Skip to main content

The Metabolism in Vitro of Anabolic-Androgenic Steroids by Mammalian Tissues

  • Chapter
Anabolic-Androgenic Steroids

Abstract

Very early in the development of our knowledge of the biochemistry of the internal secretion of the testis it was recognized that the product of the testis was metabolized during its circulation through the body. The active principle isolated from the urine—androsterone—was chemically and biologically different from the active principle of the testis—testosterone. Furthermore, the injection of potent urinary extracts and later pure testosterone and related compounds resulted in the isolation of only a fraction of the biological activity from the urine due primarily to the conversion to less active metabolites, e.g., 5α-androsterone and 5β-androsterone. This conversion initially suggested a detoxifying process. Since the liver is assumed to be the main organ for the maintenance of homeostasis, the ability of this organ to metabolize these steroids was studied. Subsequent studies, however, have indicated that not only do many other tissues metabolize these steroids but also that the products formed are different and the spectrum of products varies with animal species suggesting specific metabolic roles for the various metabolites in accordance with tissue and animal species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R., Staudinger, Hj.: Isolierung und Identifizierung eines neuen Testosteronmetaboli-ten 5α-Androstantriol-(3α, 6β, 17β). Z. physiol. Chem. 346, 198–207 (1966).

    CAS  Google Scholar 

  • Albaum, G., Staib, W.: Über den Metabolismus von Δ 4-Androsten-3,17-dion bei Inkubation mit Rattenlebermikrosomen. Biochem. Z. 342, 120–128 (1965).

    PubMed  CAS  Google Scholar 

  • Altman, K., Gordon, G.G., Southren, A.L., Vittek, J., Wilker, S.: Induction of hepatic testosterone A-ring reductase by medroxy-progesterone acetate. Endocrinology 90, 1252–1260 (1972).

    PubMed  CAS  Google Scholar 

  • Aoshima, Y., Kochakian, C.D.: Activity, intracellular distribution and some properties of 17β-hydroxy-C19-steroid dehydrogenases in liver and kidney. Endocrinology 72, 106–114 (1963).

    PubMed  CAS  Google Scholar 

  • Aoshima, Y., Kochakian, C.D., Jadrijevic, D.: TPN- and DPN-specific 3α-hydroxy- and Δ 5–3β-hydroxysteroid dehydrogenases of liver and kidney. Endocrinology 74, 521–531 (1964).

    PubMed  CAS  Google Scholar 

  • Arimasa, N., Kochakian, C.D.: Subcellular localization of the C19-steroid reductase activities of female rat liver. Steroids 19, 325–355 (1972).

    PubMed  CAS  Google Scholar 

  • Arimasa, N., Kochakian, C.D.: Epitestosterone and 5α-androstane-3α, 17β-diol: the characteristic metabolites of androst-4-ene-3,17-dione produced by mouse kidney in vitro. Endocrinology 92, 72–82 (1973).

    PubMed  CAS  Google Scholar 

  • Axelrod, L.R., Miller, L.L.: The bioxidation of steroids at carbon 6 by isolated perfused rat livers. Arch. Biochem. 49, 248–249 (1954).

    PubMed  CAS  Google Scholar 

  • Axelrod, L.R., Miller, L.L., Herling, F.: The metabolism of testosterone in the isolated perfused dog liver. J. biol. Chem. 219, 455–461 (1956).

    PubMed  CAS  Google Scholar 

  • Baldi, A., Charreau, E.H.: 17β-Hydroxysteroid dehydrogenase activity in rat submaxillary glands. Its relation with sex and age. Endocrinology 90, 1643–1646 (1972).

    PubMed  CAS  Google Scholar 

  • Becker, H., Kaufmann, J., Klosterhalfen, H., Voigt, K.D.: In vivo uptake and metabolism of 3H-testosterone and 3H-5α-dihydrotestosterone by human benign prostatic hypertrophy. Acta endocr. (Kbh.) 71, 589–599 (1972).

    CAS  Google Scholar 

  • Bénard, H., Cruz-Horn, A., David, H.: Sur le mécanisme de la transformation de l’androste-rone et de l’épiandrostérone au cours de la perfusion du foie isolé de Lapin, en aérobiose. C.R. Soc. Biol. 155, 235–237 (1961).

    Google Scholar 

  • Bénard, H., Cruz-Horn, A., David, H., Seeman, A.: Transformation de l’androstérone en autres composés 17-cétostéroids au cours de la perfusion du foie isolé du Lapin, en aérobiose. C.R. Soc. Biol. 153, 982–984 (1959).

    Google Scholar 

  • Berg, A., Gustafsson, J.-Å.: Regulation of hydroxylation of 5α-androstane-3α, 17β-diol in liver microsomes from male and female rats. J. biol. Chem. 248, 6559–6567 (1973).

    PubMed  CAS  Google Scholar 

  • Blaquier, J., Forchielli, E., Dorfman, R.I.: In vitro metabolism of androgens in whole human blood. Acta endocr. (Kbh.) 55, 697–704 (1967).

    CAS  Google Scholar 

  • Blomquist, C.H., Nelson, R.M., Hakanson, E.Y.: Structural and kinetic properties of 17β-hy-droxysteroid dehydrogenase. J. Steroid Biochem. 5, 319 (1974). (abstract).

    Google Scholar 

  • Booth, W.D.: The occurrence of testosterone and 5α-dihydrotestosterone in the submaxillary salivary gland of the boar. J. Endocr. 55, 119–125 (1972).

    PubMed  CAS  Google Scholar 

  • Booth, J., Gillette, J. R.: The effect of anabolic steroids on drug metabolism by microsomal enzymes in rat liver. J. Pharm. exp. Ther. 137, 374–379 (1962).

    CAS  Google Scholar 

  • Breuer, H., Breuer, J., Lisboa, B.P.: Intermediary metabolism of testosterone in human liver under normal and pathological conditions. In: Testosterone. Proc. workshop conf. April 20–22, 1967 at Tremsbuttel, pp.76–79. Stuttgart: Georg Thieme 1968.

    Google Scholar 

  • Breuer, H., Dahm, K.: Anreicherung und Charakterisierung einer 17β-hydroxysteroid: NAD(P)-oxydoreductase der Rattenniere. Biochim. biophys. Acta (Amst.) 85, 29–37 (1964).

