Biochemistry and Function of Blood Basophils

  • M. R. Parwaresch

Abstract

Two methodological procedures in particular have been used for the identification of substances occurring in basophil granules. By far the largest group of workers used cytochemical methods (Ehrlich, 1879; Pappenheim, 1906; Herwerden, 1919; Staemmler, 1921; Maximow, 1927; Nagayo, 1928; Wermel and Sassuchin, 1928; Wislocki and Dempsey, 1946; AstAldi et al., 1953; Schubert, 1955; 1958; Lennert and Schubert, 1959; 1960; Lennert and Parwaresch, 1968). Only a limited number of authors have applied direct analytical methods for the identification of the substances occurring in blood basophils.

Keywords

Cholesterol Leukemia Psoriasis Histidine Thymidine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S. S., Heathcote, B. V., Macey, P. E.: A note on irradiated heparin: some biological and chemical properties. J. Phar. Pharmacol. 13, 240–243 (1961).Google Scholar
  2. Albrink, M. J., Glenn, W. W. L., Peters, J. P., Man, E. B.: Transport of lipids in chyle. J. clin. Invest. 34, 1467–1475 (1955).PubMedGoogle Scholar
  3. Amann, R.: Über das Verhalten von Heparinen und anderen sulfathaltigen Muco-polysacchariden bei der Papierchromatographie, pp. 547–551. Verh. 6. Kongr. europ. Ges. Haemat., Kopenhagen 1957. Basel-New York: Karger 1958.Google Scholar
  4. Amann, R., Werle, E.: Über Komplexe von Heparin und Histamin und anderen Di- und Polyaminen. Klin. Wschr. 34, 207–209 (1956).PubMedGoogle Scholar
  5. Amann, R., Martin, H.: see page 56.Google Scholar
  6. Anderson, N. G., Fawcett, B.: An antichylomicronemic substance produced by heparin injection. Proc. Soc. exp. Biol. (N. Y.) 74, 768–771 (1950).Google Scholar
  7. Anderson, B., Hoffman, P., Meyer, K.: The O-serine linkage in peptides of chon-droitin-4- or -6-sulfate. J. biol. Chem. 240, 156–167 (1965).PubMedGoogle Scholar
  8. Angervall, G., Hood, B.: Studies on heparin and lipemia clearing factor. Acta med. scand. 157, 407–415 (1957).PubMedGoogle Scholar
  9. Asboe-Hansen, G.: Autoradiography of mast cells in experimental skin tumors of mice injected with radioactive sulfur (35S). Cancer Res. 13, 587–589 (1953).PubMedGoogle Scholar
  10. Ashwell, G.: Carbohydrate metabolism. Ann. Rev. Biochem. 33, 101–138 (1964).PubMedGoogle Scholar
  11. Astaldi, G., Rondanelli, E. G., Bernadelli, B.: see page 56.Google Scholar
  12. Baker, S. P.: Heparin-activated clearing factor. Standardized test, agewise application and clinical observation. Circulation 15, 889–896 (1957).PubMedGoogle Scholar
  13. Barlow, G. H., Sanderson, N. D., McNeill, P.: Macromolecular properties and biological activity of heparin. Arch. Biochem. Biophys. 94, 518–525 (1961).Google Scholar
  14. Behrens, M., Taubert, M.: see page 57.Google Scholar
  15. Bennett, H. S., Luft, J. H., Hampton, J. C.: Morphological classification of vertebrate blood capillaries. Amer. J. Physiol. 196, 381–390 (1959).PubMedGoogle Scholar
  16. Biggs, R., Douglas, A. S., Mac Farlane, R. G.: The action of thromboplastic substances. J. Physiol. (Lond.) 122, 554–569 (1953).Google Scholar
  17. Biggs, R., Mac Farlane, R. G.: Human Blood Coagulation and Its Disorders. 3rd edition. Philadelphia: Davis 1962.Google Scholar
  18. Block, W. J., Barker, N. W., Mann, F. D.: Effect of small doses of heparin in increasing the translucence of plasma during alimentary lipemia. Studies in normal persons and patients having atherosclerosis. Circulation 4, 674–678 (1951).PubMedGoogle Scholar
  19. Böttcher, C. J. F.: Phospholipids of atherosclerotic human aorta. In: Jones (Ed.): Evolution of Atherosclerotic Plaques, pp. 109–116. Chicago: University of Chicago Press 1963.Google Scholar
  20. Böttcher, C. J. F.: Origin and development of atherosclerotic lesions. Progr. biochem. Pharmacol. 4, 231–234. Basel-New York: Karger 1968.Google Scholar
  21. Borgström, B., Jordan, P.: Metabolism of chylomicron glyceride as studied by C14-glycerol-C14-palmitic acid labeled chylomicrons. Acta Soc. Med. upsalien. 64, 185–193(1959).Google Scholar
  22. Bragdon, J. H., Havel, R. J.: In vivo effect of anti-heparin agents on serum lipids and lipoproteins. Amer. J. Physiol. 117, 128–133 (1954).Google Scholar
  23. Braswell, L. M.: 1963. Cited in: L. W. Harris, L. M. Braswell and J. P. Flei-sher: Metabolites of pinacolyl methylphosphono-fluoridate after enzymatic hydrolysis in vitro. Biochem. Pharmacol. 13, 1129–1136 (1964).PubMedGoogle Scholar
  24. Braunsteiner, H., Thumb, N.: see page 22.Google Scholar
  25. Braunsteiner, H., Höfer, R., Thumb, N., Vetter, H.: Untersuchungen über die basophilen Leukocyten bei Schilddrüsenerkrankungen. Klin. Wschr. 37, 250–252(1959).PubMedGoogle Scholar
  26. Braunsteiner, H., Thumb, N.: In: Lipoproteid lipase. Ed.: H. Braunsteiner, S. Sailer und F. Sandhofer. Basel-New York: Karger 1963.Google Scholar
  27. Braunsteiner, H., Sailer, S., Sandhofer, F.: The relationship between level of triglycerides in plasma and number of basophils in blood. Metabolism 14, 1071–1075(1965).PubMedGoogle Scholar
