitted (1977).Google Scholar
  278. Hughes, A., Wassle, H.: The cat optic nerve: Fibre total count and diameter spectrum. J. comp. Neurol. 169, 171–184 (1976).Google Scholar
  279. Hughes,A., Wassle, H.: Optical image quality of the rat. (Appendix to Hughes, 1977c) in press, (1977b).Google Scholar
  280. Hughes, A., Whitteridge, D.: The receptive fields and topographical organization of goat retinal gan-glion cells. Vision Res. 13, 1101–1114 (1973).Google Scholar
  281. Ikeda, H., Wright, M. J.: Differential effects of refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res. 12, 1465–1476 (1972).Google Scholar
  282. Ikeda, H., Wright, M.: Optical quality of the cat’s eye and human eye. J. Physiol. (Lond.) 232, 34–35 P (1973).Google Scholar
  283. Ingle, D. (ed.): The Central Nervous System and Fish Behavior. Chicago: University of Chicago Press 1968.Google Scholar
  284. Ingle, D.: Visuomotor functions of the frog optic tectum. Brain Behav. Evol. 3, 57–71 (1970).Google Scholar
  285. Ingle, D.: Prey-catching behaviour of anurans toward moving and stationary objects. Vision Res. Suppl. 3, 447–456 (1971).Google Scholar
  286. Ingle, D.: Depth vision in monocular frogs. Psychon. Sci. 29, 37–38 (1972).Google Scholar
  287. Ingle, D.: Evolutionary perspectives on the function of the optic tectum. Brain Behav. Evol. 8, 211–237 (1973).Google Scholar
  288. Jacobson, M.: The representation of the retina on the optic tectum of the frog. Quart. J. exp. Physiol. 47, 170–178 (1962).Google Scholar
  289. Jacobson, M., Gaze, R.M.: Types of visual response from single units in the optic tectum and optic nerve of the goldfish. Quart. J. exp. Physiol. 49, 199–209 (1964).Google Scholar
  290. Jacobsen, S. G., Franklin, K. B. J., McDonald, W. I. M.: Visual acuity of the cat. Vision Res. 16, 1141–1143 (1976).Google Scholar
  291. James, G. R.: Degeneration of ganglion cells following axonal injury; an experimental study. Arch. Ophthal. 9, 338–343 (1933).Google Scholar
  292. Jampel, R. S., Mindel, J.: The nucleus for accommodation in the midbrain of the Macaque. Invest. Ophthal. 6, 40–50 (1967).Google Scholar
  293. Johansson, G.: Visual motion perception. Sci. Am. 233, 76–88 (1975).Google Scholar
  294. Johnson, G. L.: Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Phil. Trans. B194, 1–82 (1901).Google Scholar
  295. Jones, A. E..: The retinal structure of (Aotes trivirgatus) the owl monkey. J. comp. Neurol. 125, 19–27 (1965).Google Scholar
  296. Joshua, D. E., Bishop, P. O.: Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp. Brain Res. 10, 389–416 (1970).Google Scholar
  297. Julesz, B.: Foundations of Cyclopean Perception. Chicago: University of Chicago Press 1971.Google Scholar
  298. Kahmann, H.: Untersuchungen fiber die Linse, die Zonula ciliaris, Refraktion and Accommodation von Saugetieren. Zool. Jb. Abt. allg. Zool. Physiol. 48, 509–588 (1930).Google Scholar
  299. Kahmann, H.: über das Vorkommen einer Fovea centralis im Knochenfischauge. Zool. Ariz. 106, 49–55 (1934).Google Scholar
  300. Kahmann, H.: über das foveale Sehen der Wirbeltiere. II. Gesichtfeld and Fovea centralis. Sitz. Ges. naturf. Freunde 8, 361–376 (1935).Google Scholar
  301. Kahmann, H.: über das foveale Sehen der Wirbeltiere. I. über die Fovea centralis and die Fovea lateralis bei einigen Wirbeltieren. Arch. Ophthal. 135, 265–276 (1936).Google Scholar
  302. Keating, M. J., Gaze, R. M.: The ipsilateral retinotectal pathway in the frog. Quart. J. exp. Physiol. 55, 284–292 (1970).Google Scholar
  303. Keating, M. P.: A theoretical analysis of off-axis streak retinoscopy. Amer. J. Optom. physiol. Optics. 52, 750-757 (1975).Google Scholar
  304. Kelly, J. P., Gilbert, C. D.: The projections of different morphological types of ganglion cells in the cat retina. J. comp. Neuro1.163, 65-80 (1975).Google Scholar
  305. Kepler,J.: Ad Vitellionem Paralipomena, quibus Astronomiae pars optica traditur. Francofurti, 1604. (Trans. F. Plehn; ed. M. von Rohr). Grundlagen d. geom. Optik. Ostwald’s Klassiker d. exakt Wissensch. 198. Leipzig: Akad. Verlagsgesellschaft 1922.Google Scholar
  306. Kepler,J.: Dioptrice. Augsburg, 1611. (Trans. F. Plehn). Ostwald’s Klassiker d. exakt. Wissensch. 144. Leipzig: Engelmann 1904.Google Scholar
  307. Kirschfeld, K.: The resolution of lens and compound eyes. In: Neural Processing in Visual Systems. Zettler, F., Weiler, R. (eds.). Berlin: Springer-Verlag 1976.Google Scholar
  308. Koenderink, J. J., Van D oorn, A. J.: Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22, 773-791 (1975).Google Scholar
  309. Kolb, H.: Organization of the outer plexiform layer of the primate retina: Electron microscopy of Golgi-impregnated cells. Phil. Trans. B258, 261-283 (1970).Google Scholar
  310. Krueger, H., Moser, E. A.: Refraktion and Abbildungsgiite des Froschauges. Pflugers Arch. ges. Physiol.326, 334-340 (1971).Google Scholar
  311. Krueger, H., Moser, E. A.: The influence of the modulation transfer function of the dioptric apparatus on the acuity and contrast of the retinal image in Rana esculenta. Vision Res. 12, 1281-1289 (1972).Google Scholar
  312. Krueger, H., Moser, E. A.: On the approximation of the optical modulation transfer function (MTF) by analytical functions. Vision Res. 13,493—494 (1973).Google Scholar
  313. Kuffler, S. W.: Discharge patterns and functional organisation of mammalian retina. J. Neurophysiol. 16,37—68 (1953).Google Scholar
  314. Kulikowski,J.J.: Pattern and movement detection: A comparison between man and rabbit. (in press) 1977.Google Scholar
  315. Landau, D., Dawson, W. W.: The histology of retinas from the Pinnipedia. Vision Res. 10, 691-702 (1970).Google Scholar
  316. Lane, R. H., Allman, J. M., Kaas, J. H.: Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus carolinensis) and the tree shrew (Tupaia glis). Brain Res. 26, 277-292 (1971).Google Scholar
  317. Lang,W., Barrett, J. W.: The refractive character of the eyes of mammalia. Arch. Augenheilk. 17, 103138(1887).Google Scholar
  318. Langenbeck, M.: Klinische Beitrage aus dem Gebiete der Chirurgie and Ophthalmologie. Gottingen, 1849.Google Scholar
  319. Lashley, K. S.: The Mechanism of Vision. V. The structure and image-forming power of the rat’s eye. J. comp. Psychol. 13, 173-200 (1932).Google Scholar
