Purification and Properties of E. coli Maltodextrin Phosphorylase

  • D. Palm
  • F. Thanner
  • L. Schwenk
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Studies of the carbohydrate utilization in bacteria have indicated that the phosphorolysis of polymeric α-1,4-linked glucose to glucose-1-P by pyridoxal-5’-P-dependent phosphorylases is a universally occurring process (Palmer et al., 1973). While phosphorylases of higher organisms respond to energy needs by means of allosteric or covalent activation, in bacteria activation in response to a changing nutritional environment is mediated via phosphorylase induction. Nonregulatable phosphorylases might be interesting tools to study the role of pyridoxal-5’-P for the structure and function of these enzymes.


Isoleucine Leucine Dithiobisnitrobenzoic Acid Skeletal Muscle Enzyme Molecular Weight Linear Maltodextrin Phosphorylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen, G.S., Segel, J.H.: Arch. Biochem. Biophys. 127, 164–174 (1968)PubMedCrossRefGoogle Scholar
  2. Davis, G.E., Stark, G.R.: Proc. Nat. Acad. Sci. U.S. 66, 651–656 (1970)CrossRefGoogle Scholar
  3. Eibl, H., Lands, W.E.M.: Anal. Biochem. 30, 51–57 (1969)PubMedCrossRefGoogle Scholar
  4. Feldmann, K., Gaugler, B.J.M., Winkler, H., Helmreich, E.J.M.: Biochemistry 13, 2222–2230 (1974)Google Scholar
  5. Fischer, E.H., Cohen, P., Rosset, M., Muir, L.W., Saari, J.C.: Metabolic Interconversion of Enzymes; 2nd Int. Symp., Rottach-Egern. Wieland, 0., Helmreich, E., Holzer, H. (eds.). Berlin-Heidelberg-New York: Springer, 1971, pp. 11–28Google Scholar
  6. Goodwin, T.W., Morton, R.A.: Biochem. J. 40, 628–632 (1946)Google Scholar
  7. Graves, D.J., Wang, J.H.: The Enzymes 1, 435–482 (1972)Google Scholar
  8. Habeeb, A.F.S.A.: Meth. Enzymol. 25, 457–464 (1972)Google Scholar
  9. Haschke, R.H., Heilmeyer. L.M.G, Jr.: Anal. Biochem. 47, 451–456 (1972)Google Scholar
  10. Helmreich, E., Cori, C.F.: Proc. Nat. Acad , Sci. U.S. 51, 131–138 (1964)CrossRefGoogle Scholar
  11. Henderson, G.B., Snell, E.E.: J. Biol. Chem. 248, 1906–1911 (1973)Google Scholar
  12. Jakoby, W.B.: Meth. Enzymol. 22, 248–252 (1971)Google Scholar
  13. Kent, A.B., Krebs, E.G., Fischer, E.H.: J. Biol. Chem. 232, 549–558 (1958)Google Scholar
  14. Laei, U.K.: Nature 227, 680–685 (1970)Google Scholar
  15. Lerch, K., Fischer, E.H.: Biochemistry 14, 2009–2014 (1975)Google Scholar
  16. Lowry, O.H., Rosenbrough, M.J., Farr, A.L., Randall, R.J.: J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  17. Marchalonis, J.J., Weltman, J.K.: Comp. Biochem. Physiol. 38B, 609–625 (1971)Google Scholar
  18. Palmer, T.N., Weber, G., Whelan, W.J.: Eur. J. Biochem. 39, 601–612 (1973)Google Scholar
  19. Schwartz, M., Hofnung, M.: Eur. J. Biochem. 1, 132–145 (1967)Google Scholar
  20. Thanner, F., Palm, D., Shaltiel, F.: FEBS Letters 55, 178–182 (1975)Google Scholar
  21. Wada, H., Snell, E.E.: J. Biol. Chem. 236, 2089–2095 (1961)PubMedGoogle Scholar
  22. Weber, K., Osborn, M.: J. Biol. Chem. 244, 4406–4412 (1969)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • D. Palm
  • F. Thanner
  • L. Schwenk

There are no affiliations available

Personalised recommendations