  28. Brimacombe, J. S., Webber, J. M.: Mucopolysaccharides. Chemical structure, distribution and isoliation. Amsterdam-London-New York: Elsevier 1964.Google Scholar
  29. Brown, W. D.: Reversible effects of anticoagulants and protamine on alimentary lipemia. Quart. J. exp. Physiol. 37, 75–84 (1952).PubMedGoogle Scholar
  30. Brown, R. K., Boyle, E., Anfinsen, C. B.: The enzymatic transformation of lipoproteins. J. biol. Chem. 204, 423–434 (1953).PubMedGoogle Scholar
  31. Brown, K. D., Cushing, I. B., Evans, S. M., Helbert, J. R.: Lipoprotein lipase and anticoagulant properties of a heparin derivative: N-suecinyl heparin (P). Circulation 26, 647 (1962).Google Scholar
  32. Christensen, S.: Transfer of labeled cholesterol across the aortic intimai surface of normal and cholesterol-fed cockerels. J. Atheroscler. Res. 4, 151–160 (1964).PubMedGoogle Scholar
  33. Cifonelli, J. A.: Reaction of heparitin sulfate with nitrous acid. Carbohyd. Res. 8, 233–242(1968).Google Scholar
  34. Cifonelli, J. A., Dorfman, A.: The uronic acid of heparin. Biochem. biophys. Res. Commun. 7, 41–45 (1962).Google Scholar
  35. Cooper, J. R., Cruickshank, C. N. D.: see page 22.Google Scholar
  36. Corvilain, J., Loeb, H., Champenois, A., Abramow, M.: Effect of fasting on levels of plasma non-esterified fatty acids in normal children, normal adults and obese adults. Lancet 1961 I, 534–535.Google Scholar
  37. Davies, J. N., Adams, C. W. M., Bayliss, O. B.: Gradient in cholesterol concentration across human aortic wall. 1963 II, 1254–1255.Google Scholar
  38. Day, A. J., Wilkinson, G. K., Gilmore, H. K., Schwartz, C. J.: Effect of protamine on alimentary lipemia. Ciruclation 16, 72–76 (1957).Google Scholar
  39. Day, A. J., Wilkinson, G. K.: Clearing factor inhibitor in human atherosclerosis. Circulation 18, 76–81 (1958).PubMedGoogle Scholar
  40. Desaga, J. F., Parwaresch, M. R., Müller-Hermelink, H. K.: see page 22.Google Scholar
  41. Dole, V. P.: Fat as an energy source. In: K. Rodahl and B. Issekutz (Eds.): Fat as a Tissue. New York: McGraw-Hill 1963.Google Scholar
  42. Dondoroff, M.: In: S. P. Colowick and N. O. Kaplan (Eds.), Methods in Enzymology, Vol. 5. New York: Academic Press Inc. 1962.Google Scholar
  43. Douglas, A. S.: Factor V consumption during blood coagulation. Brit. J. Haemat. 2, 153–159(1956).PubMedGoogle Scholar
  44. Duncan, L. E., Buck, K., Lynch, A.: Lipoprotein movement through canine aortic wall. Science 142, 972–973 (1963).PubMedGoogle Scholar
  45. Durant, G. J., Hendrickson, H., Montgomery, R.: Studies on the structure of heparin. Arch. Biochem. Biophys. 99, 418 – 425 (1962).Google Scholar
  46. Egge, H., Murawski, U., Müller, J., Zilliken, F.: Mikrolipidanalysen aus Serum mit dem Eppendorf-System 3000. Z. klin. Chem. klin. Biochem. 8, 488–491 (1970).PubMedGoogle Scholar
  47. Ehrlich, P.: Beiträge zur Kenntnis der granulierten Bindegewebszellen und der eosinophilen Leukocyten. Arch. Anat. Physiol. 3, 166–169 (1879).Google Scholar
  48. Engelberg, H.: Human endogenous lipemia clearing activity. Studies of lipolysis and effects of inhibitors. J. Biol. Chem. 222, 601–610 (1956).PubMedGoogle Scholar
  49. Engelberg, H., Dudley, A., Freeman, L.: An improved method for the determination of plasma heparin. J. Lab. clin. Med. 46, 653–656 (1955).PubMedGoogle Scholar
  50. Fawcett, D. W.: Observations on the cytology and electron microscopy of hepatic cells. J. nat. Cancer Inst. 15, 1475–1503 (1955).PubMedGoogle Scholar
  51. Feld, H., Swell, L., Schools, P. E., Treadwell, C. R.: Dynamic aspects of cholesterol metabolism in different areas of the aorta and other tissues in man and their relationship to atherosclerosis. Circulation 22, 547–558 (1960).Google Scholar
  52. Felts, J. M.: Lipid transport between adipose tissue and blood. In: K. Rodahl and B. Issekutz: Fat as a Tissue, p. 95. New York: McGraw-Hill 1962.Google Scholar
  53. Fitton Jackson, S., Harkness, R. D., Patridge, S. M., Tristam, G. R.: Structure and function of connective and skeletal tissues. London: Butterworths 1965.Google Scholar
  54. Forster, A. B., Harrison, R., Inch, T. D., Stagey, M., Webber, J. M.: Periodate oxidation of heparin and related compounds. Biochem. J. 80, 12–13 (1961).Google Scholar
  55. Forster, A. B., Harrison, R., Inch, T. D., Stacey, M., Webber, J. M.: Amino-sugars and related compounds. IX. Periodate oxidation of heparin and some related substances. J. chem. Soc. 2, 2279–2287 (1963).Google Scholar
  56. Fransson, L.-A.: Structure of dermatan sulfate. IV. Glgycopeptides from the carbohydrate-protein linkage region of pig skin dermatan sulfate. Biochim. biophys. Acta (Amst.) 156, 311–316 (1968 a).Google Scholar
  57. Fransson, L.-A.: Structure of dermatan sulfate. III. The hybrid structure of dermatan sulfate from umbilical cord. J. biol. Chem. 243, 1504–1510 (1968 b).PubMedGoogle Scholar
  58. Fransson, L.-A., Rodén, L.: Structure of dermatan sulfate. J. biol. Chem. 242, 4161–4175(1967).PubMedGoogle Scholar