    CAS  Google Scholar 

  • Breuer, H., Dahm, K., Norymberski, J.K.: Enzymic formation of 3β-hydroxyandrost-4-en-17-one. J. Endocr. 27, 357–358 (1963).

    PubMed  CAS  Google Scholar 

  • Brodie, B.B.: Pathways of drug metabolism. J. pharm. Pharmacol. 8, 1–17 (1956).

    PubMed  CAS  Google Scholar 

  • Bullock, L.P., Bardin, C. W.: Androgen receptors in mouse kidney: A study of male, female and androgen-insensitive (tfm-y) mice. Endocrinology 94, 746–756 (1974).

    PubMed  CAS  Google Scholar 

  • Bullock, L.P., Bardin, C.W., Gram, T.E., Schroeder, D.H., Gillette, J.R.: Hepatic ethylmor-phine demethylase and Δ 4-steroid reductase in the androgen-insensitive pseudohermaph-roditic rat. Endocrinology 88, 1521–1523 (1971).

    PubMed  CAS  Google Scholar 

  • Burchardt, P., Tamm, J., Voigt, K.D.: Metabolism of testosterone and epitestosterone in perfused isolated canine liver. Symp. Dtsch. ges. Endokr. 13, 122–125 (1968).

    CAS  Google Scholar 

  • Cardinali, D.P., Nagle, C.A., Rosner, J.M.: Metabolic fate of androgens in the pineal organ: Uptake, binding to cytoplasmic proteins and conversion of testosterone into 5α-reduced metabolites. Endocrinology 95, 179–187 (1974).

    PubMed  CAS  Google Scholar 

  • Carpenter, M.P., Howard, C.N., Jr.: Vitamin E, steroids, and liver microsomal hydroxylations. Amer. J. clin. Nutr. 27, 966–979 (1974).

    PubMed  CAS  Google Scholar 

  • Chamberlain, J., Jagarinec, N., Ofner, P.: Catabolism of C19-steroids by subcellular fractions of mammalian and avian tissues. I. Hydroxylation of ring A-saturated substrates by rat-liver microsomes. Steroids, Suppl. II, 1–12 (1965).

    Google Scholar 

  • Clark, L.C., Jr., Kochakian, C.D.: The in vitro metabolism of testosterone to Δ 4-androstene-dione-3,17, cis-testosterone and other steroids by rabbit liver slices. J. biol. Chem. 170, 23–33 (1947).

    CAS  Google Scholar 

  • Clark, L.C., Jr., Kochakian, C.D., Lobotsky, J.: The in vitro metabolism of Δ 4-androstene-dione-3,17 to testosterone, cis-testosterone and several unidentified steroids. J. biol. Chem. 171, 493–500 (1947).

    PubMed  CAS  Google Scholar 

  • Coffey, J.C.: Steroid metabolism by mouse submaxillary glands. I. In vitro metabolism of testosterone and 4-androstene-3,17-dione. Steroids 22, 247–257 (1973).

    PubMed  CAS  Google Scholar 

  • Colas, A.: The 16α-hydroxylation of dehydroepiandrosterone (3β-hydroxyandrost-5-en-17-one) by rat-liver slices. Biochem. J. 82, 390–394 (1962).

    PubMed  CAS  Google Scholar 

  • Conney, A.H., Klutch, A.: Increased activity of androgen hydroxylases in liver microsomes of rats pretreated with phenobarbital and other drugs. J. biol. Chem. 238, 1611–1617 (1963).

    PubMed  CAS  Google Scholar 

  • Crepy, O., Lachese, B., Jayle, M.F.: Transformation du sulfate d’androstane-3α-yl-17α-ol en presence de coupes de foie de lapin. Description de la technique utilisée. C.R. Acad. Sci. (Paris) 257, 2163–2165 (1963).

    CAS  Google Scholar 

  • Denef, C.: Effect of hypophysectomy and pituitary implants at puberty on the sexual differentiation of testosterone metabolism in rat liver. Endocrinology 94, 1577–1582 (1974).

    PubMed  CAS  Google Scholar 

  • Doman, E., Koide, S.S.: Analysis of 3α- and 3β-hydroxysteroid oxidoreductases of rat liver by disc electrophoresis. Biochim. biophys. Acta (Amst.) 128, 209–211 (1966).

    CAS  Google Scholar 

  • Einarsson, K., Gustafsson, J.-Å., Gustafsson, B.E.: Differences between germ-free and conventional rats in liver microsomal metabolism of steroids. J. biol. Chem. 248, 3523–3630 (1973).

    Google Scholar 

  • Einarsson, K., Gustafsson, J.-Å., Stenberg, Å.: Neonatal imprinting of liver microsomal hy-droxylation and reduction of steroids. J. biol. Chem. 248, 4987–4997 (1973).

    PubMed  CAS  Google Scholar 

  • El Attar, T.M.A.: In vitro metabolism of estrone 2, 4, 6, 7–3H and 4-androstene-3,17-dione-l,2–3H in submandibular gland and submandibular gland cancer tumor. Steroids 24, 519–526 (1974a).

    Google Scholar 

  • El Attar, T.M.A.: The in vitro conversion of male sex steroid, [l,2–3H]-androstenedione in normal and inflamed human gingiva. Arch. oral. Biol. 19, 1185–1190 (1974b).

    Google Scholar 

  • Endahl, G.L., Kochakian, C.D.: Partial purification and further characterization of the tri-phosphopyridine nucleotide specific C19–17β-hydroxysteroid dehydrogenase of guinea pig liver. Biochim. biophys. Acta (Amst.) 62, 245–250 (1962).

    CAS  Google Scholar 

  • Endahl, G.L., Kochakian, C.D., Hamm, D.I.: Separation of a triphosphopyridine nucleotide-specific from a diphosphopyridine nucleotide-specific 17β-hydroxy (testosterone) dehydrogenase of guinea pig liver. J. biol. Chem. 235, 2792–2796 (1960).

    PubMed  CAS  Google Scholar 

  • Engelhardt, D., Eisenburg, J., Unterburger, P., Karl, H.J.: Untersuchungen über den Stoffwechsel von Testosterone und Δ 4-Androstendion in der Leber des Menschen. Klin. Wschr. 49, 439–440 (1971).