  320. Lashley, K. S.: The mechanism of vision. XV. Preliminary studies of the rat’s capacity for detail vision. J. gen. Psychol. 18,123-193 (1938).Google Scholar
  321. Laties, A. M., Enoch, J. M.: An analysis of retinal receptor orientation. I. Angular relationship of neighbouring photoreceptors. Invest. Ophthal. 10, 69-77 (1971).Google Scholar
  322. La Vail, J. H., La Vail, M. M.: The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system. J. comp. Neurol. 157, 303-357 (1974).Google Scholar
  323. Lazar, G. V., Szekely, G. Y.: Distribution of optic terminals in the different optic centers of the frog. Brain Res. 16, 1-14 (1969).Google Scholar
  324. Leehey, S. C., Moskowitz-Cook, A., Brill, S., Held, R.: Orientational anisotropy in infant vision. Science 190, 900-901(1975).Google Scholar
  325. LeGrand,Y.: Recherches sur la diffusion de la lumiere dans 1'oeil humain. Rev. Opt. 16, 201-241 (1937).Google Scholar
  326. Le Grand, Y.: Sur 1'aberration spherique de l'oeil. C. R. Acad. Sci. (Paris) 215, 547 (1942).Google Scholar
  327. Le Grand, Y.: Form and Space Vision. (Trans. by Millodot & Heath), London: Indiana Univ. Press 1967.Google Scholar
  328. Le Gros Clarke, W. E.: Remarks on the tree shrew, Tupaia minor, with photographs. Proc. zool. Soc. Lond. 97, 254-256 (1927).Google Scholar
  329. Le Gros Clarke, W. E.: The Early Forerunners of man. London: Tindall & Cox 1934.Google Scholar
  330. Le Gros Clarke, W. E.: The Antecedents of Man. Edinburgh: Edinburgh Univ. Press 1962. Le Gros Clarke, W. E.: History of the Primates. London: British Museum 1970.Google Scholar
  331. Leibowitz, H., Johnson, C., Isabelle, E.: Peripheral motion detection and refractive error. Science 177, 1207-1208 (1972).Google Scholar
  332. Leigh Thomas, H.: An anatomical description of a male rhinoceros. Phil. Trans. 91, 145-152 (1801). Leinfelder, P. J.: Retrograde degeneration in the optic nerves and retinal ganglion cells. Trans. Amer. ophthal. Soc. 36, 307 (1938).Google Scholar
  333. Leuckart, R. K. G. F.: Organologie des Auges. Vergleichende Anatomie. I. Handbuch der gesamten Augenheilkunde. Graefe-Saemisch. (ed.). 2,145-301. Leipzig: Engelmann 1876.Google Scholar
  334. Levick, W. R.: Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J. Physiol. (Lond.) 188,285-307 (1967).Google Scholar
  335. Levick, W. R., Cleland, B. G.: Selectivity of microelectrodes in recordings from cat retinal ganglion cells. J. Neurophysiol. 37,1387-1393 (1974).Google Scholar
  336. Leyhausen, P.: Uber die Funktion der relativen Stimmungshierarchie. Z. Tierpsychol. 22, 412-494 (1965).Google Scholar
  337. Lichtenstein, M.: Spatiotemporal factors in cessation of smooth apparent movement. J. opt. Soc. Amer. 53, 302-306 (1963).Google Scholar
  338. Lincoln, D. W., Mason, C. A.: The use of cobalt sulphide precipitation technique to delineate neuronal projections in the rat brain. J. Physiol. (Lond.) 245,40—41 P (1974).Google Scholar
  339. Listing, J. B.: Beitrag zur physiologischen Optik. Gottingen, 1845.Google Scholar
  340. Lotmar, W.: Theoretical eye model with aspherics. J. opt. Soc. Amer. 61,1522-1529 (1971). Low, F. N.: The peripheral visual acuity of 100 subjects. Amer. J. Physiol. 140, 83-88 (1943). Luck, C. P.: The comparative morphology of the eyes of certain African suiformes. Vision Res. 5, 283-297(1965).Google Scholar
  341. Ludlam, W. M., Twarowski, C. J.: Ocular-dioptric-component changes in the growing rabbit. J. opt. Soc. Amer. 63,95-98 (1973).Google Scholar
  342. Ludlam, W. M., Weinberg, S. S., Twarowski, C. J., Ludlam, D. P.: Comparison of cycloplegic and noncycloplegic ocular component measurement in children. Amer. J. Optom. 49,805-818 (1972). Ludvigh, E.: Extrafoveal acuity as measured with Snellen test letters. Amer. J. Ophthal. 24, 303-310 (1941).Google Scholar
  343. Luneberg, R. K.: Mathematical Analysis of Binocular Vision. Hannover: Dartmouth Eye Institute 1947.Google Scholar
  344. Mach, E.: Uber die Wirkung der raumlichen Vertheilung des Lichtreizes auf die Netzhaut, 1. In Sitzungberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften. 52, 303-322 (1865).Google Scholar
  345. Maffei, L., Campbell, F. W.: Neurophysiological localization of the vertical and horizontal visual co-ordinates in man. Science 167,386-387 (1970).Google Scholar
  346. Mandelbaum,J., Sloan,L.L.: Peripheral visual acuity. Amer. J. Ophthal. 30, 581-588 (1947). Marchand, E. W.: Ray tracing in gradient index media. J. opt. Soc. Amer. 60, 1-7 (1970). Marriott, F. H. C., Morris, V. B.: The distribution of light in an image formed in the cat’s eye. Nature (Lond.) 90,176-177 (1961).Google Scholar
  347. Marshall, J., Mellerio, J., Palmer, D. A.: A schematic eye for the pigeon. Vision Res. 13, 2449-2453 (1973).Google Scholar
  348. Massof, R. W., Chang, F. W.: A revision of the rat schematic eye. Vision Res. 12, 793-796 (1972). Matthiessen, L.: Die Differentialgleichungen der Dioptrik der geschichteten Krystallinse. Pflugers Arch. ges. Physiol. 19,480-562 (1879).Google Scholar
  349. Matthiessen, L.: Uber-die Beziehungen welche zwischen dem Brechungsindex des Kerncentrums der Krystallinse and der Dimensionen des Auges bestehen. Pflugers Arch. ges. Physiol. 27, 510-523 (1882).Google Scholar
  350. Matthiessen, L.: Beitrage zur Dioptrik der Krystallinse I. Z. vergl. Augenheilk. 4, 1-39 (1886). Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges der Cetaceen and der Fische. Pflugers Arch. ges. Physiol. 38, 521-528 (1886).Google Scholar
  351. Matthiesen, L.: Uber den physikalisch-optischen Bau des Auges der Vogel. Pflugers Arch. ges. Physiol. 38,104-112 (1886).Google Scholar
  352. Matthiesen, L.: Beitrage zur Dioptrik der Krystallinse, II & III. Z. vergl. Augenheilk. 5, 21-44, 97-126(1887).Google Scholar
  353. Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges von Cervus alcesmos. Pflugers Arch. ges. Physiol. 40, 314-323 (1887).Google Scholar
  354. Matthiessen, L.: Uber den physikalisch-optischen Bau des Auges von Knolwal (Megaptera boops, Fabr.) and Finwal (Balaenoptera musculus Comp.), Z. vergl. Augenheilk. 7, 77-101(1893).Google Scholar
  355. Matthews, G. V. T.: Bird navigation. Cambridge Monographs in Expl. Biology No. 3. Cambridge Cambridge Univ. Press 1968.Google Scholar