  59. Fredrickson, D. F., Gordon, Jr., R. S.: Transport of fatty acids. Physiol. Rev. 38, 585–630(1958).PubMedGoogle Scholar
  60. Fredrickson, D. F., Levy, R. J., Lees, R. S.: Fat transport in lipoporoteins — an integrated approach to mechanism and disorders. New Engl. J. Med. 276, 32–44 (1967).Google Scholar
  61. Gage, S. H., Fish, P. A.: Fat digestion, absorption, and assimilation in man and animals as determined by the dark-field microscope, and a fat-soluble dye. Amer. J. anat. 34, 1–85(1924).Google Scholar
  62. Gibian, H., Barollier, J.: Notiz über die Anfárbung von Mucopolysaccharidsäu-ren auf Papier. Naturwissenschaften 43, 60 (1956).Google Scholar
  63. Gofman, J. W., Lalla, O. F., Glazie, F., Freeman, N. K., Lindgren, F. T., Ni-choils, A. V., Strishower, B., Tamplin, A. R.: The serum lipoprotein transport system in health, metabolic disorders, atherosclerosis and coronary artery disease. Plasma Ann. II, 413–484 (1954).Google Scholar
  64. Gordon, Jr., R. S.: Unesterified fatty acid in human blood plasma. II. The transport function of unesterified fatty acids. J. clin. Invest. 36, 810–815 (1957).PubMedGoogle Scholar
  65. Gordon, Jr., R. S., Cherkes, A.: Unesterified fatty acid in human blood plasma. J. clin. Invest. 35, 206–212 (1956).PubMedGoogle Scholar
  66. Gottschalk, A.: Glycoproteins. Amsterdam: Elsevier 1965.Google Scholar
  67. Grabener, E.: Funktionsanalytische Untersuchungen an Blutbasophilen. Kiel: Habilitationsschrift 1967.Google Scholar
  68. Gregory, J. D., Laurent, T. C., Rodén, L.: Enzymatic degradation of chondromu-coprotein. J. biol. Chem. 239, 3312–3320 (1964).PubMedGoogle Scholar
  69. Greten, H., Levy, R. I., Fredrickson, D. S.: A further characterization of lipoprotein lipase. Biochim. biophys. acta (Amst.) 164, 185 (1968).Google Scholar
  70. Hagen, P.: Bisoynthesis and storage of histamine, heparin and 5-hydroxytrypt-amine in the mast cell. Canad. J. Biochem. 39, 639–642 (1961).PubMedGoogle Scholar
  71. Hahn, P. F.: Abolishment of alimentary lipemia following injection of heparin. Science 98, 19–20(1943).PubMedGoogle Scholar
  72. Hampton, J. C.: An electron microscope study of the hepatic uptake and excretion of submicroscopic particles injected into the blood stream and into the bile duct. Acta anat. (Basel) 32, 262–291 (1958).Google Scholar
  73. Hartmann, G.: In: Lipoproteidlipase. H. Braunsteiner, S. Sailer und F. Sandho-fer (Eds.). Basel-New York: Karger 1963.Google Scholar
  74. Havel, R. J.: Early effects of fasting and of carbohydrate ingestion on lipids and lipoproteins of serum in man. J. clin. Invest. 36, 855–859 (1975).Google Scholar
  75. Havel, R. J., Felts, J. M., Van Duyne, C. M.: Formation and fate of endogenous triglycerides in blood plasma of rabbits. J. Lipid. Res. 3, 297–308 (1962).Google Scholar
  76. Havel, R. J., Goldfien, A.: The role of the liver and of extrahepatic tissues in the transport and metabolism of fatty acids and triglycerides in the dog. J. Lipid Res. 2, 389–395 (1961).Google Scholar
  77. Havel, R. J., Gordon, Jr., R. S.: Idiopathic hyperlipemia: metabolic studies in an affected family. J. clin Invest. 39, 1777–1790 (1960).PubMedGoogle Scholar
  78. Helting, T.: Biosynthesis of heparin: solubilization, partial separation and purification of uridine diphosphate-galactose: acceptor galactosyltransferases from mouse mastocytoma. J. biol. Chem. 246, 815–822 (1971).PubMedGoogle Scholar
  79. Herwerden, M. A.: see page 60.Google Scholar
  80. Hollett, C., Meng, H. C.: Lipemia clearing factor inhibitor in normal plasma. Fed. Proc. 16, 60–61(1957).Google Scholar
  81. Hood, B., Angervall, O. G., Isaksson, B., Welin, G.: Studies on heparin and the lipemia clearing factor I. Scand. J. clin. Lab. Invest. 6, 1–7 (1954).PubMedGoogle Scholar
  82. Horwitz, A. L., Dorfman, A.: Subcellular sites for synthesis of chondromucoprotein of cartilage. J. Cell Biol. 38, 358–368 (1968).PubMedGoogle Scholar
  83. Howell, W. H., Holt, E.: see page 60.Google Scholar
  84. Inagaki, S.: see page 24.Google Scholar
  85. Jacobs, S., Muir, H.: A heparin sulphate-peptide from human aorta. Biochem. J. 87, 38 (1963).Google Scholar
  86. Jaques, L. B., Waters, E. T., Charles, A. F.: A comparison of the heparins of various mammalian species. J. biol. Chem. 144, 229–235 (1942).Google Scholar
  87. Jaques, L. B., Bell, H. J.: Determination of heparin. Meth. biochem. Anal. 7, 253–309(1959).Google Scholar
  88. Jaques, L. B., Kavanagh, L. W., Lavallée, A.: A comparison of biological activities and chemical analyses for various heparin preparations. Arzneimittel-Forsch. 17, 774–777(1967).Google Scholar
  89. Jensen, R., Snellman, O., Sylvén, B.: On the inhomogeneity of commercial heparin preparations from the physicochemical point of view. J. biol. Chem. 174, 265–271(1948).PubMedGoogle Scholar
  90. Jorpes, J. E.: Heparin-eine Chondroitinschwefelsäure. Naturwissenschaften 23, 196–197(1935).Google Scholar
