Oocyte Maturation and Paternal Contribution to the Embryo in Mammals

  • D. Szöllösi
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 62)


The progressive events taking place in the nucleus from the intact germinal vesicle stage to the second meiotic metaphase will be referred to here as oocyte maturation. This maturation, which is under the influence of gonadotrophins, is a prerequisite for rendering an oocyte fertilizable by a spermatozoon. Whether the subsequent cleavage and development is normal relies heavily on the existence of cortical granules and on the secretion of their contents at the moment of sperm attachment. The development of a defense mechanism to avoid polyspermy is initiated during the oocyte growth phase. Even though in most cases the spermatozoon is incorporated entirely during its penetration process, the question remains if in addition to the nucleus, other organelles entering with it remain physiologically active. In this regard, the mitochondria with their known mechanism for self-replication, and centrioles, which in somatic cells duplicate themselves, are of particular interest. The developmental changes of some organelles will be discussed under normal and certain pathologic conditions. The more recent findings of virus-like “A” particles will also be presented.


Oocyte Maturation Cortical Granule Meiotic Spindle Meiotic Metaphase Cortical Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, H.K., Jeppesen, T.: Virus-like particles in guinea pig oogonia and oocytes. J. nat. Cancer Inst. 49, 1403–1410 (1972).PubMedGoogle Scholar
  2. Anderson, E.: The localization of acid phosphatase and the uptake of horseradish peroxidase in the oocyte and follicle cells of mammals (eds. J.D. Biggers and A. W. Schuetz). Oogenesis, Ch. 5, 87–117 (1970).Google Scholar
  3. Anderson, W.A.: Structure and fate of the parental mitochondrion during early embryogenesis of Paracentrotus lividus. J. Ultrastruct. Res. 34, 211–321 (1968).Google Scholar
  4. Austin, C.R.: Cortical granules in hamster eggs. Exp. Cell Res. 10, 533 (1956).PubMedCrossRefGoogle Scholar
  5. Austin, C.R.: The Mammalian Egg. Oxford: Blackwell 1961.Google Scholar
  6. Bernhard, W.: The detection and study of tumor viruses with the electron microscope. Cancer Res. 20, 712–727 (1960).PubMedGoogle Scholar
  7. Biczysko, W., Pienkowski, M., Solter, D., Koprowski, H.: Virus particles in early mouse embryos. J. nat. Cancer Inst. 51, 1041–1050 (1973).PubMedGoogle Scholar
  8. Calarco, P.G.: The kinetochore in oocyte maturation (eds. J.D. Biggers and A. W. Schuetz). Oogenesis, Ch. 5, 65–89 (1972).Google Scholar
  9. Calarco, P.G., Donahue, R.P., Szöllösi, D.: Germinal vesicle breakdown in the mouse oocyte. J. Cell Sci. 10, 369–385 (1972).PubMedGoogle Scholar
  10. Calarco, P.G., Szöllösi, D.: Intracisternal A particles in ova and preimplantation stages of the the mouse. Nature (New Biol.) 243, 91–93 (1973).Google Scholar
  11. Chase, D.G., Piko, L.: Expression of A-and C-type particles in early mouse embryos. J. nat. Cancer Inst. 51, 1871–1975 (1973).Google Scholar
  12. Dawid, I.B., Blackler, A. W.: Maternal and cytoplasmic heritance of mitochondrial DNA in Xenopus. Develop. Biol. 29, 152–161 (1972).PubMedCrossRefGoogle Scholar
  13. Donahue, R.P.: Maturation of the mouse oocyte in vitro. I Sequence and timing of nuclear progression. J. exp. Zool. 169, 237 (1968).PubMedCrossRefGoogle Scholar
  14. Enders, A.C., Schlafke, S.J.: The fine structure of the blastocyst: some comparative studies. In: Preimplantation stages of pregnancy (eds. G.E. W. Wolstenholme and M. O’Connor). Ciba Foundation Symposium. Boston: Little, Brown 1965.Google Scholar
  15. Fawcett, D. W.:The anatomy of the mammalian spermatozoon With particular reference to the guinea pig. Z. Zellforsch. 67, 279–296 (1965).PubMedCrossRefGoogle Scholar
  16. Flechon, E.: Nature glycoprotéique des granules corticaux de l’oeuf de lapine. Mise en evidence par l’utilisation comparée de techniques cytochimiques ultrastructurales. J. Microscopie 9, 221–242 (1970).Google Scholar
