Advertisement

Structure and Function of the Peripheral Visual Pathway in Hymenopterans

  • R. Wehner
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Sensory systems provide an animal with an appropriate internal representation of the outside world. To understand what this internal representation looks like the most straight forward strategy would be to unravel the neurophysiological mechanisms by which sensory information is processed. The visual systems of insects are favorable objects for such a neurophysiological approach. The positions viewed by each individual receptor cell can be readily defined according to the highly-ordered geometry of receptors within the compound eyes. Furthermore, in the peripheral visual systems of insects, the photoreceptor cells are well separated anatomically from the other classes of higher order neurons and are not included into a single retina as in vertebrates. Finally, insects contain four to five orders of magnitude fewer receptor cells than does man, although the highly developed visual system of a fly or a bee is capable of abstracting information on position, movement, contrast, spectral and spatial frequencies and electric vector of linearly polarized light from the complex visual world of the insect’s environment.

Keywords

Polarization Sensitivity Color Receptor Green Receptor Spectral Sensitivity Function Visual Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D.W.: Receptive field organization of units in the first optic ganglion of Diptera. Science 173, 929–931 (1971)PubMedCrossRefGoogle Scholar
  2. Arnett, D.W.: Spatial and temporal integration properties of units in first optic ganglion of Dipterans. J. Neurophysiol. 35, 429–444 (1972)PubMedGoogle Scholar
  3. Autrum, H., Kolb, G.: Spektrale Empfindlichkeit einzelner Sehzellen der Aeschniden. Z. Vergl. Physiol. 60, 450–477 (1968)CrossRefGoogle Scholar
  4. Autrum, H., Zettler, F., Järvilehto, M.: Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora. Z. Vergl. Physiol. 70, 414–424 (1970)CrossRefGoogle Scholar
  5. Autrum, H., Zwehl, V. von: Zur spektralen Empfindlichkeit einzelner Sehzellen der Drohne (Apis mellifica ♂). Z. Vergl. Physiol. 46, 8–12 (1962)CrossRefGoogle Scholar
  6. Autrum, H., Zwehl, V. von: Ein Grünrezeptor im Drohnenauge (Apis mellifica ♂). Naturwissenschaften 50, 698 (1963)CrossRefGoogle Scholar
  7. Autrum, H., Zwehl, V. von: Die spektrale Empfindlichkeit einzelner Sehzellen des Bienenauges. Z. Vergl. Physiol. 48, 357–384 (1964)CrossRefGoogle Scholar
  8. Baumann, F.: Slow and spike potentials recorded from retinula cells of the honey bee drone in response to light. J. Gen. Physiol. 52, 855–876 (1968)PubMedCrossRefGoogle Scholar
  9. Baumann, F.: Electrophysiological properties of the honey bee retina. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 53–74Google Scholar
  10. Baumgartner, H.: Der Formensinn und die Sehschärfe der Bienen. Z. Vergl. Physiol. 7, 56–143 (1928)CrossRefGoogle Scholar
  11. Beier, W., Menzel, R.: Untersuchungen über den Farbensinn der deutschen Wespe (Paravespula germanica, Hymenoptera, Vespidae): Verhaltensbiologischer Nachweis des Farbensehens. Zool. Jb. Physiol. 76, 411–454 (1972)Google Scholar
  12. Berger, E.: Untersuchungen über den Bau des Gehirns und der Retina der Arthropoden. Arb. Zool. Inst. Wien, Bd. 1 (1878)Google Scholar
  13. Bernard, G.D.: Physiological optics of the fused rhabdom. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 78–97Google Scholar
  14. Bernard, G.D., Wehner, R.: Dichroism, birefringence and structural twist in polarized light detectors of insects. Biol. Bull. 149, 421 (1975)Google Scholar