  91. Jorpes, J. E., Holmgren, H., Wilander, O.: Über das Vorkommen von Heparin in den Gefäßwänden und in den Augen. Ein Beitrag zur Physiologie der Ehr-lichschen Mastzzellen. Z. mikr.-anat. Forsch. 42, 279–301 (1937).Google Scholar
  92. Jorpes, J. E., Gardell, S.: On heparin monosulfuric acid. J. biol. Chem. 176, 267–276(1948).PubMedGoogle Scholar
  93. Jorpes, J. E., Werner, B., Åberg, B.: see page 61.Google Scholar
  94. Jorpes, J. E., Odeblad, E., Boström, H.: see page 74.Google Scholar
  95. Jürgens, R., Studer, A.: Zur Wirkung des Thrombins. Helv. physiol. pharmacol. Acta 6, 130–149(1948).PubMedGoogle Scholar
  96. Julén, Chr., Snellman, O., Sylvén, B.: Cytological and fractionation studies on the cytoplasmic constituents of tissue mast cells. Acta physiol. scand. 19, 289–303 (1950).Google Scholar
  97. Kasatkina, L. V.: Effect of histamine on development of experimental atherosclerosis. Kardilogiya 3, 45–48 (1963).Google Scholar
  98. Kaznacheev, J. P., Lozovoi, V. P.: In: Proceedings of the second plenary meeting of the Siberian branch of the All-Union Society of Pathophysiologists, p. 153. Chita 1958.Google Scholar
  99. Kehnscherper, M., Blau, H.: see page 24.Google Scholar
  100. Kellner, A., Correll, J. W., Ladd, A. T.: Sustained hyperlipaemia induced in rabbits by means of intravenously injected surface-active agents. J. exp. Med. 93, 373–383(1951).PubMedGoogle Scholar
  101. Kleine, O. T., Hilz, H.: Charakterisierung der Protein-Polysaccharide aus Kälberrippenknorpel und ihre in-vitro-Markierung mit 35SO4. Hoppe-Seylers Z. physiol. Chem. 349, 1027–1036 (1968).Google Scholar
  102. Kleine, O. T., Kisig, H. J., Hilz, H.: Über die Koordinierung von Protein-Polysaccharid- und Sulfatester-Synthese im Rippenknorpel von Kälbern. Hoppe-Seylers Z. physiol. Chem. 349, 1037–1048 (1968).Google Scholar
  103. Klynstra, F. B., Boelsma-Van Houte, E. Böttcher, C. J. F.: Acid mucopolysaccharides and atherosclerosis. Lancet 1967 II, 1150–1151.Google Scholar
  104. Klynstra, F. B., Böttcher, C. J. F., Van Melsen, J. A., Van der Laan, E. J.: Distribution and composition of acid mucopolysaccharides in normal and atherosclerotic human aortas. J. Atheroscler. Res. 7, 301–309 (1967).PubMedGoogle Scholar
  105. Kobayashi, Y.: Histamine binding by heparin. Arch. Biochem. Biophys. 96, 20–27 (1962).PubMedGoogle Scholar
  106. Korn, E. D., Quigley, T. W.: Studies on lipoprotein lipase of rat heart and adipose tissue. Biochem. biophys. Acta (Amst.) 18, 143–145 (1955).Google Scholar
  107. Korn, E. D., Quigley, T. W.: Lipoprotein lipase of chicken adipose tissue. J. biol. Chem. 226, 833–839 (1957).PubMedGoogle Scholar
  108. Korn, E. D.: In. I. H. Page (Ed.): Chemistry of Lipids as Related to Atherosclerosis. Springfield, III: Charles C. Thomas 1958.Google Scholar
  109. Korn, E. D.: A chromatographic and spectrophotometric study of the products of the reaction of osmium tetroxide with unsaturated lipids. J. Cell. Biol. 34, 627–638(1967).PubMedGoogle Scholar
  110. Kraup, O.: In. Lipoproteidlipase. H. Braunsteiner, S. Sailer und F. Sandhofer, (Eds.). Basel-New York: Karger 1963.Google Scholar
  111. Lalla, O. F., Gofman, J. W.: Ultracentrifugal analysis of serum lipoprotein. In: D. Glick (Ed.): Methods of Biochemical analysis. New York: Interscience 1954.Google Scholar
  112. Laurell, S.: Recycling of intravenously injected palmic acid-I-C14 as esterified fatty acid in the plasma of rats and turnover rate of plasma triglycerides. Acta phys-iol. scand. 47, 218–232 (1950).Google Scholar
  113. Laurent, T. C.: Studies on fractionated heparin. Arch. Biochem. Biophys. 92, 224–231(1961).Google Scholar
  114. Laves, W., Thoma, K.: see page 61.Google Scholar
  115. Lennert, K., Schubert, J. F. C.: see page 62.Google Scholar
  116. Lennert, K., Schubert, J. F. C.: see page 24.Google Scholar
  117. Lennert, K., Parwaresch, M. R.: Löslichkeit und Fixierungsmöglichkeiten der Blutbasophilen-Granula des Menschen. Z. Zellforsch. 83, 279–287 (1968).Google Scholar
  118. Lennert, K., Parwaresch, M. R.: see page 24.Google Scholar
  119. Lindahl, U.: The structures of xylosylserine and galactosylxylosylserine from heparin. Biochim. biophys. Acta. (Amst.) 130, 361–367 (1966 a).Google Scholar
  120. Lindahl, U.: Further characterization of the heparin-protein linkage region. Biochim. biophys. Acta. (Amst.) 130, 368–382 (1966 b).Google Scholar
  121. Lindahl, U.: Structure of the heparin-protein linkage region. Arkiv Kemi 26, 101–110 (1966 c).Google Scholar
  122. Lindahl, U.: see page 24.Google Scholar
  123. Lindahl, U., Rodén, L.: The role of galactose and xylose in the linkage of heparin to protein. J. biol. Chem. 240, 2821–2826 (1965).PubMedGoogle Scholar
  124. Lindberg, B., Silvander, B.-G.: Synthesis of o-β-D-xylopyranosyl-L-Serine. Acta chem. scand. 19, 530–531 (1965).PubMedGoogle Scholar
  125. Linker, A., Hovingh, P.: The enzymatic degradation of heparin and heparitin sulfate. I. The fractionation of a crude heparinase from flavobacteria. J. biol. Chem. 240, 3724–3728(1965).PubMedGoogle Scholar
