Estimating Water Status and Biomass of Plant Communities by Remote Sensing

  • B. G. Drake
Part of the Ecological Studies book series (ECOLSTUD, volume 19)


Before remotely sensed spectral data can be applied to studies of plant water stress, it is necessary to understand the relationship between reflectance, the ratio of the radiant energy reflected from an object to that incident upon the object, and the relevant plant parameters. This paper will briefly summarize selected data for the effect of water stress on reflectance of single leaves and on the relationship between reflectance of communities and biomass. Methodology will not be discussed but reviews may be found in Holmes, 1970; Johnson, 1969; Fuchs and Tanner, 1966; Myers and Allen, 1968; Myers, 1970.


Biomass Corn Hydrated Chlorophyll Assimilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Billings, W. D., Morris, R. J.: Reflection of visible and infrared radiation from leaves of different ecological groups. Am. J. Botany 38, 327–331 (1951).CrossRefGoogle Scholar
  2. Bourque, D. P., Naylor, A. W.: Large effects of small water deficits on chlorophyll accumulation and ribonucleic acid synthesis in etiolated jack bean (Canavalia ensiformis L. D. C). Plant Physiol. 47, 591–594 (1971).PubMedCrossRefGoogle Scholar
  3. Dadykin, V. P., Bedenko, V. P.: The connection of the optical properties of plant leaves with soil moisture. Dokl. Acad. Nauk SSSR 134, 965–968 (1960).Google Scholar
  4. Drake, B. G., Salisbury, F. B.: Aftereffects of low and high temperature pretreatment on leaf resistance, transpiration, and leaf temperature in Xanthium. Plant Physiol. 50, 572–575 (1972).PubMedCrossRefGoogle Scholar
  5. Esau, K.: Plant Anatomy, p. 465. New York: John Wiley and Sons 1965.Google Scholar
  6. Fuchs, M., Tanner, C. B.: Infrared thermometry of vegetation. Agron. J. 58, 597–601 (1966).CrossRefGoogle Scholar
  7. Gates, D. M., Keegan, H. J., Schleter, J. C., Weidner, V. R.: Spectral properties of plants. App. Opt. 4, 11–20 (1965).CrossRefGoogle Scholar
  8. Gausman, H. W., Allen, W. A., Cardenas, R.: Reflectance of cotton leaves and their structure. Rem. Sens. Env. 1, 19–22 (1969).CrossRefGoogle Scholar
  9. Gausman, H. W., Allen, W. A., Cardenas, R., Richardson, A. J.: Relation of light reflectance to histological and physical evaluations of cotton leaf maturity. App. Opt. 9, 545–552 (1970).CrossRefGoogle Scholar
  10. Hoffer, R. M., Johannsen, C. J.: Ecological potentials in spectral signature analysis. In: Remote sensing in ecology (ed. P. Johnson), p. 1–16. Athens: Univ. Georgia Press 1969.Google Scholar
  11. Holmes, R. A.: Field spectroscopy. In: Remote sensing of environment with special reference to agriculture and forestry, pp. 298–323. Washington, D. C.: Nat. Acad. Sci. and Nat. Res. Council 1970.Google Scholar
  12. Johnson, P.: Remote sensing in ecology. Athens: Univ. Georgia Press 1969.Google Scholar
  13. Kanemasu, E. T.: Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Rem. Sens. Env. 3, 43–47 (1974).CrossRefGoogle Scholar
  14. Knipling, E. B.: Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Rem. Sens. Env. 1, 155–159 (1970).CrossRefGoogle Scholar
  15. Mestre, H.: The absorption of radiation by leaves and algae. Cold Spring Harbor Symp. Quant.-Biol., vol. III, 191–209 (1935).Google Scholar
  16. Myers, V. I.: Soil, water, and plant relations. In: Remote sensing of environment with special reference to agriculture and forestry, pp. 253–297. Washington, D. C.: Nat. Acad. Sci. Nat. Res. Council 1970.Google Scholar
  17. Myers, V. I., Allen, W. A.: Electrooptical sensing methods as non destructive testing and measuring techniques in agriculture. App. Opt. 7, 1819–1838 (1968).CrossRefGoogle Scholar
  18. Pearman, G. I.: The reflection of visible radiation from leaves of some western Australian species. Australian J. Biol. Sci. 19, 97–103 (1966).Google Scholar
  19. Pearson, R. L.: Remote multispectral sensing of biomass. Ph. D. Thesis, Colorado State University 1973.Google Scholar
  20. Raschke, K.: Über den Einfluß der Diffusionswiderstände auf die Transpiration und die Temperatur eines Blattes. Flora 146, 546–578 (1958).Google Scholar
  21. Sinclair, T. R.: Pathway of solar radiation through leaves. M. S. Thesis, Purdue 1968.Google Scholar
  22. Tanner, C. B.: Plant temperatures. Agron. J. 55, 210–211 (1963).CrossRefGoogle Scholar
  23. Thekaekara, M. P.: The solar constant and spectral distribution of solar radiant flux. Solar Energy 9, 7–20 (1965).CrossRefGoogle Scholar
  24. Thomas, J. R., Myers, V. I., Heilman, M. D., Wiegand, C. L.: Factors affecting light reflectance of cotton. Proc. 4th Symp. Rem. Sens. Env., Univ. Mich. IST Rep. No. 4864–11-x, pp. 305–312 (1966).Google Scholar
  25. Turrell, F. M.: The area of internal exposed surface of dicotyledon leaves. Am. J. Botany 23, 255–264 (1936).CrossRefGoogle Scholar
  26. Virgin, H. I.: Chlorophyll formation and water deficit. Physiol. Plantarum 18, 994–1000 (1965).CrossRefGoogle Scholar
  27. Walter, H.: Vegetation of the earth in relation to climate and the ecophysiological condition. London: English Univ. Press Ltd. and Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  28. Willstätter, R., Stoll, A.: Untersuchungen über die Assimilation der Kohlensäure. Berlin: Springer 1918.Google Scholar
  29. Woolley, J. T.: Refractive index of soybean leaf cell walls. Plant Physiol. 55, 172–174 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • B. G. Drake

There are no affiliations available

Personalised recommendations