    PubMed  CAS  Google Scholar 

  • Engelhardt, D., Unterburger, P., Karl, H. J.: Studies on testosterone metabolism in liver and extrahepatic tissues of man. J. Steroid Biochem. 5, 318–319 (1974). (abstract).

    Google Scholar 

  • Flores, F., Naftolin, F., Ryan, K.J.: Aromatization of androstenedione and testosterone by rhesus monkey hypothalamus and limbic system. Neuroendocrinology 11, 177–182 (1973).

    PubMed  CAS  Google Scholar 

  • Forchielli, E., Dorfman, R.I.: Separation of Δ 4–5α-and Δ 4–5β-ydrogenases from rat liver ho-mogenates. J. biol. Chem. 223, 443–448 (1956).

    PubMed  CAS  Google Scholar 

  • Freire, O., Breckwoldt, M., Lisboa, B.P.: In vitro study on the metabolism of oestrone and testosterone by the rhesus monkey kidney. Acta endocr. (Stockh.) Suppl. 184, 155 (1974).

    Google Scholar 

  • Ghraf, R., Vetter, U., Schriefers, H.: Die Organspezifität der sexuellen Differenzierung der 17β-hydroxysteroid-dehydrogenase-Aktivitäten der Ratte. Z. physiol. Chem. 355, 543–550 (1974).

    CAS  Google Scholar 

  • Ghraf, R., E.R., Hoff, H.-G., Schriefers, H.: Regulation of the enzymes involved in the metabolism of steroid hormones in rat liver: The effect of 19-nortestosterone and the influence of cyproterone acetate on the action of testosterone and 5α-dihydrotestosterone. Acta endocr. (Kbh.) 77, 287–297 (1974).

    CAS  Google Scholar 

  • Gloyna, R.E., Wilson, J.D.: A comparative study of the conversion of testosterone to 17β-hydroxy-5α-androstan-3-one (dihydrotestosterone) by prostate and epididymis. J. clin. Endocr. 29, 970–977 (1969).

    PubMed  CAS  Google Scholar 

  • Gold, N.I., Garren, L.D.: Effect of experimental diabetes on steroid metabolism. II. Alterations in androst-4-ene-3,17-dione and Cortisol metabolism. J. biol. Chem. 239, 2796–2803 (1964).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å.: Androgen responsiveness of the liver of the developing rat. Biochem. J. 144, 225–229 (1974).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å., Lisboa, B.P.: Studies on the metabolism of C19-steroids in rat liver. Biosynthesis of saturated 17-oxo-C19O3 steroids in rat liver microsomes. Europ. J. Biochem. 16, 475–480(1970).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å.: Different mechanisms of regulation of nuclear reduced nicotinamide-adenine dinucleotide phosphate-dependent 3-oxo steroid 5α-reductase activity in rat liver, kidney and prostate. Biochem. J. 142, 273–277 (1974a).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-A., Pousette, A.: Properties of nuclear 5α-reductase in rat liver. Biochemistry 13, 875–881 (1974b).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å., Stenberg, Å.: Irreversible androgenic programming at birth of microsomal and soluble rat liver enzymes active on 4-androstene-3,17-dione and 5α-androstane-3α, 17β-diol. J. biol. Chem. 249, 711–718 (1974 b).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å., Stenberg, Å.: Neonatal programming of androgen responsiveness of liver of adult rats. J. biol. Chem. 249, 719–723 (1974a).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å., Stenberg, Å.: Partial masculinization of rat liver enzyme activities following treatment with FSH. Endocrinology 96, 501–504 (1975).

    PubMed  CAS  Google Scholar 

  • Gustafsson, J.-Å., Lisboa, P.B., Sjövall, J.: Studies on the metabolism of C19 steroids in rat liver. 2. Biosynthesis of hydroxylated derivatives of 17β-hydroxy-5α-androstane-3-one in rat liver microsomes. Europ. J. Biochem. 5, 437–443 (1968).

    PubMed  CAS  Google Scholar 

  • Hamm, D.I., Kochakian, C.D., Carroll, B.R.: Reduction of androstane-3,17-dione by liver ho-mogenates. Proc. Soc. exp. Biol. (N.Y.) 93, 493–496 (1956).

    CAS  Google Scholar 

  • Harri, M. P., Nienstedt, W., Hartiala, K.: Testosterone metabolism by canine intestine. Suo-men Kemistilehti 43, 395–399 (1970).

    CAS  Google Scholar 

  • Hasnain, S., Williamson, D.G.: The separation and partial purification of the soluble 17α- and 17β-hydroxysteroid dehydrogenases of rabbit liver. Can. J. Biochem. 52, 120–125 (1974).

    PubMed  CAS  Google Scholar 

  • Heinrichs, W.L., Feder, H.H., Colas, A.: The steroid 16α-hydroxylase system in mammalian liver. Steroids 7 (1), 91–98 (1966).

    PubMed  CAS  Google Scholar 

  • Heyns, W., De Moor, P.: A 3(17)β-hydroxysteroid dehydrogenase in rat erythrocytes. Conversion of 5α-dihydrotestosterone into 5α-androstane-3β,17β-diol and purification of the enzyme by affinity chromatography. Biochim. biophys. Acta (Amst.) 358, 1–13 (1974).

    CAS  Google Scholar 

  • Hoff, H.-G., Schriefers, H.: Sexuell differenzierte und sexuell undifferenzierte 3α- und 3β-hydroxysteroid-dehydroganse-Aktivitäten und ihre intrazellulare Lokalisation in der Rattenleber. Z. physiol. Chem. 354, 507–513 (1973).

    CAS  Google Scholar 

  • Hoff, H.-G., Ghraf, R., Raible, M., Schriefers, H.: Ontogenses van Hydroxysteroid-Dehydro-genase-Aktivitäten in der Rattenleber. Z. physiol. Chem. 354, 306–311 (1973).

    CAS  Google Scholar 

  • Hubener, H. J.: Enzymatische Umwandlung von Steroiden. IV. Umwandlungen und Abbau von C21- und Cl9Steroiden in der Leber. Z. physiol. Chem. 298, 283–290 (1954).

    CAS  Google Scholar 

  • Hudson, P.B., Yandel, F., Jr., Lombardo, M.E.: Studies on the in vitro perfusion of steroids through the dog kidney. J. biol. Chem. 220, 699–711 (1956).