  126. Martin, H., Roka, L.: see page 63.Google Scholar
  127. Martirani, L., Melo, E. H. L., Höxter, G., Waichenberg, B. L., Cinstra, A. B. U.: Heparin-included clearing factor: comparative studies between normal and patients with electrocardiographic singns of a past myocardinal infarction (coronary heart disease). Metabolism 11, 1210–1220 (1962).Google Scholar
  128. Marquard, F., Walzman, P.: Untersuchungen über den Mechanismus der Anti-thrombinwirkung des Heparins. Hoppe-Seylers Z. physiol. Chem. 317, 64–77 (1959).Google Scholar
  129. Mathews, M. B., Lozaityte, L.: Sodium chondrotin sulfate-protein complexes of cartilage. I. Molecular wight and shape. Arch. Biochem. Biophys. 74, 158–174 (1958).PubMedGoogle Scholar
  130. Maximow, A.: Bindegewebe und blutbildendes Gewebe. In: Handbuch der mikroskopischen Anatomie des Menschen, Vol. II, 1. Berlin: Springer 1927.Google Scholar
  131. McLean, J.: The thromboplastic action of cephalin. Amer. J. Physiol. 41, 250–257 (1916).Google Scholar
  132. Meyer, K.: Biochemistry and biology of mucopolysaccharides. Amer. J. Med. 47, 664–672(1969).PubMedGoogle Scholar
  133. Middelton, C. C., Clarkson, T. B., Lofland, H. B., Prichard, R. W.: Atherosclerosis in the squirrel monkey. Arch. Path. 78, 16–23 (1964).Google Scholar
  134. Morrison, L. M., Murata, K., Quilligan, J. J., Schjeide, O. A., Freeman, L.: Prevention of atherosclerosis in subhuman primates by chondroitin sulfate A. Circulation 19, 358–363 (1966).Google Scholar
  135. Muir, H.: The nature of the link between protein and carbohydrate of a chondroitin sulphate complex from hyaline cartilage. Biochem. J. 69, 195–204 (1958).PubMedGoogle Scholar
  136. Muir, H.: Chemistry and metabolism of connective tissue glycosaminoglycans (mucopolysaccharides). Intern. Rev. connective tissue Res. 2, 101–154 (1964).Google Scholar
  137. Muir, H.: The structure and metabolism of mucopolysaccharides (glycosaminogly-cans) and the problem of the mucopolysaccharidoses. Amer. J. Med. 47, 673–690(1969).PubMedGoogle Scholar
  138. Nagayo, M.: see page 64.Google Scholar
  139. Nestel, P. J.: Relationship between plasma trilycerides and removal of chylomicrons. J. clin. Invest. 43, 943–949 (1964).PubMedGoogle Scholar
  140. Neufeld, E. F., Ginsburg, V.: Carbohydrate metabolism. Ann. Rev. Biochem. 34, 297–312(1965).PubMedGoogle Scholar
  141. Ninni, M., Belloni, F.: Sulla transformazione delia leucemia mieloide crônica in leucemia basfilia subacuta. Haematologica (Pavia) 37, 1455–1467 (1953).Google Scholar
  142. Nominé, G., Bucourt, R., Bertin, D.: Recherches sur l’héparine et la N-desulfohéparine. Etudes de structure. Bull. Soc. Chim. biol. (Paris) 561–567 (1961).Google Scholar
  143. O’Brien, J. R.: The effect of heparin on the early stages of blood coagulation. J. clin. Path. 13, 93–98 (1960).PubMedGoogle Scholar
  144. Oliver, M. F., Boyd, G. S.: The clearing by heparin of alimentary lipemia in coronary artery disease. Clin. Sci. 12, 293–298 (1953).PubMedGoogle Scholar
  145. Oshima, Y., Murata, K.: Atherosclerosis from a viewpoint of abnormal polysaccharide metabolism. Clinics 9, 115 (1960).Google Scholar
  146. Oshima, Y., Yokohari, R., Odoi, S., Murata, K., Murata, K., Wasp, K., Otsuki, A., Noda, M., Miyamoto, T.: Clinical and experimental studies on mucopolysaccharides. Mucopolysaccharides and atherosclerosis, pp. 259–272. In: F. Egam and Y. Oshima: Biochemistry and Medicine of Mucopolysaccharides. Tokyo: University Press 1962.Google Scholar
  147. Pappenheim, A.: Allgemeine Zytologie der Entzündung. Theoretische Vorbemerkungen. Folia haemat. (Lpz) 3, 564–569 (1906).Google Scholar
  148. Parwaresch, M. R.: see page 25.Google Scholar
  149. Parwaresch, M. R., Lennert, K.: see page 25.Google Scholar
  150. Parwaresch, M. R., Lennert, K.: see page 64.Google Scholar
  151. Parwaresch, M. R., Petersen, A.: Der Einfluß von Histamin und fettreicher Diät auf die Anzahl der Gewebsmastzellen der Ratte. Virchows Arch. Abt. B Zell-path. 4, 137–147(1969).Google Scholar
  152. Parwaresch, M. R., Sadighi, R.: see page 98.Google Scholar
  153. Parwaresch, M. R., Müller-Hermelink, H. K., Desaga, J. F., Zakari, V., Lennert, K.: Die Herkunft der Gewebsmastzellen bei der Ratte, zugleich ein Beitrag zur quantitativen Cytologie der sterilen Peritonitis. Virchows Arch. Abt. B Zellpath. 8, 20–35 (1971).Google Scholar
  154. Patat, F., Elias, H.-G.: Molekulargewicht und Aktivität von Heparin. Naturwissenschaften 46, 322 (1959).Google Scholar
  155. Portman, O. W., Andrus, S. B.: Comparative evaluation of three species of new world monkeys for studies of dietary factors, tissue lipids and atherosclerosis. J. Nutr. 87, 429–438 (1965).PubMedGoogle Scholar
  156. Quintarelli, G., Scott, J. E.: International symposium on the chemical physiology of mucopolysaccharides. Carlo Erba foundation, Milano 1965. Little & Brown, Boston 1966.Google Scholar
  157. Rikhter, A.: In: Symposium on Connective Tissue, p. 143. Moscow 1960.Google Scholar