  15. Bernstein, S., Finn, C.: Ant compound eye: size-related ommatidium differences within a single wood ant nest. Experientia 27, 708–710 (1971)PubMedCrossRefGoogle Scholar
  16. Bishop, L.G.: The spectral sensitivity of motion-detector units recorded in the optic lobe of the honeybee (Apis mellifera). Z. Vergl. Physiol. 70, 374–381 (1970)CrossRefGoogle Scholar
  17. Boschek, C.B.: On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. 118, 369–409 (1971)PubMedCrossRefGoogle Scholar
  18. Braitenberg, V.: Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3, 271–298 (1967)PubMedCrossRefGoogle Scholar
  19. Braitenberg, V., Debbage, P.: A regular net of reciprocal synapses in the visual system of the fly, Musca domestica. J. Comp. Physiol. 90, 25–31 (1974)CrossRefGoogle Scholar
  20. Brunnert, A., Wehner, R.: Fine structure of light and dark adapted eyes of desert ants, Cataglyphis bicolor. J. Morph. 140, 15–30 (1973)CrossRefGoogle Scholar
  21. Burkhardt, D., De La Motte, I.: Electrophysiological studies on the eyes of Diptera, Mecoptera and Hymenoptera. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 147–153Google Scholar
  22. Burton, P.R., Stockhammer, K.A.: Electron microscopic studies of the compound eye of the toadbug, Gelastocoris oculatus. J. Morph. 127, 233–258 (1969)CrossRefGoogle Scholar
  23. Butler, R.: The identification and mapping of spectral cell types in the retina of Periplaneta americana. Z. Vergl. Physiol. 72, 67–80 (1971)CrossRefGoogle Scholar
  24. Cajal, S.R., Sanchez, D.: Contribucion al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. Univ. Madrid 13, 1–168 (1915)Google Scholar
  25. Collett, T., King, A.J.: Vision during flight. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 437–466Google Scholar
  26. Corneli, W.: Von dem Aufbau des Sehorgans der Blattwespenlarven und der Entwicklung des Netzauges. Zool. Jb. Anat. Ontogen. Tiere 46, 573–608 (1924)Google Scholar
  27. Daumer, K.: Reizmetrische Untersuchungen des Farbensehens der Bienen. Z. Vergl. Physiol. 38, 413–478 (1956)Google Scholar
  28. Duelli, P., Wehner, R.: The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 86, 37–53 (1973)CrossRefGoogle Scholar
  29. Eguchi, E.: Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonfly Aeschna. Z. Vergl. Physiol. 71, 201–218 (1971)CrossRefGoogle Scholar
  30. Eheim, W.P., Wehner, R.: Die Sehfelder der zentralen Ommatidien in den Appositionsaugen von Apis mellifica und Cataglyphis bicolor (Apidae, Formicidae; Hymenoptera). Kybernetik 10, 168–179 (1972)PubMedCrossRefGoogle Scholar
  31. Fisher, S.K., Boycott, B.B.: Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proc. Roy. Soc. London 186B, 317–331 (1974)Google Scholar
  32. Gemperlein, R., Smola, U.: Übertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephala. 1. Abhängigkeit vom Ruhepotential. J. Comp. Physiol. 78, 30–52 (1972)CrossRefGoogle Scholar
  33. Gogala, M.: Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaronius (Neuroptera, Asclaphidae). Z. Vergl. Physiol. 57, 232–243 (1967)CrossRefGoogle Scholar
  34. Gogala, M., Hamdorf, K., Schwemer, J.: UV-Sehfarbstoff bei Insekten. Z. Vergl. Physiol. 70, 410–413 (1970)CrossRefGoogle Scholar
  35. Goldsmith, T.H.: The nature of retinal action potential and the spectral sensitivities of ultraviolet and green receptor systems of the compound eye of the worker honeybee. J. Gen. Physiol. 43, 775–799 (1960)PubMedCrossRefGoogle Scholar
  36. Goldsmith, T.H.: Fine structure of the retinae in the compound eye of the honeybee. J. Cell Biol. 14, 489–494 (1962)PubMedCrossRefGoogle Scholar