    PubMed  Google Scholar 

  • Hurlock, B., Talalay, P.: Microsomal 3α- and 1lβ-hydroxysteroid dehydrogenases. Arch. Biochem. 80, 468–470 (1959).

    CAS  Google Scholar 

  • Hussein, K.A., Kochakian, C.D.: DPN- and TPN-17β-hydroxy-C19-steroid dehydrogenases: Intracellular localization in dog prostate. Acta endocr. (Kbh.) 59, 459–474 (1968 a).

    CAS  Google Scholar 

  • Hussein, K. A., Kochakian, C.D.: 17β-Hydroxy-C19-steroid dehydrogenase activity of dog prostate, solubilization and partial purification and characterization. Steroids 12, 589–605 (1968 b).

    PubMed  CAS  Google Scholar 

  • Jacobsohn, G., Hochberg, R.B.: 17β-Hydroxysteroid dehydrogenase from human red blood cells. J. biol. Chem. 243, 2985–2994 (1968).

    PubMed  CAS  Google Scholar 

  • Jaffe, R. B.: Testosterone metabolism in target tissues. Steroids 14, 483–498 (1969).

    PubMed  CAS  Google Scholar 

  • Jagarinec, N., Chamberlain, J., Ofner, P.: Metabolism of [4–14C] testosterone by mouse liver microsomes. Biochim. biophys. Acta (Amst.) 144, 479–481 (1967).

    CAS  Google Scholar 

  • Jarasch, E.-D., Franke, W.W.: Is cytochrome oxidase a constituent of nuclear membranes? J. biol. Chem. 249, 7245–7254 (1974).

    PubMed  CAS  Google Scholar 

  • Joshi, S., Duncan, E.L., Engel, L.L.: Soluble guinea pig liver TPN dependent 17β-hydroxy-steroid (testosterone) dehydrogenase: Partial purification and substrate specificity. Steroids 1, 508–527 (1963).

    CAS  Google Scholar 

  • Jungmann, R.A., Kot, E., Schweppe, J.S.: In vitro 17β-hydroxysteroid dehydrogenase activity in human thymus. Steroids 10, 397–409 (1967).

    PubMed  CAS  Google Scholar 

  • Kageura, E., Toki, S.: New aspect of guinea pig liver 17β-hydroxysteroid (testosterone) dehydrogenase. Life Sci. 10, 469–474 (1971).

    CAS  Google Scholar 

  • Kageura, E., Toki, S.: Guinea pig liver 3-hydroxyhexobarbital dehydrogenase as a 17β-hydroxy-steroid dehydrogenase. Biochim. biophys. Acta (Amst.) 341, 172–177 (1974).

    CAS  Google Scholar 

  • Kato, R., Onoda, K.-I., Omori, Y.: Mechanism of thyroxine-induced increase in steroid Δ 4 -reductase activity in male rats. Endocr. jap. 17, 215–219 (1970).

    CAS  Google Scholar 

  • King, R. J.B.: The demonstration of a 16-hydroxysteroid dehydrogenase in rat kidney. Biochem. J. 76, 7 P (1960).

    Google Scholar 

  • Kinson, G.A., Kochakian, C.D.: DPN- and TPN-17β-hydroxy-C19-steroid dehydrogenase activities in skeletal muscles. Endocrinology 74, 233–235 (1964).

    PubMed  CAS  Google Scholar 

  • Klempien, E. J., Voigt, K.D., Tamm, J.: Der Umsatz von Dehydroisoandr oster on in der Hundeleber. Acta endocr. (Kbh.) 36, 498–510 (1961).

    CAS  Google Scholar 

  • Knapstein, P., David, A., Wu, C.-H., Archer, D.F., Flickinger, G.L., Touchstone, J.C.: Metabolism of free and sulfoconjugated DHEA in brain tissue in vivo and in vitro. Steroids 11, 885–896 (1968).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D.: Metabolism of androgens by tissue enzymes. In: Proc. Fourth International Congress of Biochemistry, Biochemistry of Steroids 4, 196–207 (1959). Pergamon Press. London-New York.

    Google Scholar 

  • Kochakian, C.D., Aposhian, H.V.: The in vitro metabolism of 3α, 17β-androstanediol by liver and kidney. Arch. Biochem. 37, 442–448 (1952).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Endahl, B.R.: Testosterone regulation of 17β-hydroxysteroid dehydrogenases. Proc. Soc. exp. Biol. (N.Y.) 104, 720–722 (1960).

    CAS  Google Scholar 

  • Kochakian, C.D., Nall, D.M.: The metabolism of epitestosterone by rabbit tissues in vitro. J. biol. Chem. 204, 91–94 (1953).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Stidworthy, G.: Metabolism of Δ 4-androstene-3,17-dione by tissue homoge-nates. J. biol. Chem. 210, 933–939 (1954).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Carroll, B.R., Uhri, B.: Comparisons of the oxidation of C19-hydroxy-steroids by guinea pig liver homogenates. J. biol. Chem. 224, 811–818 (1957b).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Carroll, B.R., Uhri, B.: Metabolism of C19 steroids by homogenates of kidney, heart, testes and prostate. Amer. J. Physiol. 189, 83–85 (1957c).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Gongora, J., Parente, N.: Metabolism of testosterone by homogenates of rabbit liver and kidney. J. biol. Chem. 196, 243–246 (1952).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Raut, V.S., Kinson, G.: Use of coenzymes I and II in interconversion of testosterone and androstenedione. Amer. J. Physiol. 200, 348–350 (1961).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Raut, V., Nall, D.M.: Metabolism of testosterone by guinea pig liver and kidney homogenates. Amer. J. Physiol. 189, 78–82 (1957a).

    PubMed  CAS  Google Scholar 

  • Kochakian, C.D., Stevenson, D., Mayumi, T.: Dependence of the guinea pig kidney 17β-hydroxy-C19-steroid dehydrogenase isoenzyme profile on androgen. Biochem. biophys. Res. Commun. 54, 519–523 (1973).

    PubMed  CAS  Google Scholar 

  • Koide, S. S.: Purification of 3α-hydroxysteroid dehydrogenase obtained from the soluble fraction of rat liver. Arch. Biochem. 101, 278–285 (1963).

    PubMed  CAS  Google Scholar 

  • Koide, S. S.: Separation of 3α- and 3β-hydroxysteroid oxidoreductases from the soluble fraction of rat liver by gel filtration. Steroids 6, 123–128 (1965a).