  158. Robinson, D. S., French, J. E.: The heparin clearing reaction and fat transport. Quart. J. exp. Physiol. 42, 151–163 (1957).PubMedGoogle Scholar
  159. Robinson, E. D., Harris, P. M., Ricketts, C. R.: The production of lipolytic activity in rat plasma after the intravenous injection of dextran sulphate. Biochem. J. 71, 286–292(1959).PubMedGoogle Scholar
  160. Rodén, L., Armand, G.: Structure of the chondroitin 4-sulfate-protein linkage region. Isolation and characterization of the disaccharide-3-o-ß-D-glucuronosyl-D-galactase. J. biol. Chem. 241, 65–70 (1966).PubMedGoogle Scholar
  161. Rodén, L., Smith, R.: Structure of the neutral trisaccharide of the chondroitin-4-sulfate-protein linkage region. J. biol. Chem. 241, 5949–5954 (1966).PubMedGoogle Scholar
  162. Roka, L., Martin, H.: Ober ein Antiprothrombin in den Myelocyten. Klin. Wschr. 29, 468–477(1950).Google Scholar
  163. Rouiller, C.: Les canalicules biliaires. Acta anat. (Basel) 26, 94–109 (1956).Google Scholar
  164. Ryvkina, D. E.: Effect of histamine on development of experimental atherosclerosis. Usp. sovrem. Biol. 44, 389–395 (1957).Google Scholar
  165. Sailer, S., Sandhofer, F., Braunsteiner, H.: Untersuchungen über die Lipopro-teidlipase. I. Mitteilung: Bestimmung der Postheparin-Lipoproteidlipase beim Menschen durch Messung der Triglycerid-Spaltung. Klin. Wschr. 39, 585–588 (1961).PubMedGoogle Scholar
  166. Sailer, S., Sandhofer, F.: In: Lipoproteidlipase. H. Braunsteiner, S. Sailer und F. Sandhofer (Eds.). Basel-New York: Karger 1963.Google Scholar
  167. Schiller, S.: Connective and supporting tissues: mucopolysacchrides of connective tissues. Ann. Rev. Physiol. 28, 137–158 (1966).Google Scholar
  168. Schöll, H.: In: Lipoproteidlipase. H. Braunsteiner, S. Sailer und F. Sandhofer: Basel-New York: Karger 1963.Google Scholar
  169. Schubert, J. F. C.: see page 99.Google Scholar
  170. Schubert, J. F. C.: Histochemische Untersuchungen an Gewebsmastzellen des menschlichen Knochenmarks. Inaugural Disseration, pp. 1–47, Frankfurt 1958.Google Scholar
  171. Schürer, W.: Speicherung von Heparin in den Zellen des Retikuloendothels. Helv. med. Acta 13, 161–171 (1946).PubMedGoogle Scholar
  172. Serafini-Fracassini, A., Peters, T. J., Floreani, L.: The protein-polysaccharide complex of bovine nasal cartilage. Biochem. J. 105, 569–575 (1967).PubMedGoogle Scholar
  173. Serafini-Fracassini, A., Durward, J. J., Floreani, L.: The heparin-protein complex of ox-liver capsule. Biochem. J. 112, 167–172 (1968).Google Scholar
  174. Serafini-Fracassini, A., Durward, J. J., Crawford, J.: The morphology of the heparin-protein macromolecule and its organization in the mast cell granule. J. Ultrastruct. Res. 28, 131–140 (1969).PubMedGoogle Scholar
  175. Shafrir, E.: Partition of unesterified fatty acids in normal and nephrotic syndrome serum and its effect on serum electrophoretic pattern. J. clin. Invest. 37, 1775 – 1782 (1958).Google Scholar
  176. Shelley, W. B., Juhlin, L.: Degranulation of the basophil in man induced by alimentary lipemia. Amer. J. med. Sci. 242, 211–222 (1961).Google Scholar
  177. Slein, M. W.: In: Methods in Enzymology, Vol. 5, S. P. Colowick and N. O. Kaplan (Eds.). New York: Academic Press 1962.Google Scholar
  178. Snellman, O., Sylvén, B., Julén, C.: Analysis of the native heparin-lipoprotein complex including the identification of a heparin complement (heparin co-factor)-obtained from extracts of tissue mast cells. Biochim. Biophys. Acta (Amst.) 7, 98–109(1951).Google Scholar
  179. Spitzer, J. J.: Influence of protamine on alimentary lipemia. Amer. J. Physiol. 147, 43–45(1953).Google Scholar
  180. Spitzer, J. A., Spitzer, J. J.: Effect of liver on lipolysis by normal and postheparin sera in the rat. Amer. J. Physiol. 185, 18–22 (1956).PubMedGoogle Scholar
  181. Staemmler, M.: Untersuchung über Vorkommen und Bedeutung der histiogenen Mastzellen im menschlichen Körper unter normalen und pathologischen Verhältnissen. Frankfurt. Z. Path. 25, 391–435 (1921).Google Scholar
  182. Stein, Y., Shapiro, B.: Uptake and metabolism of triglycerides by the liver. J. Lipid Res. 1, 326–331(1960).PubMedGoogle Scholar
  183. Stivala, S. S., Herbst, M., Kratky, O., Pilz, I.: Physico-chemical studies of fractionated bovine heparin. Arch. Biochem. Biophys. 127, 795–802 (1968).PubMedGoogle Scholar
  184. Thoma, K., Wercinski, A.: Untersuchungen über die Funktion der Granula der basophilen Leukocyten. Dtsch. med. Wschr. 75, 86–87 (1950).Google Scholar
  185. Tominaga, F., Oka, K., Yoshida, H.: The isolation and identification of Oxylosyl-serine and S-methylcysteine sulfoxide from human urine. J. Biochem. (Tokyo) 57, 717–720(1965).Google Scholar
  186. Trout, E. L., Estes, E. H., Friedberg, S. J.: Titration of free fatty acids of plasma: a study of current methods and a new modification. J. Lipid Res. 1, 199–202 (1960).PubMedGoogle Scholar
  187. Turin, E.: see page 27.Google Scholar
