Water Stress During Freezing

  • U. Heber
  • K. A. Santarius
Part of the Ecological Studies book series (ECOLSTUD, volume 19)


When the temperature drops below the freezing point, water becomes first supercooled and then is converted into ice. Plants, plant organs or cells exposed to subzero temperatures may or may not be damaged when freezing of intracellular water occurs. This depends both on the mode of freezing and on the nature or physiological state of the plant material. When the temperature decreases slowly, ice formation is initiated extracellularly and progresses outside the cells producing cell dehydration. Depending on the extent of cellular resistance, this is tolerated or harmful. Only when the rate of freezing is too fast to permit transfer of intracellular water to extracellular ice loci does intracellular freezing occur. It is lethal, owing to mechanical damage produced by growing ice crystals, except when freezing is so rapid as to produce “vitrification” of cells. We will consider only the effects of slow physiological freezing, which causes cell dehydration, and therefore represents water stress to plants, and also discuss briefly mechanisms permitting cells to tolerate such water stress. The field has been reviewed in recent years by different investigators (Meryman, 1966; Mazur, 1969, 1970; Weiser, 1970; Alden and Hermann, 1971; Levitt, 1972; Heber and Santarius, 1973). It is not our purpose to assess again merits and disadvantages of the different hypotheses put forward to explain frost damage and frost resistance, and the reader is urged to consult earlier reviews for more detailed and complementary information.