    PubMed  CAS  Google Scholar 

  • Koide, S. S.: Further study on the purification of 3α-hydroxysteroid dehydrogenase of rat liver. Biochim. biophys. Acta (Amst.) 110, 189–194 (1965b).

    CAS  Google Scholar 

  • Krieg, M., Szalay, R., Voigt, K.D.: Binding and metabolism of testosterone and of 5α-dihydro- testosterone in bulbocavernosus levator ani (BCLA) of male rats: in vivo and in vitro studies. J. Steroid Biochem. 5, 453–459 (1974).

    PubMed  CAS  Google Scholar 

  • Ksiazkiewicz-Szapiro, M.D.: Experimental investigations of the rat small intestine following castration and testosterone administration. Folia Histochem. Cytochem. 8, 369–388 (1970).

    CAS  Google Scholar 

  • Lax, E.R., Schriefers, H.: Δ 4–3β-Hydroxysteroid dehydrogenase activity in rat liver. Intracellular distribution and sex dependency. Europ. J. Biochem. 42, 561–566 (1974).

    PubMed  CAS  Google Scholar 

  • Lax, E.R., Hoff, H.-G., Graf, R., Schroder, E., Schriefers, H.: The role of the hypophysis in the regulation of sex differences in the activities of enzymes involved in hepatic steroid hormone metabolism. Z. physiol. Chem. 355, 1325–1331 (1974).

    CAS  Google Scholar 

  • Leybold, K., Staudinger, Hj.: Geschlechtsunterschiede im Steroidstoffwechsel von Rattenle-bermikrosomen. Biochem. Z. 331, 389–398 (1959).

    CAS  Google Scholar 

  • Lindner, H.R.: Androgens in the bovine testis and spermatic vein blood. Nature (Lond.) 183, 1605–1606 (1959).

    CAS  Google Scholar 

  • Lindner, H.R.: Androgens and related compounds in the spermatic vein blood of domestic animals. II. Species linked differences in the metabolism of androstenedione in blood. J. Endocr. 23, 161–166 (1961).

    PubMed  CAS  Google Scholar 

  • Lindner, H.R.: The 17α-hydroxy-C19-steroid dehydrogenase activity of ovine blood. Steroids Suppl. II. 133–148 (1965).

    Google Scholar 

  • Lisboa, B.P., Drosse, I., Breuer, H.: Stoffwechsel von Testosteron in Leberschnitten des Menschen. Z. physiol. Chem. 342, 123–131 (1965).

    CAS  Google Scholar 

  • Lisboa, B. P., Gustafsson, J.-Å., Sjövall, J.: Studies on the metabolism of C19-steroids in rat liver. I. Hydroxylation of testosterone in rat liver microsomes. Europ. J. Biochem. 4, 496–505 (1968).

    PubMed  CAS  Google Scholar 

  • Liu, D.K., Kochakian, C.D.: Partial purification and some properties of guinea pig kidney 17β-hydroxy-C19-steroid dehydrogenase. Steroids 19, 701–719 (1972a).

    PubMed  CAS  Google Scholar 

  • Liu, D.K., Kochakian, C.D.: Heterogeneity of guinea pig kidney 17β-hydroxy-C19-steroid dehydrogenase activity observed by disc gel electrophoresis. Steroids 19, 721–729 (1972b).

    PubMed  CAS  Google Scholar 

  • Mahoudeau, J.A., Corvol, P., Bricaire, H.: Rabbit testosterone-binding-globulin. II. Effect on Androgen metabolism in-vivo. Endocrinology 92, 1120–1125 (1973).

    PubMed  CAS  Google Scholar 

  • Massa, R., Martini, L.: Testosterone metabolism: A necessary step for activity? J. Steroid Biochem. 5, 941–947 (1974).

    CAS  Google Scholar 

  • Massa, R., Stupnicka, E., Kniewald, Z., Martini, L.: The transformation of testosterone into dihydrotestosterone by the brain and the anterior pituitary. J. Steroid Biochem. 3, 385–399 (1972).

    PubMed  CAS  Google Scholar 

  • McGuire, J.S., Tomkins, G.M.: The multiplicity and specificity of Δ 4–3-ketosteroid hydroge-nases (5α). Arch. Biochem. Biophys. 82, 476–477 (1959a).

    PubMed  CAS  Google Scholar 

  • McGuire, J. S., Tomkins, G. M.: The effects of thyroxin administration on the enzymic reduction of Δ 4–3-ketosteroids. J. biol. Chem. 234, 791–794 (1959b).

    PubMed  CAS  Google Scholar 

  • McGuire, J.S., Tomkins, G.M.: The heterogeneity of Δ 4–3-ketosteroid reductases (5α). J. biol. Chem. 235, 1634–1638 (1960).

    CAS  Google Scholar 

  • McGuire, J.S., Hollis, V.W., Jr., Tomkins, G.M.: Some characteristics of the microsomal steroid reductases (5α) of rat liver. J. biol. Chem. 235, 3112–3117 (1960).

    CAS  Google Scholar 

  • Meigs, R.A., Ryan, K.J.: 16a-Hydroxysteroid dehydrogenase of rat kidney. Purification, assay, and properties. J. biol. Chem. 241,4011–4015 (1966).

    PubMed  CAS  Google Scholar 

  • Morfin, R.F., Aliapoulios, M.A., Chamberlain J., Ofner, P.: Metabolism of testosterone-4–14C by the canine prostate and urinary bladder in vivo. Endocrinology 87, 394–405 (1970).

    PubMed  CAS  Google Scholar 

  • Mowszowicz, I., Bardin, C.W.: In vitro androgen metabolism in mouse kidney: high 3-keto-reductase (3α-hydroxysteroid dehydrogenase) activity relative to 5α-reductase. Steroids 23, 793–807 (1974).

    PubMed  CAS  Google Scholar 

  • Mulder, E., Lamers-Stahlhofen, G.J.M., van der Molen, H. J.: Isolation and characterization of 17β-hydroxysteroid dehydrogenase from human erythrocytes. Biochem. J. 127, 649–659 (1972).

    PubMed  CAS  Google Scholar 

  • Murota, S., Tamaoki, B.: Metabolism of progesterone and testosterone by chick embryo cartilage in vitro. Biochim. biophys. Acta (Amst.) 137, 347–355 (1967).