  188. Walton, K. W.: Chemistry and mode of action of heparin and related compounds. Brit. med. Bull. 11, 62–69 (1955).PubMedGoogle Scholar
  189. Walton, P. L., Ricketts, C. R., Bangham, D. R.: Heterogeneity of heparin. Brit. J. Haemat. 12, 310–325(1966).PubMedGoogle Scholar
  190. Wassermann, F.: The concept of the „fat organ“. In: Fat as a Tissue, p. 22. K. Ro-Dahl and B. Issekutz (Eds.). New York: McGraw-Hill 1963.Google Scholar
  191. Wegelius, O., Asboe-Hansen, G.: Histamine and connective tissue. Acta chem. scand. 3, 18–21(1957).Google Scholar
  192. Werle, E., Amann, R.: Zur Physiologie der Mastzellen als Träger des Heparins und Histamins. Klin. Wschr. 34, 624–630 (1956).PubMedGoogle Scholar
  193. Wermel, E., Sassuchin, D.: see page 69.Google Scholar
  194. Westphal, O., Lüderitz, O., Bister, F.: Über die Extraktion von Bakterien mit Phenol/Wasser. Z. Naturforsch. 7 b, 148–155 (1952).Google Scholar
  195. Wills, E. D.: Lipases, pp. 197–240. In: Advances in Lipid Research, Vol. 3, R. Pao-letti and D. Kritchevsky (Eds.). New York-London: Academic Press 1965.Google Scholar
  196. Wislocki, G. B., Dempsey, E. W.: see page 69.Google Scholar
  197. Wolfrom, M. L., Weisblat, D. I., Karabinos, J. V., McNelly, W. H., McLean, J.: Chemical studies on crystalline barium acid heparinate. J. Amer. chem. Soc. 65, 2077–2085(1943).Google Scholar
  198. Wolfrom, M. L., McNeely, W. H.: The relation between the structure of heparin and the anticoagulant activity. J. Amer. chem. Soc. 67, 748–753 (1945).Google Scholar
  199. Wolfrom, M. L., Shen, T. M., Summers, G. G.: 1953. Cited in: J. S. Brimacombe and J. M. Webber: Mucopolysaccharides, Vol. 6, Amsterdam-Lond-New York: Elsevier 1964.Google Scholar
  200. Wolfrom, M. L., Vercellotti, J. R., Horton, D.: A disaccharide from carboxyl-reduced heparin. J. org. Chem. 27, 705–706 (1962).Google Scholar
  201. Wolfrom, M. L., Vercellotti, J. R., Horton, D.: The linkage in the disaccharide from carboxyl-reduced heparin. J. org. Chem. 28, 278–279 (1963).Google Scholar
  202. Wolfrom, M. L., Vercellotti, J. R., Horton, D.: Two disaccharides from carboxyl-reduced heparin. The linkage sequence in heparin. J. org. Chem. 29, 540–547(1964).Google Scholar
  203. Yoshizawa, Z.: Heparin. Protein (Tokyo) 14, 595–603 (1969).Google Scholar
  204. Zemplényi, T.: The lipolytic and esterolytic activity of blood and tissue and problems of atherosclerosis, p. 235. In: Advances in Lipid Research, Vol. 2, R. Pao-letti and D. Kritchevsky (Eds.). New York-London: Academic Press 1964.Google Scholar
  205. Zöllner, N.: In: Lipoproteidlipase. H. Braunsteiner, S. Sailer and F. Sandhofer (Eds.). Basel-New York: Karger 1963.Google Scholar
  206. Zöllner, N., Schenck, R., Mannmeusel, L.: Veränderungen des Dispersionsgrades der Plasmalipoide durch Heparin. Naturwissenschaften 39, 111–114 (1952).Google Scholar
  207. Zöllner, N., Seitz, W., König, E.: Die Hemmung der Lipaemie-Klärungsreaktion durch Heparin. Hoppe Seylers Z. physiol. Chem. 314, 177–182 (1959).Google Scholar
  208. Zöllner, N., Kirsch, K.: In: Untersuchungen und Bestimmungen der Lipide im Serum. N. Zöllner und D. Eberhagen (Eds.). Berlin-Heidelberg-New York: Springer 1965.Google Scholar
  209. Zollinger, H. U.: Gewebsmastzellen und Heparin (phasenmikroskopische Untersuchung) Experientia (Basel) 6, 384–386 (1950).Google Scholar
  210. Ackermann, D., Fuchs, H. G.: Zur Frage des Vorkommens von Histamin im normalen Harn. Hoppe-Seylers Z. physiol. Chem. 259, 32–34 (1939).Google Scholar
  211. Adam, H. M.: Excretion of histamine in human urine Quart. J. exp. Physiol. 35, 281–293(1950).Google Scholar
  212. Albanus, L., Winqvist, G.: Basophils, eosinophils and histamine in the bone marrow of the guinea pig. Acta haemat. (Basel) 26, 365–371 (1961).Google Scholar
  213. Asboe-Hansen, G. A.: Origin of synovial mucin: Ehrlich’s mast cell secretory element of connective tissue. Ann. rheum. Dis. 9, 149–157 (1950).PubMedGoogle Scholar
  214. Aspegren, N., Fregert, S., Rorsman, H.: Basophil leukocytes in allergie eczematous contact dermatitis. Int. Arch. Allergy 23, 150–156 (1963 a).PubMedGoogle Scholar
  215. Aspegren, N., Fregert, S., Rorsman, H.: Basophil leukocytes in non-vascular allergic patch-test reactions. J. invest. Derm. 41, 107–108 (1963 b).PubMedGoogle Scholar
  216. Aspegren, H., Fregert, S., Rorsman, H.: Basophil leukocytes at sites of intracutaneous tuberculin test reactions. Int. Arch. Allergy 24, 35–38 (1964).PubMedGoogle Scholar
  217. Astaldi, G., Allegri, A.: Sul tasso istaminico ematico e midollare nella norma e in diverse emopatie. Haematologica (Pavia) 34, 851–868 (1951).Google Scholar
  218. Barth, E.L.: Über die Zellelemente des entzündüchen Exsudates, ihre quantitativen Änderungen im Entzündungsablauf und ihre Herkunft. Frankfurt: Inaugural-Dissertation 1958.Google Scholar
  219. Bergqvist, G., Nilzén, A.: 1966. Cited in: G. Bergqvist and A. Nilzén: The release of histamine from blood corpuscles by antigen-antibody reactions. I. A method for detecting allergy in vitro in atopic persons. Acta allerg. (Kbh.) 23, 263–273(1969).Google Scholar