  37. Goldsmith, T.H.: Photoreceptor processes: some problems and perspectives. J. Exp. Zool. (in press)Google Scholar
  38. Grenacher, H.: Untersuchungen über das Sehorgan der Arthropoden insbesondere der Spinnen, Insekten und Crustaceen. Göttingen: von Vandenhoeck and Ruprecht 1879Google Scholar
  39. Gribakin, F.G.: Ultrastructural organization of the photoreceptor cells of the compound eye of the honeybee, Apis mellifera (russ.). Zh. evolutsionnoi biochemii i fiziologii 3, 66–72 (1967a)Google Scholar
  40. Gribakin, F.G.: The types of photoreceptor cells of the compound eye of the honeybee worker as revealed by electron microscopy (russ.). Tsitologia 9, 1276–1279 (1967b)Google Scholar
  41. Gribakin, F.G.: Types of photoreceptor cells in the compound eye of the worker honeybee relative to their spectral sensitivities (russ.). Tsitologia 11, 308–313 (1969a)Google Scholar
  42. Gribakin, F.G.: Cellular basis of colour vision in the honeybee. Nature 223, 639–641 (1969b)CrossRefGoogle Scholar
  43. Gribakin, F.G.: The distribution of the long wave photoreceptors in the compound eye of the honeybee as revealed by selective osmic staining. Vision Res. 12, 1225–1230 (1972)PubMedCrossRefGoogle Scholar
  44. Gribakin, F.G.: Functional morphology of the compound eye of the bee. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 154–176Google Scholar
  45. Grundler, O.J.: Elektronenmikroskopische Untersuchungen am Auge von Apis mellifera. Zulassungsarbeit zur wiss. Prüfung für das Lehramt an Gymnasien, Universität Würzburg (1972)Google Scholar
  46. Grundler, O.J.: Morphologische Untersuchungen am Bienenauge nach Bestrahlung mit Licht verschiedener Wellenlänge. Cytobiology 7, 105–110 (1973)Google Scholar
  47. Grundler, O.J.: Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifera). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiology 9, 203–220 (1974)Google Scholar
  48. Grundler, O.J.: Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifera). II. Untersuchungen zur Reaktion der Feinstrukturen des Rhabdoms auf verschiedene experimentelle Einflüsse, vor allem Reizlicht unterschiedlicher Wellenlänge. Microscopica Acta 77, 241–258 (1975)PubMedGoogle Scholar
  49. Heiversen, O. von: Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. Comp. Physiol. 80, 439–472 (1972)CrossRefGoogle Scholar
  50. Heiversen, O. von, Edrich, W.: Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J. Comp. Physiol. 94, 33–47 (1974)CrossRefGoogle Scholar
  51. Herrling, P.L.: Measurements on the arrangement of ommatidial structures in the retina of Cataglyphis bicolor (Formicidae, Hymenoptera). In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 49–53Google Scholar
  52. Herrling, P.L.: Topographische Untersuchungen zur funktionellen Anatomie der Retina von Cataglyphis bicolor (Formicidae, Hymenoptera). Dissertation Universität Zürich (1975)Google Scholar
  53. Hickson, S.J.: The eye and optic tract of insects. Quart. J. Micr. Sci. N. Ser. 25, 215–251 (1885)Google Scholar
  54. Horridge, G.A.: The retina of the locust. Wenner-Gren Center Int. Symp. Ser. 7, 513–541 (1966)Google Scholar
  55. Horridge, G.A.: Unit studies on the retina of dragonflies. Z. Vergl. Physiol. 62, 1–37 (1969)CrossRefGoogle Scholar
  56. Horridge, G.A., Meinertzhagen, I.A.: The exact neural projection of the visual fields upon the first and second ganglia of the insect eye. Z. Vergl. Physiol. 66, 369–378 (1970)CrossRefGoogle Scholar
  57. Horridge, G.A., Mimura, F.R.S.: Fly photoreceptors. I. Physical separation of two visual pigments in Calliphora retinula cells 1–6. Proc. R. Soc. London 190B, 211–224 (1975)CrossRefGoogle Scholar
  58. Horridge, G.A., Mimura, F.R.S., Tsukahara, Y.: Fly photoreceptors. II. Spectral and polarized light sensitivity in the drone fly Eristalis. Proc. R. Soc. London 190B, 225–237 (1975)CrossRefGoogle Scholar
  59. Janzen, D.H.: Euglossine bees as long-distance pollinators of tropical plants. Science 171, 203–205 (1971)PubMedCrossRefGoogle Scholar
  60. Kaiser, W.: A preliminary report on the analysis of the optomotor system of the honey bee. Single unit recordings during stimulation with spectral lights. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 167–170Google Scholar
  61. Kaiser, W.: The spectral sensitivity of the honeybee’s optomotor walking response. J. Comp. Physiol. 90, 405–408 (1974)CrossRefGoogle Scholar
  62. Kaiser, W.: The relationship between visual movement detection and colour vision in insects. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 359–377Google Scholar
  63. Kaiser, W., Bishop, L.G.: Directionally selective motion detecting units in the optic lobe of the honeybee. Z. Vergl. Physiol. 67, 403–413 (1970)CrossRefGoogle Scholar
  64. Kaiser, W., Liske, E.: A preliminary report on the analysis of the optomotor system of the bee. Behavioural studies with spectral lights. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 163–165Google Scholar
  65. Kaiser, W., Liske, E.: Die optomotorischen Reaktionen von fixiert fliegenden Bienen bei Reizung mit Spektrallichtern. J. Comp. Physiol. 89, 391–408 (1974)CrossRefGoogle Scholar
  66. Kenyon, F.C.: The optic lobes of the bee’s brain in the light of recent neurological methods. Am. Naturalist 31, 365–376 (1897)CrossRefGoogle Scholar
  67. Kien, J.: Motion detection in locusts and grasshoppers. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 410–422Google Scholar
  68. Kiepenheuer, P.: Farbunterscheidungsvermögen bei der roten Waldameise Formica polyctena. Z. Vergl. Physiol. 57, 409–411 (1968)CrossRefGoogle Scholar
  69. Kirschfeld, K.: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3, 248–270 (1967)PubMedCrossRefGoogle Scholar
  70. Kirschfeld, K.: Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 276, 578–579 (1972)Google Scholar
  71. Kirschfeld, K.: Vision of polarized light. Int. Biophys. Congr., Moscow 4, 289–296 (1973a)Google Scholar
  72. Kirschfeld, K.: Optomotorische Reaktionen der Biene auf bewegte “Polarisations-Muster”. Z. Naturforsch. 28C, 329–338 (1973b)Google Scholar
  73. Kirschfeld, K., Snyder, A.W.: Waveguide mode effects, birefringence and dichroism in fly photoreceptors. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 55–77Google Scholar
  74. Kolb, G., Autrum, H.: Selektive Adaptation und Pigmentwanderung in den Sehzellen des Bienenauges. J. Comp. Physiol. 94, 1–6 (1974)CrossRefGoogle Scholar
  75. Kolb, H.: The connections between horizontal cells and photoreceptors in the retina of the cat: Electron microscopy of Golgi preparations. J. Comp. Neurol. 155, 1–14 (1974)PubMedCrossRefGoogle Scholar
  76. Land, M.F.: Head movements and fly vision. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 469–489Google Scholar
  77. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second-order neurons. J. Comp. Physiol. 84, 335–355 (1973)CrossRefGoogle Scholar
  78. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. Comp. Physiol. 92, 357–375 (1974a)CrossRefGoogle Scholar
  79. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. Comp. Physiol. 92, 377–396 (1974b)CrossRefGoogle Scholar
  80. Laughlin, S.B.: Resistance change associated with the response of insect monopolar neurons. Z. Naturforsch. 29C, 449–450 (1974c)Google Scholar
  81. Laughlin, S.B.: The function of the lamina ganglionaris. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975a, pp. 341–358Google Scholar
  82. Laughlin, S.B.: Receptor function in the apposition eye — an electrophysiological approach. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975b, pp. 479–498Google Scholar
  83. Laughlin, S.B.: Receptor and interneuron light-adaptation in the dragonfly visual system. Z. Naturforsch. 30C, 306–308 (1975c)Google Scholar
  84. Laughlin, S.B., Horridge, G.A.: Angular sensitivity of the retinula cells of dark-adapted worker bee. Z. Vergl. Physiol. 74, 329–335 (1971)CrossRefGoogle Scholar
  85. Laughlin, S.B., Menzel, R., Snyder, A.W.: Membranes, dichroism and receptor sensitivity. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 237–259Google Scholar
  86. Mazokhin-Porshnyakov, G.A., Trenn, W.: Electrophysiological study of eye in ants (russ.). Zool. J. 51, 1007–1017 (1972)Google Scholar
  87. Meinertzhagen, I.A.: The first and second neural projections of the insect eye. Ph. D. Thesis, Univ. St. Andrews (1971)Google Scholar
  88. Meinertzhagen, I.A.: Development of the compound eye and optic lobe of insects. In: Developmental Neurobiology of Arthropods. Young, D. (ed.). Cambridge Univ. 1973, pp. 51–104Google Scholar
  89. Melamed, J., Trujillo-Cenoz, O.: The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruc. Res. 21, 313–334 (1968)CrossRefGoogle Scholar
  90. Menzel, R.: Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). Z. Vergl. Physiol. 56, 22–62 (1967)CrossRefGoogle Scholar
  91. Menzel, R.: Über den Farbensinn von Paravespula germanica (Hymenoptera): ERG und selektive Adaptation. Z. Vergl. Physiol. 75, 86–104 (1971)CrossRefGoogle Scholar
  92. Menzel, R.: Feinstruktur des Komplexauges der roten Waldameise Formica polyctena (Hymenoptera, Formicidae). Z. Zellforsch. 127, 356–373 (1972)PubMedCrossRefGoogle Scholar
  93. Menzel, R.: Spectral response of moving detecting and “sustaining” fibres in the optic lobe of the bee. J. Comp. Physiol. 82, 135–150 (1973)CrossRefGoogle Scholar
  94. Menzel, R.: Spectral sensitivity of monopolar cells in the bee lamina. J. Comp. Physiol. 93, 337–346 (1974)CrossRefGoogle Scholar
  95. Menzel, R.: Colour receptors in insects. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Berlin-Heidelberg-New York: Springer 1975a, pp. 121–153Google Scholar
  96. Menzel, R.: Polarization sensitivity in insect eyes with fused rhabdoms. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975b, pp. 372–387Google Scholar
  97. Menzel, R., Blakers, M.: Functional organization of an insect ommatidium with fused rhabdom. Cytobiology 11, 279–298 (1975)Google Scholar
  98. Menzel, R., Blakers, M.: Colour receptors in the bee’s eye — morphology and spectral sensitivity. J. Comp. Physiol. (in press)Google Scholar
  99. Menzel, R., Knaut, R.: Pigment movement during light and chromatic adaptation in the retinula cells of Formica polyctena (Hymenoptera, Formicidae). J. Comp. Physiol. 86, 125–138 (1973)CrossRefGoogle Scholar
  100. Menzel, R., Lange, G.: Änderung der Feinstruktur im Komplexauge von Formica polyctena bei der Helladaptation. Z. Naturforsch. 26B, 357–359 (1971)Google Scholar
  101. Menzel, R., Snyder, A.W.: Polarized light detection in the bee, Apis mellifera. J. Comp. Physiol. 88, 247–270 (1974)CrossRefGoogle Scholar
  102. Menzel, R., Wehner, R.: Augenstrukturen bei verschieden großen Arbeiterinnen von Cataglyphis bicolor (Formicidae, Hymenoptera). J. Vergl. Physiol. 68, 446–449 (1970)CrossRefGoogle Scholar