    CAS  Google Scholar 

  • Naftolin, F., Ryan, K.J., Petro, Z.: Aromatization of androstenedione by the anterior hypothalamus of adult male and female rats. Endocrinology 90, 295–298 (1972).

    PubMed  CAS  Google Scholar 

  • Nicol, M.M., Savouré, M., Leray, G.: Conversion érythrocytaire de la déhydroépiandrostérone chez l’Homme et le Rat; influence des protéines sériques. C.R. soc. Biol. 165, 1771–1774 (1971).

    CAS  Google Scholar 

  • Nicol, M. M., Savouré, N., Rico, S.: Sur le spécificité de la 17β-hydroxysteroide-deshydrogenase erythrocytaire du Rat Wistar. C.R. Acad. Sci. [D] (Paris) 268, 1552–1555 (1969).

    CAS  Google Scholar 

  • Nicol, M. M., Savouré, M., Rico, S., Desplanques, D.: Conversion de la transdéhydroépian-drostérone en Δ 5-androstènediol par l’erythrocyte du rat Wistar. C.R. Acad. Sci. (Paris) [D] 266, 1663–1664 (1968).

    CAS  Google Scholar 

  • Ofner, P.: A preliminary investigation of the products of the metabolism of testosterone by rat liver in vitro. Biochem. J. 61, 287–297 (1955).

    PubMed  CAS  Google Scholar 

  • Ota, M., Sato, N., Obara, K.: Induction of androgen-metabolizing enzymes by testosterone in female rat liver. J. Steroid Biochem. 5, 319 (1974).

    Google Scholar 

  • Patterson, D.C., Clark, A.F., Bird, C.E.: Testosterone Δ 4-reductase activity in rat liver: Hormonal control in vivo. J. Endocr. 63, 181–189 (1974).

    PubMed  CAS  Google Scholar 

  • Perez, A. E., Ortiz, A., Cabeza, M., Beyer, C., Perez-Palacios, G.: In vitro metabolism of 3H-androstenedione by the male rat pituitary, hypothalamus, and hippocampus. Steroids 25, 53–62 (1975).

    PubMed  CAS  Google Scholar 

  • Perez-Palacios, G., Castaneda, H., Gomez-Perez, F., Perez, A.E., Gual, C.: In vitro metabolism of androgens in dog hypothalamus, pituitary, and limbic system. Biol. Reprod. 3, 205–213 (1970).

    PubMed  CAS  Google Scholar 

  • Pietruszko, R., Baron, D.N.: Dehydrogenation of androsterone by purified 3α-hydroxy steroid-dependent nicotinamide-adenine dinucleotide (phosphate)-transhydrogenating enzyme of rat liver. Biochem. J. 96, 557–566 (1965).

    PubMed  CAS  Google Scholar 

  • Pietruszko, R., Clark, A., Graves, J.M., Ringold, H. J.: The steroid activity and multiplicity of crystalline horse liver alcohol dehydrogenase. Biochem. biophys. Res. Commun. 23, 526–534 (1966).

    PubMed  CAS  Google Scholar 

  • Plasse, J.-C., Lisboa, B.P.: Studies on the metabolism of steroids in the foetus. Biosynthesis of epitestosterone in the humanfoetal liver. Europ. J. Biochem. 39, 443–447 (1973).

    PubMed  CAS  Google Scholar 

  • Raith, L., Karl, H.J.: Metabolism of testosterone and androstenedione in human leucocytes. J. Steroid Biochem. 5, 319–320 (1974).

    Google Scholar 

  • Repke, K., Samuels, L.T.: Evidence favoring the nonspecificity of 3-hydroxysteroid dehydrogenases in relation to steroid conformation. Biochemistry 3, 685–689 (1964).

    PubMed  CAS  Google Scholar 

  • Rongone, E.L., Strength, D.R., Bocklage, B.C., Doisy, E.A.: The reduction of the 4, 5 double bond of steroids by bovine blood proteins. J. biol. Chem. 225, 959–967 (1957).

    PubMed  CAS  Google Scholar 

  • Roy, A.B.: The steroid 5a-reductase activity of rat liver and prostate. Biochimie 53, 1031–1040 (1971).

    PubMed  CAS  Google Scholar 

  • Rubin, B.L.: Sex differences in orientation of reduction products of 3-keto-C19 steroids by rat liver homogenates. J. biol. Chem. 227, 917–927 (1957).

    PubMed  CAS  Google Scholar 

  • Rubin, B.L., Dorfman, R.I.: In vitro conversion of testosterone to 17β-hydroxyandrostan-3-one. Proc. Soc. exp. Biol. (N.Y.) 91, 585–586 (1956).

    CAS  Google Scholar 

  • Rubin, B.L., Strecker, H.J.: Further studies on the sex difference in 3β-hydroxysteroid dehydrogenase activity of rat livers. Endocrinology 69, 257–267 (1961).

    PubMed  CAS  Google Scholar 

  • Rubin, B.L., Strecker, H.J., Koff, E.B.: Further observations on sex-influenced activity of 3β-hydroxysteroid dehydrogenase of rat liver. Endocrinology 72, 764–770 (1963).

    PubMed  CAS  Google Scholar 

  • Schneider, J.J., Mason, H.L.: Studies on intermediary steroid metabolism. I. Isolation of Δ 5 -androstene-3(β),17(α)-diol and Δ 5-androstene-3(β),16(β),17(α)-triol following the incubation of dehydroisoandrosterone with surviving rabbit liver slices. J. biol. Chem. 172, 771–782 (1948 a).

    PubMed  CAS  Google Scholar 

  • Schneider, J.J., Mason, H.L.: Studies on intermediary steroid metabolism. II. Compounds isolated following the incubation of androsterone and etiocholan-3(α)-ol-17-one with surviving rabbit liver slices. J. biol. Chem. 175, 231–240 (1948 b).

    PubMed  CAS  Google Scholar 

  • Schriefers, H., Hoff, H.-G., Ghraf, R.: Androgenabhängigkeit der Ontogenese des Aktivitätsmusters von Enzymen des Steroidhormonstoffwechsels in der Rattenleber. Z. physiol. Chem. 354, 501–506 (1973).