  356. Maturana, H. R.: Number of fibers in the optic nerve and the number of ganglion cells in the retina of anurans. Nature (Lond.) 183,1406-1407 (1959).Google Scholar
  357. Maturana, H. R.: Functional organization of the pigeon retina. Proc. IUPS 22nd Int. Cong. (Leiden) 3, 170-178. Amsterdam: Excerpta Medica 1964.Google Scholar
  358. Maxwell, G.: Ring of Bright Water. London: Longmans, Green & Co. 1960. Maxwell, G.: The Rocks Remain. London: Longmans, Green & Co. 1963. Maxwell,J. C.: Solutions of problems. Cambridge & Dublin Mathematical Journal 8, 188 (1854). In: The Scientific Papers of J.C. Maxwell. I. Niven, W. D., London: Cambridge University Press 1890. Maxwell,J. C.: On the general laws of optical instruments. Quart. J. Pure & Appl. Mathematics VII (1858). In: The Scientific Papers of J. C. Maxwell. I. London: Cambridge University Press 1890. McColgin, F. H.: Movement thresholds in peripheral vision. J. opt. Soc. Amer. 50, 774-779 (1960). Merigan,W.H.: The contrast sensitivity of the squirrel monkey. Vision Res. 16, 375-379 (1976). Messing, R. B.: The sensitivity of albino rats to lights of different wavelengths: a behavioural assessment. Vision Res. 12, 753-761 (1972).Google Scholar
  359. Meyer, D. L., Meyer-Haame, S., Schaeffer, K.-P.: Electrophysiological investigation of refractive state and accommodation in the rabbit’s eye. Pflugers Arch. ges. Physiol. 332, 80-86 (1972).Google Scholar
  360. Meyer, D. L., Schwassmann, H. 0.: Electrophysiological method for determination of refractive state in fish eyes. Vision Res. 10, 1301-1307 (1970).Google Scholar
  361. Michael, C. R.: Receptive fields of single optic nerve fibres in a mammal with an all-cone retina. II. Directionally selective units. J. Neurophysiol. 31, 257-267 (1968).Google Scholar
  362. Miller, W. H., Snyder, A. W.: Optical function of human peripheral cones. Vision Res. 13, 2185-2194 (1973).Google Scholar
  363. Miller, W. H., Snyder, A. W.: Deep fovea of birds functions as telephoto lens. A.R.V.O. Symp. Rec. May, p.26 (1977).Google Scholar
  364. Millodot, M.: Reflection from the fundus of the eye and its relevance to retinoscopy. Fondazione Giorgio Ronchi 27, 31-50 (1972).Google Scholar
  365. Millodot, M., Blough, P.: The refractive state of the pigeon eye. Vision Res. 11, 1019-1022 (1971). Millodot, M., Johnson, C. A., Lamont, A., Leibowitz, H. W.: Effect of dioptrics on peripheral visual acuity. Vision Res. 15,1357-1362 (1975).Google Scholar
  366. Millodot, M., Lamont, A.: Refraction of the periphery of the eye. J. opt. Soc. Amer. 64, 110-111 (1971). Millodot, M., Lamont, A.: Peripheral visual acuity in the vertical plane. Vision Res. 14, 1497-1498 (1974).Google Scholar
  367. Missotten, L.: Estimation of the ratio of cones to neurons in the fovea of the human retina. Invest. Ophtha1.13, 1045-1049 (1974).Google Scholar
  368. Mitchell, D. E., Freeman, R. D., Millodot, M., Haegerstrom, G.: Meridional amblyopia: Evidence for modification of the human visual system by early visual experience. Vision Res. 13, 535-558 (1973).Google Scholar
  369. Mitchell, D. E., Griffin, F., Tinney, B.: A behavioural technique for the rapid assessment of visual capabilities of kittens. Perception 6, 181-193 (1977).Google Scholar
  370. Mitchell, P.C.: The Childhood of Animals. London 1912.Google Scholar
  371. Mize, R. R., Murphy, E. H.: Selective visual experience fails to modify receptive field properties of rabbit striate cortex neurons. Science 180, 320-323 (1973).Google Scholar
  372. Montero,V.M., Brugge,J.F., Beitel,R.E.: Relation of the visual field to the lateral geniculate body in the albino rat. J. Neurophysiol. 31, 221-236 (1968).Google Scholar
  373. Montero, V. M., Rojas, A., Torrealba, F.: Retinotopic organisation of striate and peristriate visual cortex in the albino rat. Brain Res. 53, 197-201 (1973).Google Scholar
  374. Moore, D. T.: Design of singlets with continuously varying indices of refraction. J. opt. Soc. Amer. 61, 886-894 (1971).Google Scholar
  375. Morgan, M. W., Mohney, J., Olmsted, J. M. D.: Astigmatic accommodation. Arch. Ophthal. 30, 247-249(1943).Google Scholar
  376. Moser, E. A.: Retinoskopische and Neurophysiologische Refraktion beim Frosch. Inaugural Dissertation zur Doktorwurde, Munich University 1973.Google Scholar
  377. Moser, E. A., Krueger, H.: Retinoscopic and neurophysiological refractometry in Rana tempororia. Pflugers Arch. ges. Physiol. 335,83 (1972).Google Scholar
  378. Moses, R. A.: Adler’s Physiology of the Eye: Clinical Application. Moses, R. A. (ed.). 5th ed. St. Louis C. V. Mosby 1970, pp. 350-371.Google Scholar
  379. Müller, H.: Zur vergleichenden Physiologie des Gesichtsinnes des Menschen and der Thiere. Leipzig: Cnobloch 1826 (cited by E. G. Boring, 1942).Google Scholar
  380. Müller, H.: über einige Verhaltnisse der Netzhaut bei Menschen and Thieren. Verh. phys. med. Ges. Wurzburg 3, 336 (1853).Google Scholar
  381. Müller, H.: Anatomisch-physiologische Untersuchungen uber die Retina des Menschen and der Wirbelthiere. Leipzig 1856.Google Scholar
  382. Müller, H.: über das ausgedehnte Vorkommen einer dem gelben Fleck der Retina entsprechenden Stelle bei Thieren. Wurzburg. Naturwiss. Z. 2, 139–140 (1861).Google Scholar
  383. Munk, O.: On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Vidensk. Meddr. dansk. naturh. Foren. 133, 85–120 (1970).Google Scholar
  384. Nakao, S. N., Fujimoto, S., Nagata, R., Iwata, K.: Model of refractive index distribution in the rabbit crystalline lens. J. opt. Soc. Amer. 58, 1125–1130 (1968).Google Scholar
  385. Nakao, S., Mine, K., Nishioka, K., Kamiya, S.: New schematic eye and its clinical applications. Ab-stracts 21st Int. Cong. of Ophthal., Mexico E 102 (1970).Google Scholar
  386. Nakao, S., Ono, T., Nagata, R., Iwata, K.: The distribution of refractive indices in the human crystalline lens. Jap. J. clin. Ophthal. 23, 41–44 (1969).Google Scholar
  387. Nakayama, K., Loomis, J.M.: Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis. Perception 3, 63–80 (1974).Google Scholar
  388. Nelson, J. I.: Motion sensitivity in peripheral retina. Perception 4, 151–152 (1974).Google Scholar
  389. Nicol, J.A.C.: Some aspects of photoreception and vision in fishes. Advanc. Marine Biol. 1, 171–208 (1963).Google Scholar