Water Stress Thylakoid Membrane Frost Resistance Sodium Succinate Chloroplast Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alden, J., Hermann, R. K.: Aspects of the cold-hardiness mechanism in plants. Botan. Rev. 37, 37–142 (1971).CrossRefGoogle Scholar
  2. Duane, W. C., Krogmann, D. W.: Chloroplast storage with retention of photosynthetic activities. Biochim. Biophys. Acta 71, 195–196 (1963).CrossRefGoogle Scholar
  3. Heber, U.: Freezing injury and uncoupling of phosphorylation from electron transport in chloroplasts. Plant Physiol 42, 1343–1350 (1967).PubMedCrossRefGoogle Scholar
  4. Heber, U.: Proteins capable of protecting chloroplast membranes against freezing. In: Ciba Found. Symp. on The Frozen Cell (eds. G. E. W. Wolstenholme, M. O’Connor), pp. 175–188. London: Churchill Ltd. 1970.Google Scholar
  5. Heber, U., Ernst, R.: A biochemical approach to the problem of frost injury and frost hardiness. In: Cellular injury and resistance in freezing organisms (ed. E. Asahina). Proc. Intern. Conf. Low Temp. Sci., Vol. II, pp. 63–77. Sapporo (Japan): Bunyeido Printing Co. 1967.Google Scholar
  6. Heber, U., Kempfle, M.: Proteine als Schutzstoffe gegenüber dem Gefriertod der Zelle. Z. Naturforsch. 25b, 834–842 (1970).Google Scholar
  7. Heber, U., Santarius, K. A.: Loss of adenosine triphosphate synthesis caused by freezing and its relationship to frost hardiness problems. Plant Physiol. 39, 712–719 (1964).PubMedCrossRefGoogle Scholar
  8. Heber, U., Santarius, K. A.: Cell death by cold and heat and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Temperature and life (eds. H. Precht, J. Christophersen, H. Hensel, W. Larcher), pp. 232–263. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  9. Heber, U., Tyankova, L., Santarius, K. A.: Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim. Biophys. Acta 241, 578–592 (1971).PubMedCrossRefGoogle Scholar
  10. Heber, U., Tyankova, L., Santarius, K. A.: Effects of freezing on biological membranes in vivo and in vitro. Biochim. Biophys. Acta 291, 23–37 (1973).PubMedCrossRefGoogle Scholar
  11. Iljin, W. S.: Über den Kältetod der Pflanzen und seine Ursachen. Protoplasma 20, 105–124 (1933).CrossRefGoogle Scholar
  12. Jagendorf, A. T., Avron, ML: Cofactors and rates of photosynthetic photophosphorylation by spinach chloroplasts. J. Biol. Chem. 231, 277–290 (1958).PubMedGoogle Scholar
  13. Kappen, L., Ullrich, W. R.: Verteilung von Chlorid und Zuckern in Blattzellen halophiler Pflanzen bei verschieden hoher Frostresistenz. Ber. Deut. Botan. Ges. 83, 265–275 (1970).Google Scholar
  14. Levitt, J.: The hardiness of plants. New York, London: Academic Press 1956.Google Scholar
  15. Levitt, J.: A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. Theoret. Biol. 3, 355–391 (1962).CrossRefGoogle Scholar
  16. Levitt, J.: Responses of plants to environmental stresses. New York, London: Academic Press 1972.Google Scholar
  17. Lovelock, J. E.: The haemolysis of human red blood-cells by freezing and thawing. Biochim. Biophys. Acta 10, 414–426 (1953a).PubMedCrossRefGoogle Scholar
  18. Lovelock, J. E.: The mechanism of protective action of glycerol against haemolysis by freezing and thawing. Biochim. Biophys. Acta 11, 28–36 (1953b).PubMedCrossRefGoogle Scholar
  19. Mazur, P.: Physical and chemical basis of injury in single-celled micro-organisms subjected to freezing and thawing. In: Cryobiology (ed. H. T. Meryman), pp. 213–315, New York, London: Academic Press 1966.Google Scholar
  20. Mazur, P.: Freezing injury in plants. Ann. Rev. Plant Physiol. 20, 419–448 (1969).CrossRefGoogle Scholar
  21. Mazur, P.: Cryobiology: The freezing of biological systems. Science 168, 939–949 (1970).PubMedCrossRefGoogle Scholar
  22. Meryman, H. T. (ed.): Cryobiology. New York, London: Academic Press 1966.Google Scholar
  23. Meryman, H. T.: Modified model for the mechanism of freezing injury in erythrocytes. Nature 218, 333–336 (1968).PubMedCrossRefGoogle Scholar
  24. Meryman, H. T.: The exceeding of a minimum tolerable cell volume in hypertonic suspension as a cause of freezing injury. In: Ciba Found. Symp. on the Frozen Cell (eds. G. E. W. Wolstenholme, M. O’Connor), pp. 51–67. London: Churchill Ltd. 1970.Google Scholar
  25. Meryman, H. T.: Osmotic stress as a mechanism of freezing injurv. Cryobiology 8, 489–500 (1971).PubMedCrossRefGoogle Scholar
  26. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445–502 (1966).PubMedCrossRefGoogle Scholar
  27. Santarius, K. A.: Der Einfluß von Elektrolyten auf Chloroplasten beim Gefrieren und Trocknen. Planta (Berl.) 89, 23–46 (1969).CrossRefGoogle Scholar
  28. Santarius, K. A.: The effect of freezing on thylakoid membranes in the presence of organic acids. Plant Physiol. 48, 156–162 (1971).PubMedCrossRefGoogle Scholar
  29. Santarius, K. A.: Freezing: the effect of eutectic crystallization on biological membranes. Biochim. Biophys. Acta 291, 38–50 (1973a).PubMedCrossRefGoogle Scholar
  30. Santarius, K. A.: The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta (Berl.) 113, 105–114 (1973b).CrossRefGoogle Scholar
  31. Santarius, K. A.: Seasonal changes in plant membrane stability as evidenced by the heat sensitivity of chloroplast membrane reactions. Z. Pflanzenphysiol. 73, 448–451 (1974).Google Scholar
  32. Santarius, K. A., Heber, U.: Das Verhalten von Hillreaktion und Photophosphorylierung isolierter Chloroplasten in Abhängigkeit vom Wassergehalt. II. Wasserentzug über CaCl2. Planta (Berl.) 73, 109–137 (1967).CrossRefGoogle Scholar
  33. Santarius, K. A., Heber, U.: The kinetics of the inactivation of thylakoid membranes by freezing and high concentrations of electrolytes. Cryobiology 7, 71–78 (1970).PubMedCrossRefGoogle Scholar
  34. Santarius, K. A., Heber, U.: Physiological and biochemical aspects of frost damage and winter hardiness in higher plants. In: Proc. of a colloqu. on the winter hardiness of cereals (ed. S. Rajki), pp. 7–29. Martonvásár: Agr. Res. Inst., Hungarian Acad. Sci. 1972.Google Scholar
  35. Tyankova, L.: Stabilität von Thylakoidmembranen in Gegenwart von Aminosäuren bei Gefrieren. Ber. Deut. Botan. Ges. 83, 491–497 (1970).Google Scholar
  36. Tyankova, L.: The effect of amino acids on thylakoid membranes during freezing as influenced by side chain and position on the amino group. Biochim. Biophys. Acta 274, 75–82 (1972).PubMedCrossRefGoogle Scholar
  37. Volger, H., Heber, U.: Cryoprotective leaf proteins. Biochim. Biophys. Acta 412, 335–349 (1975).PubMedGoogle Scholar
  38. Weiser, C. J.: Cold resistance and injury in woody plants. Science 169, 1269–1278 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • U. Heber
  • K. A. Santarius

There are no affiliations available

Personalised recommendations