    CAS  Google Scholar 

  • Schriefers, H., Ghraf, R., Hoff, H.-G., Ockenfels, H.: Einfluß von Alter und Geschlecht auf die Entwicklung und Differenzierung der Aktivitätsmuster von Enzymen des Steroidhormonstoffwechsels in der Leber von Ratten zweier verschiedener Tierstämme. Z. physiol. Chem. 352, 1363–1371(1971).

    CAS  Google Scholar 

  • Shimazaki, J., Kurihara, H., Iro, Y., Shida, K.: Metabolism of testosterone in muscular tissue. Gumna J. med. Sci. 14, 100–106 (1965).

    CAS  Google Scholar 

  • Sholiton, L. J., Marnell, R.T., Werk, E.E.: Metabolism of testosterone-4–14C by rat brain homogenates and subcellular fractions. Steroids 8, 265–275 (1966).

    PubMed  CAS  Google Scholar 

  • Sholiton, L.J., Werk, E. E., MacGee, J.: The effect of diphenylhydantoin in vitro on the metabolism of testosterone by rat liver slices. Acta endocr. (Kbh.) 56, 490–498 (1967).

    CAS  Google Scholar 

  • Sholl, S.A., Robinson, J.A., Goy, R.W.: Neural uptake and metabolism of testosterone and dihydrotestosterone in the guinea pig. Steroids 25, 203–215 (1975).

    PubMed  CAS  Google Scholar 

  • Siebert, G., Dahm, H., Breuer, H.: Aktivitäten von Steroidenzymen in Zellkernen der Rattenleber. Naturwissenschaften 23, 615 (1966).

    Google Scholar 

  • Stevenson, D., Kochakian, C.D.: Purification of male guinea pig kidney 17β-hydroxy-C19-steroid dehydrogenase. Endocrinology 96, 766–770 (1974).

    Google Scholar 

  • Stylianou, M., Forchielli, E., Trummillo, M., Dorfman, R.I.: Metabolism in vitro of 4–14C-testosterone by a human liver homogenate. J. biol. Chem. 236, 692–694 (1961).

    CAS  Google Scholar 

  • Suzuki, K., Tamaoki, B.: Testosterone metabolism and 5α-dihydrotestosterone-binding macro-molecule in rat kidney. Steroids Lipids Res. 4, 266–276 (1973).

    PubMed  CAS  Google Scholar 

  • Sweat, M. L., Samuels, L.T.: Diphosphopyridine nucleotide as an essential factor in the metabolism of testosterone by the liver. J. biol. Chem. 173, 433–434 (1948).

    PubMed  CAS  Google Scholar 

  • Sweat, M.L., Samuels, L. T., Lumry, R.: Preparation and characterization of the enzyme which converts testosterone to androstenedione. J. biol. Chem. 185, 75–84 (1950).

    PubMed  CAS  Google Scholar 

  • Szamatowicz, M., Drosdowsky, M., Jayle, M. F.: The role of testosterone and androstenedione as precursors of epitestosterone in guinea pigs (in vivo and in vitro studies). Acta endocr. 67, 187–196 (1971).

    PubMed  CAS  Google Scholar 

  • Tabei, T., Heinrichs, W.L.: Enzymatic oxidation and reduction of C19-Δ 5,3β-hydroxysteroids by hepatic microsomes. I. Biosynthesis of 3β, 17β-dihydroxyandrost-5-en-16-one and sex differences in adult rats. Endocrinology 91, 969–976 (1972).

    PubMed  CAS  Google Scholar 

  • Tabei, T., Heinrichs, W.L.: Enzymatic oxidation and reduction of C19-Δ 5–3β-hydroxysteroids by hepatic microsomes. II. Effect of age in rats on 16, 17-oxidoreduction of 3β-hydroxyan-drost-5-en-17-one (DHA). Endocrinology 92, 1161–1164 (1973).

    PubMed  CAS  Google Scholar 

  • Tabei, T., Heinrichs, W.L.: Enzymatic oxidation and reduction of C19-Δ 5–3β-ydroxysteroids by hepatic microsomes. III. Critical period for the neonatal differentiation of certain mixed function oxidases. Endocrinology 94, 97–103 (1974).

    CAS  Google Scholar 

  • Tabei, T., Heinrichs, W.L.: Enzymatic oxidation and reduction of C19-Δ 5–3β-hydroxysteroids by hepatic microsomes. V. Testosterone as a neonatal determinant in rats of the 7- and 16α-hydroxylation and reduction of 3β-hydroxyandrost-5-en-17-one (DHA). Endocrinology 97, 418–424 (1975).

    PubMed  CAS  Google Scholar 

  • Takenoshita, R., Toki, S.: Rabbit liver 3-hydroxyhexobarbital dehydrogenase. J biol. Chem. 249, 5428–5429 (1974).

    PubMed  CAS  Google Scholar 

  • Thaler-Dao, H., Breuer, H.: Gonadal factors regulating the activity of the 17β-hydroxysteroid oxidoreductase in rat liver. Acta endocr. (Kbh.) 77, 727–736 (1974).

    CAS  Google Scholar 

  • Thaler-Dao, H., Descomps, B., Saintot, M., de Paulet, A.C.: The 17β-hydroxysteroid NAD(P) oxidoreductases from female rabbit liver cytosol: separation and characterization. Biochimie 54, 83–91 (1972).

    PubMed  CAS  Google Scholar 

  • Theorell, H., Taniguchi, S., Akeson, A., Skursky, L.: Crystallization of a separate steroid-active liver alcohol dehydrogenase. Biochem. biophys. Res. Commun. 24, 603–610 (1966).

    CAS  Google Scholar 

  • Thomas, P.Z.: Metabolism of androst-4-ene-3,17-dione-4–14C by rabbit skeletal muscle in vitro. The presence of a 5α-steroid reductase in the particular fraction. J. biol. Chem. 243, 6110–6114 (1968).

    PubMed  CAS  Google Scholar 

  • Thomas, P.Z., Dorfman, R.I.: Metabolism in vitro of androst-4-ene-3,17-dione-4–14C by rabbit skeletal muscle strips. Isolation of testosterone-14C, 5α-androstane-3,17-dione-14C, and 3β-hydroxy-5α-androstan-17-one-14C J. biol. Chem. 239, 762–765 (1964a).