  17. Flechon, J.E., Huneau, D., Solari, A., Thibault, C.: Réaction corticale et blocage de la polyspermie dans l’oeuf de lapine. Ann. Biol. anim. Biochim. Biophys. 15, 9–18 (1975).CrossRefGoogle Scholar
  18. Franklin, L.E., Fussell, E.N.: Evolution of the apical body in golden hamster spermatids with some reference to primates. Biol. Reprod. 7, 194–206 (1972).PubMedGoogle Scholar
  19. Gulyas, B.J.: Cortical granules in artificially activated (Parthenogenetic) rabbit eggs. J. Anat. 140, 577–582 (1974).CrossRefGoogle Scholar
  20. Gwatkin, R.B.L., Williams, D. T., Hartmann, F.J., Kniazuk, M.: The zona reaction of hamster and mouse eggs: production in vitro by a trypsin-like protease from cortical granules. J. Reprod. Fertil. 32, 259–266 (1973).PubMedCrossRefGoogle Scholar
  21. Kuff, E.L., Lueders, K.K., Ozer, W.L., Wivel, N.A.: Some structural and antigenic properties of intracisternal A particles occurring in mouse tumors. P.N.A.S. 69, 218–222 (1972).PubMedCrossRefGoogle Scholar
  22. Longo, F.J., Schuel, H.: An ultrastructural examination of polyspermy induced by soybean trypsin inhibitor in the sea urchin Arbacia punctulata. Develp. Biol. 34, 187–199 (1973).CrossRefGoogle Scholar
  23. Perotti, M.E.: The mitochondrial derivative of the spermatozoon of Drosophila before and after fertilization. J. Ultrastruct. Res. 44, 181–198 (1973).PubMedCrossRefGoogle Scholar
  24. Pickett-Heaps, F.D.: The autonomy of the centriole: fact or fallacy? Cytobios 3, 205–214 (1971).Google Scholar
  25. Szöllösi, D.: Cortical granules: a general feature of mammalian eggs? J. Reprod. Fertil. 4, 223 (1962).Google Scholar
  26. Szöllösi, D.: The fate of sperm middle-piece mitochondria in the rat egg. J. exp. Zool. 159, 367–377 (1965).PubMedCrossRefGoogle Scholar
  27. Szöllösi, D.: Development of cortical granules and the cortical reaction in rat and hamster eggs. Anat. Rec. 159, 431–446 (1967).PubMedCrossRefGoogle Scholar
  28. Szöllösi, D.: Changes of some cell organelles during oogenesis in mammals (eds. D.J. Biggers and A. Schuetz). Oogenesis, Ch. 5, 47–86 (1970).Google Scholar
  29. Szöllösi, D.: Cortical cytoplasmic filaments of cleaving eggs: A structural element corresponding to the contractile ring. J. Cell Biol. 44, 192–209 (1970).PubMedCrossRefGoogle Scholar
  30. Szöllösi, D.: Morphological changes in mouse eggs due to aging in the fallopian tube. J. Anat. 130, 209–225 (1971).CrossRefGoogle Scholar
  31. Szöllösi, D.: The spindle structure in mammalian eggs: the effect of aging. Proceedings of the Symposium sponsored by INSERM, DGRST, OMS (eds. A. Boue and C. Thibault) 1973a.Google Scholar
  32. Szöllösi, D.: The fate of the proximal centriole of porcine sperm penetrating an egg. J. Cell Biol. 59, 342a (1973b).Google Scholar
  33. Szöllösi, D.: Mammalian eggs aging in the fallopian tubes. Basel: Karger A.G. 1974.Google Scholar
  34. Szöllösi, D., Calarco, P.G., Donahue, R.P.: Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972a).PubMedGoogle Scholar
  35. Szöllösi, D., Calarco, P.G., Donahue, R.P.: The nuclear envelope: its breakdown and fate in mammalian oogonia and oocytes. Anat. Rec. 174, 325–340 (1972b).PubMedCrossRefGoogle Scholar
  36. Szöllösi, D., Hunter, R.H.F.: Ultrastructural aspects of fertilization in the domestic pig: sperm penetration and pronucleus formation. J. Anat. 116, 181–206 (1973).PubMedGoogle Scholar
  37. Szöllösi, D., Hans Ris, P.D.: Observations of sperm penetration in the rat. J. Biophys. Biochem. Cytol. 10, 275–283 (1961).PubMedCrossRefGoogle Scholar
  38. Vacquier, V.D., Tegner, M.J., Epel, D.: Protease activity establishes the block against polyspermy in sea urchin eggs. Nature (Lond.) 240, 352–353 (1972).CrossRefGoogle Scholar
  39. Woolley, D.M., Fawcett, D. W.: The degeneration and disappearance of the centrioles during the development of the rat spermatozoon. Anat. Rec. 177, 289–302 (1973).PubMedCrossRefGoogle Scholar
  40. Yanagimachi, R., Chang, M.C.: Fertilizable life of golden hamster ova and their morphological changes at the time of losing fertilizability. J. exp. Zool. 148, 185–203 (1961).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 1976

Authors and Affiliations

  • D. Szöllösi

There are no affiliations available

Personalised recommendations