  390. Nicolas, E.: Veterinary and Comparative Ophthalmology. London: H. & W. Brown 1930.Google Scholar
  391. Nikara, T., Bishop, P. O., Pettigrew, J. D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).Google Scholar
  392. Nordenson, J. W.: über den Brechungsindex der Netzhaut. Acta ophthal. (Kbh.) 12, 171–175 (1934).Google Scholar
  393. Nye, P. W.: On the functional differences between frontal and lateral visual fields of the pigeon. Vision Res. 13, 559–574 (1973).Google Scholar
  394. O'Day, K.: The visual cells of the Australian reptiles and mammals. Trans. ophthal. Soc. Aust. 1, 12 (1939).Google Scholar
  395. O'Day, K.: The fundus and fovea centralis of the albatross (Diomedea cauta cauta-Gould). Brit. J. Ophthal. 24, 201–207 (1940).Google Scholar
  396. O'Flaherty, J. J.: The optic nerve of the mallard duck: Fibre diameter frequency distribution and physiological properties. J. comp. Neurol. 143, 17–24 (1971).Google Scholar
  397. Ogawa, T., Karita, K., Tsuchiya, I.: Response characteristics of single neurons in the rabbit visual cortex. Tohoku J. exp. Med. 96, 349–364 49–364 (1968).Google Scholar
  398. Ogden, T. E.: The receptor mosaic of Aotes trivirgalus: distribution of rods and cones. J. comp. Neurol. 163, 193–202 (1975).Google Scholar
  399. Ogilvie, J., Daicar, E.: The perception of curvature. Canad. J. Psychol. 21, 521–525 (1967).Google Scholar
  400. Ogle, K. N.: Researches in Binocular Vision. Philadelphia: Saunders 1950.Google Scholar
  401. Ogle, K. W.: Visual acuity. In. The Retina. U.C.L.A. Forum in Medical Sciences No. 8 Straatsma, B. R. et al. Berkley and Los Angeles: University of California Press 1969.Google Scholar
  402. Ohzu, H., Enoch, J. M.: Optical modulation by the isolated human fovea. Vision Res. 12, 245–251 (1972).Google Scholar
  403. Ohzu, H., Enoch, J. M., O'Hair, J. C.: Optical modulation by the isolated retina and retinal receptors. Vision Res. 12, 231–244 (1972).Google Scholar
  404. Olmsted, J. M. D.: The role of the autonomic nervous system in accommodation for far and near vision. J. nerv. ment. Dis. 99, 794–798 (1944).Google Scholar
  405. Olmsted, J. M. D., Morgan, M. W.: The influence of the cervical sympathetic nerve on the lens of the eye. Amer. J. Physiol. 133, 720–723 (1941).Google Scholar
  406. O'Neill, W. D., Brodkey, J. S.: Linear regression of lens movement with refractive state. Arch. Ophthal. 82, 795–799 (1969).Google Scholar
  407. O'Neill, W. C., Brodkey, J. S.: A nonlinear analysis of the mechanics of accommodation. Vision Res. 10, 375–391 (1970).Google Scholar
  408. Oppel, O.: Quantitative Untersuchungen uber die Retinaganglien and Optikusfusern. In: Eye Structure, 11. Symp. Rohen, S. W. (ed.). Stuttgart: Schattauer-Verlag 1965, pp. 97–108.Google Scholar
  409. Oppel, O.: Untersuchung uber die Verteilung and Zahl der retinalen Ganglienzellen beim Menschen. Albrecht v. Graefes Arch. Klin. exp. Ophthalmol. 172, 1–22(1967).Google Scholar
  410. Osterberg, G.: Topography of the layer of rods and cones in the human retina. Acta. ophthal. (Kbh.) Suppl. 6 (1935).Google Scholar
  411. Oyster, C. W., Takahashi, E., Collewijn, H.: Direction selective retinal ganglion cells and control of optokinetic nystagmus in the rabbit. Vision Res. 12, 183-193 (1972).Google Scholar
  412. Oyster, C. W., Takahashi, E., Levick, W. R.: Information processing in the rabbit visual system. In Vision in the Rabbit. Van Hof, M. W. and Collewijn, H. (eds.). Docum. ophthal. (Den Haag) 30, 161-204 (1971).Google Scholar
  413. Packwood,J., Gordon, B.: Stereopsis in normal domestic cat, Siamese cat and cat raised with alternating monocular occlusion. J. Neurophysiol. 38,1485-1499 (1975).Google Scholar
  414. Pariente, G.: Influence of light on the activity rhythms of two Malagasy lemurs: Phaner furcifer and Lepilemur mustelinus leucopus. In: Prosimian Biology. Martin, R. D., and Doyle, G. A., and Walker, A. C. (eds.). Part. 1. London: Duckworth 1974, pp. 183-198.Google Scholar
  415. Parsons,J.H.: An Introduction to the Theory of Perception. London: Cambridge Univ. Press 1927. Pask, C., Snyder, A. W.: Angular sensitivity of lens photoreceptor systems. In: Photoreceptor Optics. Snyder, A. W. & Menzel, R. (ed.). Berlin: Springer-Verlag 1975.Google Scholar
  416. Patnaik, B.: A photographic study of accommodative mechanisms: changes in the lens nucleus during accommodation. Invest. Ophthal. 6,601-611 (1967).Google Scholar
  417. Pennycuick, C. J.: The physical basis of astro-navigation in birds: Theoretical considerations. J. exp. Biol. 37, 573-593 (1960).Google Scholar
  418. Peterson, D. R., Middleton, D.: Sampling and reconstruction of wave number limited functions in Ndimensional Euclidean spaces. Inf. Control 5, 279-323 (1962).Google Scholar
  419. Pettigrew, J. D., Konishi, M.: Binocular neurones sensitive to orientation and disparity in the visual wulst of the owl. Science 193, 675—678 (1976).Google Scholar
  420. Phillipson,B.: Distribution of protein within the normal rat lens. Invest. Ophthal. 8, 258-270 (1969). Pirenne, M. H.: The visual process. In: The Eye, Davson, H. (ed.). London: Academic Press 1962. Pirenne, M. H.: Optics, Painting and Photography. Cambridge: Cambridge Univ. Press 1970.Google Scholar
  421. Pisa, A.: Ober den binokularen Gesichtsraum bei Haustieren. Arch. Ophthal. 140,1-54 (1939). Pollock,R.I.: On the external characters of some species of Lutrinae. Proc. zool. Soc. Lond. 91, 535-546 (1921).Google Scholar
  422. Polyak, S.: The Retina. Chicago: University of Chicago Press 1941.Google Scholar
  423. Polyak, S.: The Vertebrate Visual System. Chicago: University of Chicago Press 1957.Google Scholar
  424. Pomerantzeff, O., Govignon, J., Schepens, C. L.: Wide-angle optical model of the human eye. Ann. Ophthal. 3, 815-819 (1971).Google Scholar
  425. Potts, A. M., Hodges, D., Shelman, C. B., Fritz, K. J., Levy, N. S., Mangall, Y.: Morphology of the primate optic nerve. I. Method and total fibre count. Invest. Ophthal.11, 980-988 (1972).Google Scholar
  426. Prince, J. H.: Comparative Anatomy of the Eye. Illinois: Thomas 1956.Google Scholar
  427. Prince,J. H., Diesem, C. D., Eglitis, I., Ruskell, G. L.: Anatomy and Histology of the Eye and Orbit in Domestic Animals. Illinois: Thomas 1960.Google Scholar
  428. Pritchard,R. M., Heron, W.: Small eye movements of the cat. Canad. J. Psychol. 14, 131-137 (1960). Pumphrey, R. J.: The theory of the fovea. J. exp. Biol. 25, 299-312 (1948 a).Google Scholar
  429. Pumphrey, R. J.: The sense organs of birds. Ibis. 90, 171-199 (1948 b).Google Scholar
  430. Pumphrey, R. J.: Concerning Vision. In: The Cell and the Organism. Ramsay & Wigglesworth (eds.). London: Cambridge Univ. Press 1961, pp. 193-208.Google Scholar
  431. Pumphrey, R. J.: Sensory organs: Vision II. Biology & Comparative Physiology of Birds. Marshall, A. J. (ed.). New York: Academic Press 1961.Google Scholar
  432. Quilliam,T.A.: The problems of vision in the ecology of Talpa Europea. Exp. Eye. Res. 5, 63-78 (1966).Google Scholar
  433. Rademaker, G. G., Ter Braak, J. W. G.: On the central mechanism of some optic reactions. Brain 71, 48-76 (1948).Google Scholar
  434. Ratliff, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. London: Holden-Day 1965.Google Scholar
  435. Raybourn, M. S.: Spatial and temporal organization of the binocular input to frog optic tectum. Brain Behav. Evol. 11, 161-178 (1975).Google Scholar
  436. Rayleigh, Lord: Investigations in optics with special reference to the spectroscope. Phil. Mag., 261-274(1879).Google Scholar
  437. Reza, F. M.: An introduction to information theory. London: McGraw-Hill 1961.Google Scholar
  438. Roberts, S. R.: A system of testing vision in animals. J. Amer. vet. med. Ass. 128, 544-546 (1956).Google Scholar
  439. Robson,J. G.: Receptive fields. In: Handbook of Perception. Vol. 5. Carterette, E. C., and Fried-man, M. P. (eds.). New York: Academic Press 1975, pp. 81-112.Google Scholar
  440. Robson,J. G., Enroth-Cugell, C.: Direct measurement of image quality in the cat eye. J. Physiol. (Loud.) 239,30P (1974).Google Scholar
  441. Robson,J. G., Enroth-Cugell, C.: Scattered light and the retinal image in the cat eye. Proc. Aust. physiol. pharmacol. Soc., 6,202 (1975).Google Scholar
  442. Rochon-Duvigneaud, A.: Quelques donnees sur la fovea des oiseaux. Annls. Oculist 156 (1919). Rochon-Duvigneaud, A.: Une methode de determination du champ visuel chez le vertebres. Ann. Oculist 159,561 (1922).Google Scholar
  443. Rochon-Duvigneaud, A.: Les Yeux et la Vision des Vertebres. Paris: Masson 1943.Google Scholar
  444. Rodieck,R. W., Stone,J.: Response of cat retinal ganglion cells to moving visual patterns. J. Neuro-physiol. 28, 819-831(1965).Google Scholar
  445. Rohen,J. W.: Der Ziliarkbrper als funktionelles System. Morph. Jb. 92,415—440 (1952).Google Scholar
  446. Rohen,J. W.: Anatomie des Auges. In: Der Augenarzt, Bd. I, Velhagen, K. (ed.). Leipzig: Thieme 1958, pp. 1-123.Google Scholar
  447. Rohen,J. W.: Das Auge and seine Hilfsorgane, V. 3. In: Handbuch der Mikroskopischen Anatomie des Menschen. Mollendorff, W., Bargmann, W. (eds.). Berlin: Springer-Verlag 1964.Google Scholar
  448. Rohen,J. W., Castenholz, A.: fiber die Zentralisation der Retina bei Primaten. Folia primatol. 5, 92147(1967).Google Scholar
  449. RÖhler, R.: Untersuchungen der Cbertragungseigenschaften des Auges mit Strichgittern. Phys. Verh. Mosbach. 10, 89 (1959).Google Scholar
  450. RÖhler, R.: Die Abbildungseigenschaften der Augenmedien. Vision Res. 2, 391-492 (1962).Google Scholar
  451. RÖhler, R., Hilz, R.: Physical and physiological factors in visual modulation transfer. In: Performance of the Eye at Low Luminances. Bouman, M. A., and Vos, J. J. (eds.) Amsterdam: Excerpta Medica 1965.Google Scholar
  452. RÖhler, R., Miller, U., Aberl, M.: Zur Messung der M odulationslibertragungsfunktion des lebenden menschlichen Auges im reflektierten Licht. Vision Res. 9,407—428 (1969).Google Scholar
  453. Rolls, E. T., Cowey, A.: Topography of the retina and striate cortex and its relationships to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298-310 (1970).Google Scholar
  454. Romanes, G. J.: Animal Intelligence. London: Kegan, Paul, Trench & Co. 1882.Google Scholar
  455. Rose, L., Yinon, U., Berkin, M.: Myopia induced in cats deprived of distance vision during development. Vision Res. 14,1029-1032 (1974).Google Scholar
  456. Rowe, M-. H., Stone, J.: Properties of ganglion cells in the visual streak of the cat’s retina. J. comp. Neuro1.169, 99-126 (1976).Google Scholar
  457. Ruppert, L.: Ein Vergleich zwischen dem Distinktionsverm6gen and der Bewegungsempfindlichkeit der Netzhautperipherie. Z. Sinnesphysiol. 42,409—423 (1908).Google Scholar
  458. Rushton, W. A. H.: The difference spectrum and the photosensitivity of rhodopsin in the living human eye. J. Physiol. (Lond.)134, 11-29 (1956).Google Scholar
  459. Rushton, W. A. H.: The retinal organisation of vision in vertebrates. In: Biological Receptor Mechanisms. Symp. Soc. exp. Biol. XVI. 1962, pp. 12-31.Google Scholar
  460. Rushton, W. A. H.: The density of chlorolabe in the foveal cones of the protanope. J. Physiol. (Lond.) 168,360-373 (1963).Google Scholar
  461. Salomon, A. D.: Visual field factors in the perception of direction. Amer. J. Psychol. 60, 68-88 (1947). Samorajski, T., Ordy, J. M., Keefe, J. R.: Structural organization of the retina in the tree shrew ( Tupaia glis). J. Cell Biol. 28,489-504 (1966).Google Scholar
  462. Sands, P. J.: Inhomogeneous lenses, VI Derivatives of paraxial coefficients. J. opt. Soc. Amer. 63, 1210-1216 (1973).Google Scholar
  463. Sanderson, K. J.: Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Br. Res. 13, 159-177 (1971).Google Scholar
  464. Scheiner, C.: Oculus Hoc Est: Fundamentum Opticum. Innsbruck: Oenoponti 1619.Google Scholar
  465. Schober, H. A. W., Hilz, R.: Contrast sensitivity of the human eye for square wave gratings. J. opt. Soc. Amer. 55,1086-1091 (1965).Google Scholar
  466. Schultze,M.: Zur Anatomie and Physiologie der Retina. Arch. mikr. Anat. 2,175-286 (1866). Schusterman, R. J.: In: Behaviour of Marine Animals: Vertebrates. Winn, H. E., and Olla, B. L. (eds.). New York: Plenum Press 1972.Google Scholar
  467. Schusterman, R. J., Barrett, B.: Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Loud.) 244, 518-519 (1973).Google Scholar
  468. Schwassmann, H. O.: Visual projection upon the optic tectum in foveate marine teleosts. Vision Res. 8, 1337-1348 (1968).Google Scholar
  469. Schwassmann, H. O., Kruger, L.: Organization of the visual projection upon the optic tectum of some freshwater fish. J. comp. Neurol. 124, 113-126 (1965).Google Scholar
  470. Seba,J.: Ophthalmological findings in newborn children, Part 1. Cs. Oftal. 30, 42-47 (1974). Seneviratne, K. N.: The representation of the subcortical centers of cat and rabbit. Edinburgh: Doctoral Thesis 1963.Google Scholar
  471. Senff, R.: Sehen. In: Handworterbuch der Physiologie. Wagners, R. (ed.) Bd III. 1846, p. 296.Google Scholar
  472. Sherman, S. M.: Visual field defects in monocularly and binocularly deprived cats. Brain Res. 49, 25-45 (1973).Google Scholar
  473. Shlaer,R.: An eagles eye; Quality of the retinal image. Science 176, 920-922 (1972).Google Scholar
  474. Shlaer, S.: The relation between visual acuity and illumination. J. gen. Physiol. 21, 165-188 (1937). Shannon, C. E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press 1949.Google Scholar
  475. Sidman, R. L.: Histochemical studies on photoreceptor cells. Ann. N.Y. Acad. Sci. 74, 182-195 (1958). Simon, J. F., Denieul, P. M.: Influence of the size of test field employed in measurements of modulation transfer function of the eye. J. opt. Soc. Amer. 63, 894-896 (1973).Google Scholar
  476. Sivak,J. G.: Interrelation of feeding behaviour and accommodation lens movements in some species of North American freshwater fishes. J. Fish Res. Bd. Con. 30, 1141-1146 (1973).Google Scholar
  477. Sivak, J. G.: The refractive error of the fish eye. Vision Res. 14, 209-213 (1974).Google Scholar
  478. Sivak,J. G., Allen, D. B.: An evaluation of the “ramp” retina of horse eye. Vision Res. 15, 1353-1356 (1975).Google Scholar
  479. Sivak, J. G., Howland, H. C.: Accommodation in the northern rock bass in response to natural stimuli. Vision Res.13, 2059-2064 (1973).Google Scholar
  480. Skarf, B.: Development of binocular single units in the optic tectum of frogs raised with disparate stimulation to the eyes. Brain Res. 51, 352-357 (1971).Google Scholar
  481. Slepian,D.: On bandwidth. Proc. I.E.E.E. 64, 292-300 (1976).Google Scholar
  482. Slonaker,J.R.: A comparative study of the area of acute vision in vertebrates. J. Morph. 13, 445-500 (1897).Google Scholar
  483. Smith, P.: On accommodation in the rabbit. Ophthal. Rev. 17, 287-296 (1898).Google Scholar
  484. Snyder, A. W.: Acuity of compound eyes: Physical luneleeleons and design. J. comp. Physiol. 116, 161-182 (1977).Google Scholar
  485. Snyder, A. W., Miller, W. H.: Bird resolving power; telephoto lens system of the avian eye. Nature (Lond.) in press (1977 a).Google Scholar
  486. Snyder, A. W., Miller, W. H.: Photoreceptor diameter and spacing for highest resolving power. J. opt. Soc. Amer. 67, 696-698 (1977 b).Google Scholar
  487. Snyder, A. W., Menzel, R. (eds.): Photoreceptor Optics. Berlin; Springer-Verlag 1975.Google Scholar
  488. Snyder, A. W., Stavenga, D. G., Laughlin, S. B.: Spatial information capacity of compound eyes. J. comp. Physiol. 116,183-207 (1977).Google Scholar
  489. Snyder, A. W., Laughlin, S. B., Stavenga, D. G.: Information capacity of eyes. (Vision Res., in press) 1977.Google Scholar
  490. Sokol,S.: Cortical and retinal spectral sensitivity of the hooded rat. Vision Res. 10, 253-262 (1970). Sorsby, A., Benjamin, B., Davey, J. B., Sheridan, M., Tanner, J. M.: Emmetropia and its aberrations. MRC Report 293. London: HMSO 1957.Google Scholar
  491. Sorsby, A., Benjamin, B., Sheridan, M., Stowe, J., Leary, G. A.: Refraction and its components during the growth of the eye from the age of three. MRC. Spec. Rep. Series No. 301. London: HMSO. 1961.Google Scholar
  492. Southall,J. P. C.: The optical theory of skiascopy. J. opt. Soc. Amer. 13, 245-266 (1926). Southall,J. P. C.: Mirrors, Prisms and Lenses. New York: Dover 1964.Google Scholar
  493. Sparrow, C. M.: Spectroscopic resolving power. Astrophys. J. 44, 76-86 (1916).Google Scholar
  494. Spatz, W. B.: Die Bedeutung der Augen fur die sagittale Gestaltung des Schadels von Tarsius. Folia primatol. 9,22-40 (1968).Google Scholar
  495. Steinberg, R. H., Reid, M., Lacy, P. L.: The distribution of rods and cones in the retina of the cat. J. comp. Neurol. 148,229-248 (1973).Google Scholar
  496. Stenstrom, S.: Investigation of the variation and the correlation of the optical elements of human eyes. Amer. J. Optom. Monog. 58 (1948).Google Scholar
  497. Stevenson-Hamilton, J.: Animal Life in Africa. London: Alligator Books 1912.Google Scholar
  498. Stiles, W. S., Crawford, B. H.: The luminous efficiency of rays entering the pupil at different points. Proc. roy. Soc. Lond. B 112, 428 (1933).Google Scholar
  499. Stine, G. H.: Variations in refraction of visual and extravisual pupillary zones: skiascopic study. Amer. J. Ophthal. 13,101-112 (1930).Google Scholar
  500. Stine, G. H.: Tables for accurate retinal localization. Amer. J. Ophthal. 17, 314–324 (1934).Google Scholar
  501. Stone, J.: A quantitative analysis of the distribution of ganglion cells in the cat retina. J. comp. Neurol. 12, 337–352 (1965).Google Scholar
  502. Stone, J.: The naso-temporal division of the cat’s retina. J. comp. Neurol. 126, 585–600 (1966).Google Scholar
  503. Stone, J.: Sampling problems of microelectrodes assessed in the cat’s retina. J. Neurophysiol. 36, 1071–1079 (1973).Google Scholar
  504. Stone, J., Fabian,M.: Specialised receptive fields of the cat’s retina. Science 152, 1277–1279 (1966).Google Scholar
  505. Stone, J., Fukuda, Y.: Properties of cat retinal ganglion cells: A comparison of W-cells with X-and Ycells. J. Neurophysiol. 37, 722–748 (1974).Google Scholar
  506. Stone, J., Leicester, J., Sherman, S. M.: The naso-temporal division of the monkey’s retina. J. comp. Neurol. 150, 333–348 (1973).Google Scholar
  507. Stone, J., Rowe, M. H., Campion, J., Hollander, H.: Properties of ganglion cells in the visual streak of the cat’s retina. Proc. Aust. physiol. pharmacol. Soc. 6, 106–107 (1975).Google Scholar
  508. StrÖmberg, E.: über Refraktion and Achsenlange des menschlichen Auges. Berlin: Karger 1936.Google Scholar
  509. Stryker, M., Blakemore, C.: Saccadic and disjunctive eye movements in cats. Vision Res. 12, 20052013 (1972).Google Scholar
  510. Sunderland, H. R., O'Neill, W. D.: Functional dependence of optical parameters on circumferential forces in the cat lens. Vision Res. 16, 1151–1158 (1976).Google Scholar
  511. Suthers, R. A., Wallis, N. E.: Optics of the eyes of echolocating bats. Vision Res. 10, 1165–1173 (1970).Google Scholar
  512. Synge, J. L.: Geometrical Optics. Cambridge Tracts in Mathematics & Mathematical Physics. London: Cambridge University Press 1937.Google Scholar
  513. Szalay, F. S.: Where to draw the nonprimate-primate taxonomic boundary. Folia primatol. 23, 158–163(1975).Google Scholar
  514. Tamura, T.: A study of visual perception in fish especially on resolving power and accommodation. Bull. Jap. Soc. Sci. Fish. 22, 536–557 (1957).Google Scholar
  515. Tapp, E. L.: Axon numbers and distribution, myelin thickness and the reconstruction of the compound action potential in the optic nerve of the teleost, Eugerres plumieri. J. comp. Neurol. 153, 267–274 (1973).Google Scholar
  516. Teller, D., Morse, R., Borton, R., Regal, D.: Visual acuity for vertical and diagonal gratings in human infants. Vision Res. 14, 1433–1439 (1974).Google Scholar
  517. Ter Braak, J. W. G.: Untersuchungen uber optokinetischen Nystagmus. Arch. neerl. Physiol. 21, 309–376 (1936).Google Scholar
  518. Thieulin, G.: Recherches sur le globe oculaire et sur la vision du chien et du chat. Paris: These 1927.Google Scholar
  519. Thompson, Sir D'Arcy: On Growth and Form. Cambridge Univ. Press 1961.Google Scholar
  520. Thompson, J. M., Woolsey, C. N., Talbot, S. A.: Visual areas I and II of cerebral cortex of rabbit. J. Neurophysiol. 13, 277–287 (1950).Google Scholar
  521. Thorpe, W. H.: Learning and Instinct in Animals. London: Methuen 1963.Google Scholar
  522. Tiao, Y. C., Blakemore, C.: Regional specialisation in the golden hamster’s retina. J. comp. Neurol. 168, 439–458 (1976).Google Scholar
  523. Toates, F. M.: Accommodation function of the human eye. Physiol. Rev. 52, 828–863 (1972).Google Scholar
  524. Toraldo di Francia, G.: Resolving power and information. J. opt. Soc. Amer. 45, 497–501 (1955).Google Scholar
  525. Trevarthen, C. B.: Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–337 (1968).Google Scholar
  526. Tschermak-Seysenegg, A.: Studien uber das Binocularsehen der Wirbelthiere. Pflügers Arch. ges. Physiol. 91, 1–20 (1902).Google Scholar
  527. Uberreiter O. Examination of the eye and eye operations in animals. Advanc. vet. Sci. 5 2-73 1959Google Scholar
  528. Urbantschitsch, E.: Kopfnystagmus. Mschr. Ohrenheilk. 44, 1–14 (1910).Google Scholar
  529. Vakkur, G. J.: Studies on optics and neurophysiology of vision. M.D. Thesis, University of Sydney 1967.Google Scholar
  530. Vakkur, G. J., Bishop, P.O.: The schematic eye in the cat. Vision Res. 3, 357-381(1963).Google Scholar
  531. Vakkur, G. J., Bishop, P. O., Kozak, W.: Visual optics in the cat, including posterior nodal distance and retinal landmarks. Vision Res. 3, 289-314 (1963).Google Scholar
  532. Valentin, G.: Ein Beitrag zur Kenntniss der Brechungsverhaltnisse der Thiergewebe. Pflugers Arch. ges. Physiol. 19, 78-105 (1879 a).Google Scholar
  533. Valentin, G.: Fortgesetzte Untersuchungen uber die Brechungsverhaltnisse der Thiergewebe. Pflugers Arch. ges. Physiol. 20, 283-314 (1879b).Google Scholar
  534. Van Alphen,G. W. H. M.: On emmetropia and ametropia. Ophthalmologica Suppl. (Basel) 142 (1961). Van Buren, J. M.: The Retinal Ganglion Cell Layer. Thomas: Springfield Ill. 1963.Google Scholar
  535. Van den Brink, G.: Measurements of the geometrical aberrations of the eye. Vision Res. 2, 233-244 (1962).Google Scholar
  536. Vaney, D. I.: A quantitative comparison between the ganglion cell population and the axonal outflow in the visual streak and periphery of the rabbit retina. Submitted (1977).Google Scholar
  537. Vaney, D. I., Hughes, A.: The rabbit optic nerve: Fibre diameter spectrum, fibre count, and comparison with a retinal ganglion cell count. J. comp. Neurol. 170,241-251 (1976).Google Scholar
  538. Van Hof,M. W.: Visual acuity in the rabbit. Vision Res. 7, 749-751 (1967).Google Scholar
  539. Van Hof, M. W., Lagers-Van Haselen, G. C.: The retinal fixation area in the rabbit. Exp. Neurol. 41, 218-221(1973).Google Scholar
  540. Van Nes, F. L., Bouman, M. A.: Spatial modulation transfer in the human eye. J. opt. Soc. Amer. 57, 401—406(1967).Google Scholar
  541. Van Sluyters, R. C., Stewart, D. L.: Binocular neurons of the rabbit’s visual cortex: receptive field characteristics. Exp. Brain Res. 19, 196-204 (1974 b).Google Scholar
  542. Van Sluyters, R. C., Stewart, D. L.: Binocular neurons of the rabbit’s visual cortex: effects of monocular sensory deprivation. Exp. Brain Res. 19, 196-204 (1974b).Google Scholar
  543. Vejbaesya, C.: Studies on the connections of the visual system. Doctoral thesis, Edinburgh 1968. Vilter, V.: Recherches biometriques sur 1'organisation synaptique de la retine humaine. C.R. Soc. Biol. (Paris) 143, 830-832 (1949).Google Scholar
  544. Vilter, V.: Asymmetrie cyto-architectonique de la fovea retinienne de 1'homme. C.R. Soc. Biol. 148, 220-223 (1954 a).Google Scholar
  545. Vilter,V.: Histologie et activite electrique de la retine d'un mammifere strictement diurne, le Spermophile (Citellus citellus). C.R. Soc. Biol. (Paris)148, 1768-1771 (1954b).Google Scholar
  546. Vincent, S. B.: The Mammalian Eye. J. Anim. Behav. 2, 249-255 (1912). Vogt,A.: Die Kurzsichtigkeit. Zurich 1936.Google Scholar
  547. Walk, R. D.: The study of visual depth and distance perception in animals. Advanc. Study Behav. 1, 99-154 (1965).Google Scholar
  548. Walk, R. D., Gibson, E. J.: A comparative and analytical study of visual depth perception. Psychol. Monogr. 75,1—44 (1961).Google Scholar
  549. Walls, G. L.: The visual cells of the white rat. J. comp. Psychol. 18, 363-366 (1934). Walls, G. L.: Significance of foveal depression. Arch. Ophthal. 18, 912-919 (1937). Walls, G. L.: The vertebrate eye and its adaptive radiation. New York: Hafner 1942. Ward, B., Davis, J. K.: The modulation transfer function as a performance specification for ophthalmic lens and protective devices. Amer. J. Optom. 49,234-259 (1972).Google Scholar
  550. Wassle,H.: Optical qualitiy of the cat eye. Vision Res. 11, 995-1006 (1971).Google Scholar
  551. Wassle, H., Creutzfeldt, O. D.: Spatial resolution in the visual system: a theoretical and experimental study on single units in the cat’s lateral geniculate nucleus. J. Neurophysiol. 36, 13-27 (1973). Wassle, H., Levick, W. R., Cleland, B. G.: The distribution of the alpha type of ganglion cells in the cat retina. J. comp. Neurol. 159419-438 (1975).Google Scholar