    PubMed  CAS  Google Scholar 

  • Thomas, P.Z., Dorfman, R.L.: Metabolism of androst-4-ene-3,17-dione-4–14C by rabbit skeletal muscle supernatant fraction. Isolation of 3β-hydroxyandrost-4-en-17-one-14C and testosterone-14C. J. biol. Chem. 239, 766–772 (1964 b).

    PubMed  CAS  Google Scholar 

  • Toki, S., Kageura, E.: Purification and properties of newly discovered guinea pig liver 17β-hydroxysteroid dehydrogenase. Proc. Symp. Drug. Metab. Action. 5th 1973 pp.175–185 (1974).

    Google Scholar 

  • Tomkins, G.M.: A mammalian 3α-hydroxysteroid dehydrogenase. J. biol. Chem. 218, 437–447 (1956).

    PubMed  CAS  Google Scholar 

  • Tomkins, G. M.: The enzymatic reduction of Δ 4–3-ketosteroids. J. biol. Chem. 225, 13–24 (1957).

    PubMed  CAS  Google Scholar 

  • Ungar, F., Gut, M., Dorfman, R.I.: Metabolism of Δ 4-androstane-3β, 17β-diol and Δ 4-andros-tene-3α,17β-diol in vitro. J. biol. Chem. 224, 191–200 (1957).

    PubMed  CAS  Google Scholar 

  • Van der Molen, H.J., Groen, D.: Interconversion of progesterone and 20α-dihydropro-gesterone and of androstenedione and testosterone in vitro by blood and erythrocytes. Acta endocr. (Kbh.) 58, 419–444 (1968).

    Google Scholar 

  • Van Doorn, E.J., Nduaguba, J.C., Clark, A.F.: Studies on partially purified pig liver steroid Δ 4–5β-reductase activity. Can. J. Biochem. 51, 1661–1668 (1973).

    PubMed  Google Scholar 

  • Verhoeven, G., De Moor, P.. Intranuclear metabolism of testosterone in kidneys of male and female rats. Endocrinology 89, 842–846 (1971).

    PubMed  CAS  Google Scholar 

  • Verhoeven, G., De Moor, P.: Nucleus-associated 5α-reductase activity in the rat. Gynec. Invest. 2, 290–296 (1971/1972).

    CAS  Google Scholar 

  • Villee, C.A., Spencer, J.M.: Some properties of the pyridine nucleotide-specific 17β-hydroxy steroid dehydrogenases of guinea pig livers. J. biol. Chem. 235, 3615–3619 (1960).

    PubMed  CAS  Google Scholar 

  • Vittek, J., Altman, K., Gordon, G.G., Southren, A.L.: The metabolism of 7α-3H-testosterone by rat mandibular bone. Endocrinology 94, 325–329 (1974).

    PubMed  CAS  Google Scholar 

  • Vittek, J., Altman, K., Gordon, G.G., Southren, A.L.: The metabolism of 7α-3H-testosterone by rat oral mucosa: Effect of medroxyprogesterone acetate on testosterone A-ring reductase activity. Endocrinology 95, 1473–1477 (1974).

    PubMed  CAS  Google Scholar 

  • Weiner, A.L., Ofner, P., Sweeney, E.A.: Metabolism of testosterone-4–14C by the canine submaxillary gland in vivo. Endocrinology 87, 406–409 (1970).

    PubMed  CAS  Google Scholar 

  • Weisz, J., Gibbs, C.: Conversion of testosterone and androstenedione to estrogens in vitro by the brain of female rats. Endocrinology 94, 616–620 (1974).

    PubMed  CAS  Google Scholar 

  • Welch, R.M., Levin, W., Conney, A.H.: Insecticide inhibition and stimulation of steroid hydroxylases in rat liver. J. Pharmacol. exp. Ther. 155, 167–173 (1967).

    PubMed  CAS  Google Scholar 

  • Wenzel, M.: Oxydation des Anabolikums 1-Methylandrost-1-en-17β-ol-3-on mit Wasserstofftransfer auf Ostrone. Acta endocr. (Kbh.) 67, 517–530 (1971).

    CAS  Google Scholar 

  • Wenzel, M., Mützel, W.: Einfluß hormonell unwirksamer Steroide auf die Ostradiol-Oxidation. I. Untersuchung über den Wasserstoff-Transfer von Ostradiol-17β auf 5α-Androstan-17-on im Rattengewebe. Z. physiol. Chem. 351, 1221–1231 (1970).

    CAS  Google Scholar 

  • Wenzel, M., Pollow, K.: Die Reduktion von Androgenen durch [17α-T]-Ostradiol. Z. physiol. Chem. 348, 1667–1676 (1967).

    CAS  Google Scholar 

  • Wenzel, M., Pollow, K., Ziebarth, T.: Oestradiol, ein bevorzugter Wasserstoffdonator bei der Reduktion von Androstendion im Lebergewebe. Z. Naturforsch. [B] 22, 894–896 (1967).

    CAS  Google Scholar 

  • Wenzel, M., Wolf, S.: Charakterisierung des Enzymsystems für den Wasserstofftransfer von Oestradiol-17β auf Androgene in Rattenleber-Mikrosomen und -Cytoplasma. Z. physiol. Chem. 350, 1203–1212 (1969).

    CAS  Google Scholar 

  • West, C.D., Samuels, L.T.: The metabolism of testosterone and related steroids by kidney tissue. J. biol. Chem. 190, 827–835 (1951).

    PubMed  CAS  Google Scholar 

  • Wilson, J.D., Lasnitzki, I.: Dihydrotestosterone formation in fetal tissues of the rabbit and rat. Endocrinology 89, 659–668 (1971).

    PubMed  CAS  Google Scholar 

  • Yasue, S., Yamada, M., Mizutani, S., Matsumoto, K.: 5α-Reduction of testosterone in vitro by seminifersous tubules, prostate and muscle from immature rats. Endocr. jap. 21, 161–166 (1974).

    CAS  Google Scholar 

  • Yates, F.E., Herbst, A.L., Urquhart, J.: Sex difference in rate of Ring A reduction of Δ 4–3-keto-steroids in vitro by rat liver. Endocrinology 63, 887–902 (1958).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kochakian, C.D., Arimasa, N. (1976). The Metabolism in Vitro of Anabolic-Androgenic Steroids by Mammalian Tissues. In: Kochakian, C.D. (eds) Anabolic-Androgenic Steroids. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66353-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66353-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66355-0

  • Online ISBN: 978-3-642-66353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics