Improved UHMW Polyethylene Low Friction Hip Endoprosthesis Using Al2O3 Ceramic Instead of Metal for the Articulating Ball

  • M. Semlitsch


The principle of “low friction arthroplasty”, devised and introduced in 1963 by Charnley (1) and shortly afterwards by Mueller (2), is generally preferred nowadays with total hip endoprostheses. With the polyethylene/metal combination used for the joint socket and the articulating ball, the moment of friction is initially very low. However, owing the wear phenomena on the polyethylene socket (3,4,5,6) — and to a minor extent on the metallic ball as well (7) — a limited service life of the polyethylene socket is to be reckoned with.


Biomedical Material Research Wear Phenomenon Joint Socket Metallic Ball Limited Service Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charnley, J.: Total hip replacement by low-friction arthroplasty. Clinical Orthopaedics. 72, 7 (1970)Google Scholar
  2. 2.
    Müller, M.E.: Total hip prostheses. Clinical Orthopaedics 72, 46 (1970)Google Scholar
  3. 3.
    Charnley, J.: The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. Journal of Bone and Joint Surgery 54-B, 61 (1972)Google Scholar
  4. 4.
    Willert, H.G., Semlitsch, M.: Kunststoffe als Implantatwerkstoffe. 62. DGOT-Tagung, Tübingen 1975Google Scholar
  5. 5.
    Scheier, H.: Der Abrieb bei der Totalprothese. Kongress der Niederländisch-Schweizerischen Gesellschaften für Orthopädie, Lausanne 1974Google Scholar
  6. 6.
    Charnley, J.: Ten years experience with low-friction arthroplasty. 13. SICOT Congress, Copenhagen 1975Google Scholar
  7. 7.
    Charnley, J.: Clinical and laboratory observations on the rate of wear of different plastic materials in the sockets of artificial hip joints. Conference of the Biological Engineering Society, “Materials for use in medicine and biology”, Cambridge/GB 1974Google Scholar
  8. 8.
    Doerre, E.: Al2O3-Keramik als Implantatwerkstoff. 62. DGOT-Tagung, Tübingen 1975Google Scholar
  9. 9.
    Semlitsch, M., Willert, H.G., Doerre, E.: Neue Werkstoffpaarung Al2O3-Keramik/Polyäthylen zur Verminderung des Polyäthylenabriebs bei Gelenkpfannen von Hüftprothesen. 62. DGOT-Tagung, Tübingen 1975, Medizinisch-Orthopädische Technik 95 (1975)Google Scholar
  10. 10.
    Willert, H.G., Geduldig, D., Happel, M.W., Lade, R., Preussner, P., Zichner, L.: Tierexperimentelle Testung von keramischen Knochenersatzwerkstoffen. Dokumentation zur wissenschaftlichen Ausstellung der 62. DGOT-Tagung, Tübingen 1975Google Scholar
  11. 11.
    Geduldig, G.: Neuester Stand der tierexperimentellen Untersuchungen mit Gelenkendoprothesen aus Al2O3-Keramik. 62. DGOT-Tagung, Tübingen 1975Google Scholar
  12. 12.
    Swiss SNV-Working Group 129 for Surgical Implants: CoNiCrMoTi-Wrought Alloy (No. 056.5 09) VSM/SNV Normen-Bulletin, 23, 172 (1974)Google Scholar
  13. 13.
    ISO/TC-150/SC-1/WG-1: Swiss Proposal No. 30 on Biocompatibility of CoNiCrMoTi-Whrought Alloy. SNV-Switzerland (1975)Google Scholar
  14. 14.
    ISO/TC-150/SC-1/WG-1: Draft Proposal for CoNiCrMoTi-Wrought Alloy (No. 31) ISO/TC-150 Symposium, Copenhagen (1975)Google Scholar
  15. 15.
    Escales, F., Galante, J., Rostocker, W., Coogan, P.S.: MP-35N a corrosion resistant, high-strength alloy for orthopaedic surgical implants, bio-assay results. Journal of Biomedical Materials Research 9, 303 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • M. Semlitsch

There are no affiliations available

Personalised recommendations