Naturally Occurring Antihistaminics in Body Tissues

  • G. Pelletier
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 18 / 2)


During the past 25 years many authors have shown that extracts of tissues, cells, and biological fluids have an antihistamine effect. The first mention of this effect in the literature was as early as 1950 when Kovacs showed that eosinophils possess antihistamine activity (Kovacs, 1950; Kovacs and Juhasz, 1951). These researchers had found that leukocyte extracts or suspensions from rabbits and humans containing high amounts of eosinophils, could antagonize the lethal bronchospasm of histamine aerosol in guinea pigs (Kovacs and Juhasz, 1952). In 1952–1953, these findings were confirmed by Vercauteren who, working on the cytochemistry of eosinophil granulocytes of horses and frogs, found an antihistamine factor in the granules of these cells (Vercauteren and Peeters, 1952; Vercauteren, 1953). This activity was tested on guinea pig ileum. Because of the presence of arginine in these granules he suggested that the antihistamine substance could be arginine. In fact, arginine has a weak antihistamine effect (Ackermann and Wasmuth, 1939). Later the factor in eosinophils responsible for antihistamine activity was thought to be a steroid. Workers had found, using paper chromatography and strains for steroids, that the substance could be a ketosteroid (Kovacs and Kovacs-Juhasz, 1955). No further purification was accomplished.


Frog Skin Urine Extract Bile Extract Antihistamine Activity Leukocyte Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, D., Wasmuth, W.: Zur Wirkungsweise des Histamins. Hoppe-Seylers Z. physiol. Chem. 259, 28–31 (1939).CrossRefGoogle Scholar
  2. Archer, R.K.: Studies with eosinophil leucocytes isolated from the blood of the horse. Brit. J. Haemat. 6, 229–241(1960).PubMedCrossRefGoogle Scholar
  3. Archer, R. K.: The eosinophil leucocytes. Oxford: Blackwell Sci. Publ. 1963.Google Scholar
  4. Archer, R.K., Feldberg, W., Kovacs, B.A.: Antihistamine activity in extracts of horse eosinophils. Brit. J. Pharmacol. 18, 101–108 (1962).PubMedGoogle Scholar
  5. Barsoum, G.S., Gaddum, J.H.: The pharmacological estimation of adenosine and histamine in blood. J. Physiol. (Lond.) 85, 1–14 (1935).Google Scholar
  6. Black, J.W., Duncan, W. A.M., Durant, C.J., Ganellin, C.R., Parsons, E.M.: Definition and antagonism of histamine H2 receptors. Nature (Lond.) 236, 385–390 (1972).CrossRefGoogle Scholar
  7. Bonfils, S., Lambling, A.: In: Skoryna, S.C. (Ed.): Pathophysiology of peptic ulcer. Montreal: McGill University Press 1963.Google Scholar
  8. Bush, J.E., Alexander, R.W.: An improved method for the assay of anti-inflammatory substances in rats. Acta endocr. (Kbh.) 35, 268–276 (1960).Google Scholar
  9. Duner, H., Pernow, B.: Urinary excretion of histamine in bronchial asthma. Acta med. scand. 161, fasc. 5, 361–375 (1958).PubMedCrossRefGoogle Scholar
  10. Esch, F., Taubert, M.: Über antihistaminartige Inhaltsstoffe der eosinophilen Leucocyten. Klin. Wschr. 41, 335–337(1963).CrossRefGoogle Scholar
  11. Feldberg, W., Kovacs, B. A.: Antihistamine activity of extracts prepared from buffy-coat layer of horse blood and from oak gall. J. Physiol. (Lond.) 154, 461–478 (1960).Google Scholar
  12. Filderman, R.B., Kovacs, B.A.: Anti-inflammatory activity of the steroid alkaloid glycoside, Tomatine. Brit. J. Pharmacol. 37, 748–755 (1969).Google Scholar
  13. Francis, L.E., Melville, K.I.: Effects of diphenylhydantoin (Dilantin) on histamine changes in gingival tissue. J. Canad. dent. Ass. 24, 142–147 (1958).Google Scholar
  14. Francis, L.E., Melville, K.I.: Effects of diphenylhydantoin on gingival histamine and serotonin. J. Canad. Ass. 25, 608–620 (1959).Google Scholar
  15. Francis, L.E., Melville, K. I., Douglas, D.E.: Antiallergic activity and some chemical properties of an antihistamine principle in human and animal tissue extracts. Canad. J. Biochem. 41, 1961–1969(1963).PubMedGoogle Scholar
  16. Gauthier, P., Delagrave, J., Laflamme, G., Pelletier, G.: Protection contre le bronchospasme à Thistamine et le microchoc anaphylactique de Herxheimer par un extrait de bile. Un. méd. Can. 103, 426–431 (1974).Google Scholar
  17. Goetzl, E. J., Wasserman, S. I., Austen, K. F.: Modulation of the eosinophil chemotactic response in immediate hypersensitivity. In: Progress in Immunology II. Amsterdam: North Holland 1974.Google Scholar
  18. Harris, J.M., Spencer, P.S.J.: A modified Plethysmographic apparatus for recording volume changes in the rat paw. J. Pharm. Pharmacol. 14, 464–466 (1962).PubMedCrossRefGoogle Scholar
  19. Herxheimer, H.: Repeatable “microshocks” of constant strength in guinea pig anaphylaxis. J. Physiol. (Lond.) 117, 251–255 (1952).Google Scholar
  20. Ishida, Y., Oshima, H., Sawada, A., Sakai, K.: Inhibitory substances of isolated smooth muscles in human urine. J. Pharmacol. Soc. Japan 92, 1069–1073 (1972 a).Google Scholar
  21. Ishida, Y., Oshima, H., Aibara, S., Ohmoto, M.: Inhibitory actions of steroid hormones on isolated smooth muscles. J. Pharmacol. Soc. Japan 92, 1175–1179 (1972 b).Google Scholar
  22. Jayasundar, S., Periyasamy, S.M., Bhide, N.K.: Pharmacological study of antihistaminic principle(s) in the Rana tigrina tissues. Indian J. Physiol. Pharmacol. 17, 213–225 (1973).Google Scholar
  23. Karady, S., Kovacs, A.: An adaptation mechanism of the organism to damage: the role of “resistine”. Nature (Lond.) 161, 688 (1948).CrossRefGoogle Scholar
  24. Karady, S., Kovacs, A., Petri, G.: Der Pathomechanismus der Antianaphylaxie und der Desensibilisierung. Arch. int. Pharmacodyn. 83, 259–269 (1950).PubMedGoogle Scholar
  25. Karady, S., Kovacs, B.A., Kovacs, J., Szerdahelyi, M., Vajda, P.: Versuche zum Nachweis eines im Organismus entstehenden bisher unbekannten Stoffes mit Antihistaminwirkung (Resistin). Arch. int. Pharmacodyn. 88, 253–267 (1951).PubMedGoogle Scholar
  26. Kovacs, A., Juhasz, E.: Über die Antihistaminwirkung von Leukocytensuspensionen mit besonderer Berücksichtigung der eosinophilen Leukocyten. Arch. int. Pharmacodyn. 88, 383–391 (1952).PubMedGoogle Scholar
  27. Kovacs, A., Kovacs-Juhasz, E.: Über die Isolierung eines in den weißen Blutkörperchen (eosinophilen Leukozyten) nachgewiesenen „natürlichen Antihistamins”. Biochim. biophys. Acta (Amst.) 17, 406–409(1955).CrossRefGoogle Scholar
  28. Kovacs, B.A.: Antihistamine effect of eosinophil leucocytes. Experientia (Basel) 6, 349–350 (1950).CrossRefGoogle Scholar
  29. Kovacs, B. A., Goodfriend, L., Rose, B.: Naturally occurring antihistamine with a steroid-like structure. Excerpt. Med. Internat. Congr. 132, 1021–1027 (1966).Google Scholar
  30. Kovacs, B.A., Juhasz, E.: Purified leucocyte suspensions with antihistaminic activity. Experientia (Basel) 7, 273 (1951).CrossRefGoogle Scholar
  31. Kovacs, B.A., Melville, K. I.: The presence in normal tissue of a substance or substances antagonizing histamine, 5-hydroxytryptamine and acetylcholine. Canad. J. Biochem. 40, 147 – 151(1962).PubMedCrossRefGoogle Scholar
  32. Kovacs, B. A., Melville, K.I.: Antihistamine and antibradykinin effects of normal urine extracts. Nature (Lond.) 198, 1060–1061 (1963).CrossRefGoogle Scholar
  33. Kovacs, B.A., Pelletier, G., Rose, B.: An antihistamine-like substance (or substances) in extracts prepared from human tissues. Brit. J. Pharmacol. 21, 419–426 (1963).PubMedGoogle Scholar
  34. Kovacs, B.A., Voith, K.: Inhibition of ulcer formation by urine extracts with antihistamine activity. Brit. J. Pharmacol. 27, 205–212 (1966).PubMedGoogle Scholar
  35. Lee, D.: Antihistamine activity of the eosinophyl. J. Path. 99, 96–98 (1969).PubMedCrossRefGoogle Scholar
  36. Lefcort, M., Francis, L.E., Melville, K.I.: The effects of various pharmacological agents on the distribution of antihistamine activity of rat tissue extracts. Canad. J. Physiol. Pharmacol. 47, 755–762 (1969).CrossRefGoogle Scholar
  37. Magnus, R.: Cit. in Feldberg and Schilf. Histamin. Berlin: Julius Springer 1930.Google Scholar
  38. Pelletier, G.: On naturally occurring antihistamine-like substances. Thèse doct. Phil. Montreal: McGill 1964.Google Scholar
  39. Pelletier, G.: Etude de la hausse de l’excrétion de l’antihistamine naturelle dans des états pathologiques. Un. méd. Canad. 100, 765–768 (1971).Google Scholar
  40. Pelletier, G., Desjardins, L.: Estimation of natural antihistamine activity in the urine and blood of man. J. Lab. clin. Med. 77, 786–792 (1971).PubMedGoogle Scholar
  41. Pelletier, G., Kovacs, B. A., Rose, B.: Distribution of an antihistamine substance(s) in extracts of human tumor and normal tissues. Proc. Soc. exp. Biol. (N.Y.) 114, 328–331 (1963).Google Scholar
  42. Pelletier, G., Laflamme, G.: Excretion of an antihistamine principle in mammals. J. Lab. clin. Med. 81, 252–257 (1973a).PubMedGoogle Scholar
  43. Pelletier, G., Laflamme, G.: Etude d’un principe anti-allergique naturel dans la bile. Un. méd. Canad. 102, 1508–1511 (1973 b).Google Scholar
  44. Pelletier, G., Lessard, P., Laflamme, G.: Surrénales et substances antiallergiques naturelles. Un. méd. Canad. 104, 368–372 (1975).Google Scholar
  45. Pelletier, G., Pouliot, R., Delagrave, J.: Effet in vitro des substances antiallergiques naturelles. Un. méd. Canad. 102, 542–545 (1973).Google Scholar
  46. Rossum, J.M., van: Cumulative dose-response curves IL Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch. int. Pharma-codyn. 143, 299–330(1963).Google Scholar
  47. Schild, H.O.: pA, a new scale for the measurement of drug antagonism. Brit. J. Pharmacol. 2, 189–206(1947).PubMedGoogle Scholar
  48. Seth, S.D.S., Mukhopadhyay, A., Bagchi, N., Prabhakar, M. C., Arora, R.B.: Antihistaminic and spasmolytic effects of musk. Japan J. Pharmacol. 3, 673–679 (1973).Google Scholar
  49. Shay, H., Komarov, S. A., Berk, J.E.: Some fallacies in the clinical measurement of gastric acidity with special reference to histamine test. Gastroenterology 15, 110–117 (1950).PubMedGoogle Scholar
  50. Stotland, M., Francis, L.E., Melville, K.I.: Effects of 48/80 on reserpine on tissue antihistamine extracts. Canad. J. Physiol. Pharmacol. 45, 389–394 (1967).CrossRefGoogle Scholar
  51. Vasseur, B., Nicot, G., Parrot, J.-L.: Elimination dans l’urine humaine de substances antagonistes de l’histamine. Therapie 23, 627–633 (1968).PubMedGoogle Scholar
  52. Vercauteren, R.: The properties of the isolated granules from blood eosinophils. Enzymologia 16, 1–13 (1953).PubMedGoogle Scholar
  53. Vercauteren, R., Peeters, G.: On the presence of an antihistaminicum in isolated eosinophilic granulocytes. Arch. int. Pharmacodyn. 89, 10–14 (1952).PubMedGoogle Scholar
  54. Wakkary, J.A., Goodfriend, L., Kovacs, B.A.: Isolation and some pharmacological properties of two biologically active substances of Crown gall-infected tomato plants. Part I. Isolation of active substances: tomatine and gomatine. Arch. int. Pharmacol. Ther. 183, 289–302 (1970 a).Google Scholar
  55. Wakkary, J.A., Goodfriend, L., Kovacs, B.A.: Isolation and some pharmacological properties of two biologically active substances of Crown gall-infected tomato plants. Part II. Studies on the antihistamine-like effects of tomatine and gomatine. Arch. int. Pharmacol. Ther. 183, 303–314 (1970 b).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • G. Pelletier

There are no affiliations available

Personalised recommendations