  103. Mimura, K.: Units of the optic lobe, especially movement perception units of Diptera. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 423–436Google Scholar
  104. Mote, M.I.: Focal recording of responses evoked by light in the lamina ganglionaris of the fly Sarcophaga bullata. J. Exp. Zool. 175, 149–158 (1970a)PubMedCrossRefGoogle Scholar
  105. Mote, M.I.: Electrical correlates of neural superposition in the eye of the fly Sarcophaga bullata. J. Exp. Zool. 175, 159–168 (1970b)PubMedCrossRefGoogle Scholar
  106. Mote, M.I., Goldsmith, T.H.: Spectral sensitivities of color receptors in the compound eye of the cockroach Periplaneta. J. Exp. Zool. 173, 137–146 (1970)PubMedCrossRefGoogle Scholar
  107. Mote, M.I., Goldsmith, T.H.: Compound eyes: localization of two color receptors in the same ommatidium. Science 171, 1254–1255 (1971)PubMedCrossRefGoogle Scholar
  108. Naka, K.I., Eguchi, E.: Spike potentials recorded from the insect photoreceptor. J. Gen. Physiol. 45, 663–680 (1962)PubMedCrossRefGoogle Scholar
  109. Ninomiya, N., Tominaga, Y., Kuwabara, M.: The fine structure of the compound eye of a damsel-fly. Z. Zellforsch. 98, 17–32 (1969)PubMedCrossRefGoogle Scholar
  110. O’Shea, M., Rowell, C.H.F.: A spike-transmitting electrical synapse between visual interneurons in the locust movement detector system. J. Comp. Physiol. 97, 143–158 (1975)CrossRefGoogle Scholar
  111. Patten, W.: Studies on the eyes of arthropods. I. Development of the eyes of Vespa, with observations on the ocelli of some insects. J. Morph. 1, 193–226 (1887)CrossRefGoogle Scholar
  112. Peckham, G.W., Peckham, E.G.: On the instincts and habits of solitary wasps. Wisconsin Geol. Nat. Hist. Survey, Bull. Sci. Ser. 1, 2, 1–148 (1898)Google Scholar
  113. Perrelet, A.: The fine structure of the retina of the honey bee drone: an electron-microscopical study. Z. Zellforsch. 108, 530–562 (1970)PubMedCrossRefGoogle Scholar
  114. Perrelet, A., Baumann, F.: Presence of three small retinula cells in the ommatidium of the honey bee drone eye. J. Microscop. 8, 497–502 (1969)Google Scholar
  115. Phillips, E.F.: Structure and development of the compound eye of the honey bee. Proc. Acad. Nat. Sci. Philadelphia 57, 123–157 (1905)Google Scholar
  116. Portillo, J. del: Beziehungen zwischen den Öffnungswinkeln der Ommatidien, Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. Z. Vergl. Physiol. 23, 100–145 (1936)Google Scholar
  117. Ratliff, F., Hartline, H.K., Miller, W.H.: Spatial and temporal aspects of retinal inhibitory interaction. J. Opt. Soc. Am. 53, 110–120 (1963)PubMedCrossRefGoogle Scholar
  118. Rehbronn, W.: Gleichzeitige intrazelluläre Doppelableitungen aus dem Komplexauge von Calliphora erythrocephala. Z. Vergl. Physiol. 76, 285–301 (1972)CrossRefGoogle Scholar
  119. Ribi, W.A.: Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tiss. Res. 148, 277–286 (1974)CrossRefGoogle Scholar
  120. Ribi, W.A.: The neurons of the first optic ganglion of the bee, Apis mellifera. Adv. Anat. Embryol. Cell Biol. 50 (4), 1–43 (1975a)PubMedGoogle Scholar
  121. Ribi, W.A.: Golgi studies of the first optic ganglion of the ant, Cataglyphis bicolor. Cell Tiss. Res. 160, 207–217 (1975b)CrossRefGoogle Scholar
  122. Röhlich, P., Török, L.: Fine structure of the compound eye of Daphnia in normal, dark- and strongly light-adapted state. In: Eye Structure. Rohen, J.W. (ed.). Stuttgart: Schattauer 1965, 2nd Symp., pp. 175–186Google Scholar
  123. Roth, H., Menzel, R.: ERG of Formica polyctena and selective adaptation. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 177–181Google Scholar