  552. Weale, R. A.: The spectral reflectivity of the cat’s tapetum measured in situ. J. Physiol. (Lond.) 119, 30-42 (1953).Google Scholar
  553. Weale, R. A.: Problems of peripheral vision. Brit. J. Ophthal. 40, 392-415 (1956). Weale, R. A.: Presbyopia. Brit. J. Ophthal. 46, 660-668 (1962).Google Scholar
  554. Weale,R.A.: Why does the human retina possess a fovea? Nature (Lond.) 212, 255-256 (1966). Weale, R. A.: Polarised light and the human fundus oculi. J. Physiol. (Lond.) 186, 175-186 (1966). Weale, R. A.: Ocular optics and evolution. J. opt. Soc. Amer. 66,1053-1054 (1976).Google Scholar
  555. Webb, S. V., Kaas, J. H.: The size and distribution of ganglion cells in the retina of the owl monkey Aotus Trivirgatus. Vision res. 16, 1247-1254 (1976).Google Scholar
  556. Wertheim,M.: fiber die indirekte Sehscharfe. Z. Psychol. Physiol. Sinnesorg. 7, 172-189 (1894). West, R. W., Dowling, J. E.: Anatomical evidence for cone and rod-like receptors in the grey squirrel, ground squirrel, and prairie dog retinas. J. comp. Neurol. 159,439—460 (1975).Google Scholar
  557. Westheimer,G.: Modulation thresholds for sinusoidal light distributions on the retina. J. Physiol. (Lond.)152, 67-74 (1960).Google Scholar
  558. Westheimer,G.: Line spread function of the living cat eye. J. opt. Soc. Amer. 52, 1326 (1962). Westheimer, G.: Optical and motor factors in the formation of the retinal image. J. opt. Soc. Amer. 53, 86-93 (1963).Google Scholar
  559. Westheimer, G.: Visual acuity and spatial modulation thresholds. In: Handbook of Sensory Physiology, VII/4, Jameson,D., and Hurvich,L.M. (eds.). Berlin: Springer-Verlag 1972 a.Google Scholar
  560. Westheimer, G.: Optical properties of vertebrate eyes. In: Handbook of Sensory Physiology VII/2. Fuortes, M. G. F. (ed.) Berlin: Springer-Verlag 1972b.Google Scholar
  561. Westheimer, G.: Visual acuity and hyperacuity. Invest. Ophth. 14, 570–572 (1975).Google Scholar
  562. Westheimer, G.: Diffraction theory and visual hyperacuity. Am. J. Optom. Phys. Opt. 53, 362–364 (1976).Google Scholar
  563. Westheimer, G.: Spatial frequency and light-spread descriptions of visual acuity and hyperacuity. J. opt. Soc. Amer. 67, 207–212 (1977).Google Scholar
  564. Westheimer, G., Blair, S. M.: Accommodation of the eye during sleep and anaesthesia. Vision Res. 13, 1035–1040 (1973).Google Scholar
  565. Westheimer, G., Campbell, F. W.: Light distribution in the image formed by the living human eye. J. opt. Soc. Amer. 52, 1040–1044 (1962).Google Scholar
  566. Weymouth, F. W.: Visual sensory units and the minimal angle of resolution. Amer. J. Ophthal. 46, 102–113 (1958).Google Scholar
  567. Whitteridge, D.: Geometrical relations between the retina and the visual cortex. In: Mathematics and Computer Science in Biology and Medicine. London: M.R.C. 1965, pp. 269–276.Google Scholar
  568. Whitteridge, D.: Projection of optic pathways to the visual cortex. In: Handbook of Sensory Physiology, VII/3 B, Jung, R. (ed.). Berlin: Springer-Verlag 1973, pp. 247–268.Google Scholar
  569. Wilcox, J. G., Barlow, H. B.: The size and shape of the pupil in lightly anaesthetized cats as a function of luminance. Vision Res. 15, 1363–1365 (1975).Google Scholar
  570. Wilson, M. E., Toyne, M. J.: Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res. 24, 395–406 (1970).Google Scholar
  571. Wilson, P. D., Stone, J.: Evidence of W-cell input to that cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 92, 472–478 (1975).Google Scholar
  572. Winthrop, J. T.: Propagation of structural information in optical wave fields. J. opt. Soc. Amer. 61, 15–30 (1971).Google Scholar
  573. Winterson, B. J., Robsinson, D. A.: Fixation by the alert but solitary cat. Vision Res. 15, 1349–1352 (1975).Google Scholar
  574. Wolff, E.: The Anatomy of the Eye and its Orbit. London: Lewis & Co. 1940.Google Scholar
  575. Wolin, L. R., Massopust, L. C.: Characteristics of the ocular fundus in primates. J. Anat. 101, 693–699 (1967).Google Scholar
  576. Wood, C. A.: The Fundus Oculi in Birds. Chicago 1917.Google Scholar
  577. Wood, R. W.: Physical Optics. New York: Macmillan 1911.Google Scholar
  578. Woodhouse, J. M.: The effect of pupil size on grating detection at various contrast levels. Vision Res. 15, 645–648 (1975).Google Scholar
  579. Woodhouse, J. M., Campbell, F. W.: The role of the pupil light reflex in aiding adaptation to the dark. Vision Res. 15, 649–653(1975).Google Scholar
  580. Wood Jones, F.: Arboreal Man. London: Edward Arnold 1926.Google Scholar
  581. Woolf, D.: A comparative cytological study of the ciliary muscle. Anat. Rec. 124, 145–163 (1956).Google Scholar
  582. Woollard, H. H.: Notes on the retina and lateral geniculate body in Tupaia, Tarsius, Nycticebus and Hapale. Brain, 49, 77–104 (1926).Google Scholar
  583. Worfold, R. L.: Canine optics. Aust. J. Optom. 48, 164–174 (1965).Google Scholar
  584. Xenophon. Xenophon’s Minor Works: Cynegeticus. (Trans. J.S. Watson). London: G. Bell & Sons 1905.Google Scholar
  585. Yen, J.L.: On nonuniform sampling of band-width limited signals. I.R.E. Trans. on Circuit Theory, 3, 251–257 (1956).Google Scholar
  586. Young, F. A.: The effect of restricted visual space on the primate eye. Amer. J. Ophthal. 52, 799–806 (1961).Google Scholar
  587. Young, F. A.: The effect of restricted visual space on the refractive error of the young monkey. Invest. Ophthal. 2, 571–577 (1963).Google Scholar
  588. Young, F. A., Farrer, D. N.: Refractive characteristics of chimpanzees. Amer. J. Optom. 41, 81–91 (1964).Google Scholar
  589. Young, F. A., Leary, G. A.: Visual-optical characteristics of caged and semi-free ranging monkeys. Amer. J. Phys. Anthrop. 38, 377–382 (1973).Google Scholar
  590. Young, T.: On the mechanism of the eye. Phil. Trans. 91, 23–88 (1801).Google Scholar
  591. Zurn, J.: Vergleichend histologische Untersuchungen uber die Retina and die Area centralis retinae der Haussaugethiere. Arch. Anat. Physiol. Anat. Abtheil. 102, 99–146(1902).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • Austin Hughes
    • 1
  1. 1.Canberra CityAustralia

Personalised recommendations