  124. Rowell, C.H.F.: The orthopteran descending movement detector (DMD) neurones: a characterization and review. Z. Vergl. Physiol. 73, 167–194 (1971)CrossRefGoogle Scholar
  125. Schinz, R.H.: Structural specialization in the dorsal retina of the bee, Apis mellifera. Cell Tiss. Res. 162, 23–34 (1975)CrossRefGoogle Scholar
  126. Scholes, J.: The electrical responses of the retinal receptors and the lamina in the visual system of the fly Musca. Kybernetik 6, 149–162 (1969)PubMedCrossRefGoogle Scholar
  127. Shaw, S.R.: Coupling between receptors in the eye of the drone honeybee. J. Gen. Physiol. 50, 2480–2481 (1967)Google Scholar
  128. Shaw, S.R.: Interreceptor coupling in ommatidia of drone honeybee and locust compound eyes. Vis. Res. 9, 999–1029 (1969)PubMedCrossRefGoogle Scholar
  129. Skrzipek, K.H., Skrzipek, H.: Die Morphologie der Bienenretina, Apis mellifica, in elektronenmikroskopischer und lichtmikroskopischer Sicht. Z. Zellforsch. 119, 552–576 (1971)PubMedCrossRefGoogle Scholar
  130. Skrzipek, K.H., Skrzipek, H.: Die Anordnung der Ommatidien in der Retina der Biene (Apis mellifica). Z. Zellforsch. 139, 567–582 (1973)PubMedCrossRefGoogle Scholar
  131. Skrzipek, K.H., Skrzipek, H.: The ninth retinula cell in the ommatidium of the worker honey bee (Apis mellifica). Z. Zellforsch. 147, 589–593 (1974)PubMedCrossRefGoogle Scholar
  132. Smola, U., Gemperlein, R.: Übertragungseigenschaften der Sehzelle der Schmeissfliege Calliphora erythrocephala. 2. Die Abhängigkeit vom Ableitort: Retina-Lamina ganglionaris. J. Comp. Physiol. 79, 363–392 (1972)CrossRefGoogle Scholar
  133. Snyder, A.W.: Optical properties of invertebrate photoreceptors. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1975, pp. 179–235Google Scholar
  134. Snyder, A.W., Laughlin, S.B.: Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100, 101–116 (1975)CrossRefGoogle Scholar
  135. Snyder, A.W., McIntyre, P.: Polarization sensitivity of twisted fused rhabdoms. In: Photoreceptor Optics. Snyder, A.W., Menzel, R. (eds.). Berlin-Heidelberg-New York: Springer 1975, pp. 388–391Google Scholar
  136. Snyder, A.W., Menzel, R., Laughlin, S.B.: Structure and function of the fused rhabdom. J. Comp. Physiol. 87, 99–135 (1973)CrossRefGoogle Scholar
  137. Sommer, E.W., Wehner, R.: The retina-lamina projection in the visual system of the bee, Apis mellifera. Cell Tiss. Res. 163, 45–61 (1975)CrossRefGoogle Scholar
  138. Stavenga, D.G.: Waveguide modes and refractive index in photoreceptors of invertebrates. Vis. Res. 15, 232–330 (1975)Google Scholar
  139. Strausfeld, N.J.: Golgi studies on insects. Part II. The optic lobes of Diptera. Phil. Trans. R. Soc. London 258B, 135–223 (1970a)CrossRefGoogle Scholar
  140. Strausfeld, N.J.: Variations and invariants of cell arrangements in the nervous systems of insects. (A review of neuronal arrangements in the visual system and corpora pedunculata). Verh. Dtsch. Zool. Ges. 64, 97–108 (1970b)Google Scholar
  141. Strausfeld, N.J.: The organization of the insect visual system (light microscopy). I. Projections and arrangements of neurons in the lamina ganglionaris of Diptera. Z. Zellforsch. 121, 377–441 (1971)CrossRefGoogle Scholar
  142. Strausfeld, N.J.: Atlas of an Insect Brain. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  143. Strausfeld, N.J., Blest, A.D.: Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. R. Soc. London 258B, 81–134 (1970)CrossRefGoogle Scholar
  144. Strausfeld, N.J., Braitenberg, V.: The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z. Vergl. Physiol. 70, 95–104 (1970)CrossRefGoogle Scholar
  145. Swammerdam, J.: Biblia naturae sive historia insectorum. Boerhaave, H. (ed.). Leyden: I. Severinum, B. and P. Vander 1737Google Scholar
  146. Trujillo-Cenoz, O.: Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res. 13, 1–33 (1965)PubMedCrossRefGoogle Scholar
  147. Trujillo-Cenoz, O.: The structural organization of the compound eye in insects. In: Physiology of Photoreceptor Organs. Handbook of Sensory Physiology. Fuortes, M.G.F. (ed.). Berlin: Springer 1972, Vol. VII/2, pp. 5–62Google Scholar
  148. Trujillo-Cenoz, O., Melamed, J.: Spatial distribution of photoreceptor cells in the ommatidia of Periplaneta americana. J. Ultrastruct. Res. 34, 397–400 (1971)PubMedCrossRefGoogle Scholar
  149. Tuurala, O., Lehtinen, A.: Über die Einwirkung von Licht und Dunkel auf die Feinstruktur der Lichtsinneszellen der Assel Oniscus asellus. 2. Microvilli und multivesikuläre Körper nach starker Belichtung. Ann. Acad. Sci. fenn. A, IV Biologica 177, 1–8 (1971)Google Scholar
  150. Varela, F.G.: Fine structure of the visual system of the honeybee (Apis mellifera). II. The lamina. J. Ultrastruct. Res. 31, 178–194 (1970)PubMedCrossRefGoogle Scholar
  151. Varela, F.G., Porter, K.R.: Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J. Ultrastruct. Res. 29, 236–259 (1969)PubMedCrossRefGoogle Scholar
  152. Varela, F.G., Wiitanen, W.: The optics of the compound eye of the honeybee (Apis mellifera). J. Gen. Physiol. 55, 336–358 (1970)PubMedCrossRefGoogle Scholar
  153. Viallanes, H.: Etudes histologiques sur les centres nerveux et les organes des sens animaux articulés — quatrième mémoire — cerveau de la guèpe (Vespa cabro et Vespa vulgaris). Ann. Sci. Natur. 7e. 2, 5–100 (1887)Google Scholar
  154. Viallanes, H.: Contribution à l’histologie du système nerveux des invertebrés. La lame ganglionnaire de la langouste. Ann. Sci. Natur. 7e. 13, 385–398 (1892)Google Scholar
  155. Vowles, D.M.: The orientation of ants. II. Orientation to light, gravity and polarized light. J. Exp. Biol. 31, 356–375 (1954)Google Scholar
  156. Waddington, C.H., Perry, M.M.: Inter-retinular fibres in the eyes of Drosophila. J. Insect Physiol. 9, 475–478 (1963)CrossRefGoogle Scholar
  157. Wehner, R., Bernard, G.D., Geiger, E.: Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J. Comp. Physiol. 104, 225–245 (1975)CrossRefGoogle Scholar
  158. Wehner, R., Brunnert, A., Herrling, P.L., Klein, R.: Periphere Adaptation und zentralnervöse Umstimmung im optischen System von Cataglyphis bicolor (Formicidae, Hymenoptera). Rev. Suisse Zool. 79, 197–228 (1972)Google Scholar
  159. Wehner, R., Toggweiler, F.: Verhaltensphysiologischer Nachweis des Farbensehens bei Cataglyphis bicolor (Formicidae, Hymenoptera). J. Comp. Physiol. 77, 239–255 (1972)CrossRefGoogle Scholar
  160. White, R.H.: The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. Exp. Zool. 166, 405–426 (1967)PubMedCrossRefGoogle Scholar
  161. Wolken, J.J.: Photoprocesses, Photoreceptors and Evolution. New York-San Francisco-London: Academic Press 1975Google Scholar
  162. Zettler, F., Järvilehto, M.: Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. Vergl. Physiol. 75, 402–421 (1971)CrossRefGoogle Scholar
  163. Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. Vergl. Physiol. 76, 233–244 (1972)CrossRefGoogle Scholar
  164. Zettler, F., Järvilehto, M.: Active and passive axonal progagation of non-spike signals in the retina of Calliphora. J. Comp. Physiol. 85, 89–104 (1973).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • R. Wehner

There are no affiliations available

Personalised recommendations