  220. Bergqvist, G., Nilzén, A.: The release of histamine from blood corpuscles by antigen-antibody reactions. I. A method for detecting allergy in vitro in atopic persons. Acta allerg. (Kbh.) 23, 263–273 (1969).Google Scholar
  221. Bernauer, W., Seseke, G., Hahn, F., Schmutzler, W., Giertz, H.: Über die ana-phylaktische Histaminfreisetzung am Herzlungenpräparat des Meerschweinchens. Arch. int. Pharmacodyn. 162, 319 (1966).Google Scholar
  222. Bersani, R. B.: see page 21.Google Scholar
  223. Boreus, L. B.: Anafylaksi og Mastceller, pp. 14–17. Uppsala: Almqvist & Wiksells 1961.Google Scholar
  224. Bowszyc, J., Bowszyc, J.: The importance of the 1967 basophil degranulation test for the detection of allergy to penicillin. Pol. med. J. (Eng.) 6, 130–136 (1967).Google Scholar
  225. Braunsteiner, H., Potuzhek, O., Thumb, N.: Über die Beeinflussung der Eosino-philenzahl durch Heparin. Acta haemat. (Basel) 22, 153–157 (1959).Google Scholar
  226. Braunsteiner, H., Potuzhek, O., Thumb, N.: Variations observées dans le nombre des leucocytes basophiles chez l’homme. Rev. Hémat. 15, 241–249 (1960).Google Scholar
  227. Brechter, C., Rorsman, H.: Basophil leukocytes in hypersensitization. Int. Arch. Allergy 28, 35–40 (1965).PubMedGoogle Scholar
  228. Cacciavillani, B., Gibertini, G.: 1942. Cited in: Gibertini, G.: La istidina non spiega effeto antiistaminico sull’intestino isolato. Boll. Soc. ital. Biol. sper. 17, 234(1942).Google Scholar
  229. Carvahlo, M. G.: Sur la labrocytose (mastzellose) chez les individus soumis au traitment antirabique. C. R. Soc. Biol. (Paris) 87, 701–723 (1922).Google Scholar
  230. Cejka, V., de Vries, L. A., Smorenberg-Schoorl, M. E., Van Daatselaar, J. J., Vorst, J. G. G., Majoor, G. L. H.: Effect of heparinoid and spirolactone on the renal excretion of sodium and aldosterone. Lancet 1960 I, 317–319.Google Scholar
  231. Charpin, J., Aubert, J., Ohresser, P., Boutin, C., Francal, P.: Comparison of the basophil test with penicillin and the clinical data. Acta allerg. (Kbh.) 21, 1–8 (1966).Google Scholar
  232. Code, C. F.: The histamine-like activity of white blood cells. J. Physiol (Lond.) 90, 485–510 (1937 a).Google Scholar
  233. Code, C. F.: The quantitative estimation of histamine in the blood. J. Physiol. (Lond.) 89, 257–268 (1937 b).Google Scholar
  234. Code, C. F.: Histamine in blood. Physiol. Rev. 32, 47–65 (1952).PubMedGoogle Scholar
  235. Code, C. F.: The histamine content of white blood cells. In: J. Tullis (ed.): Blood Cells and Plasma Proteins, Their State in Nature. New York: Harvard University-Academic Press. 1953.Google Scholar
  236. Code, C. F., MacDonald, A. D.: see page 57.Google Scholar
  237. Code, C. F., Mitschell, R. G.: see page 22.Google Scholar
  238. Cohen, H. A.: The role of hetero- and isohemagglutinins in the indirect basophil reaction. Arch. Derm. Syph. (Chic.) 95, 313–318 (1967).Google Scholar
  239. Constanzi, J. J., Coltman, C. A. Jr.: Kappa chain cold-precipitable immunoglobulin G (IGG) associated with cold urticaria. Clinical observations. Clin. exp. Immun. 2, 167–178(1967).Google Scholar
  240. Cooper, F. K., Cruickshank, C. N. D.: see page 22.Google Scholar
  241. Cruickshank, C. N. D., Haye, K. R.: The responses of the basophil leukocyte. J. invest. Derm. 51, 324–329 (1968).PubMedGoogle Scholar
  242. Dabney, J. M., Stanley, A. J.: The affinity of heparin for certain liberators of histamine. Tex. Rep. Biol. Med. 18, 194–201 (1960).PubMedGoogle Scholar
  243. Demis, J. D., Brown, D. D.: Histidine metabolism in urticaria pigmentosa. J. invest. Derm. 36, 253–272 (1961).PubMedGoogle Scholar
  244. Desaga, J. F., Tietz, G., Lennert, K.: Zur Cytologie der Tuberkulinreaktion. Verh. dtsch. Ges. Path. 54, 265–267 (1970).Google Scholar
  245. Dolen, T., Aas, K.: Studies of hypersensitivity to fish. An evaluation of the indirect basophil degranulation test for the in vitro demonstration of hypersensitivity to fish. Int. Arch. Allergy 30, 405–415 (1966).PubMedGoogle Scholar
  246. Drennan, J. M.: The mast cells in urticaria pigmentosa. J. Path. Bact. 63, 513–520 (1951).PubMedGoogle Scholar
  247. Dreyfuss, F., Hellman, M., Klopstock, A., Schwartz, J., Vardinon, N.: The basophil degranulation test in patients hypersensitive to drugs. Acta allerg. (Kbh.) 21, 17–24(1966).Google Scholar
  248. Dunér, H., Pernow, B.: see page 23.Google Scholar
  249. Dunér, H., Leljedahl, S. O., Pernow, B.: Does the urinary excretion of imidazole acetic acid reflect the endogenous histamine metabolism in man? Acta physiol. scand. 51, 41–46(1961).PubMedGoogle Scholar
  250. Dvorak, H. F., Dvorak, A. M., Simpson, B. A., Richerson, H. B., Leskowitz, S., Karnovsky, M. J.: Cutaneous basophil hypersensitivity. II. A light and electron microscopic description. J. exp. Med. 132, 558–582 (1970).PubMedGoogle Scholar
  251. Ehrich, W. E.: Histamine in mast cells. Science 118, 603 (1953).PubMedGoogle Scholar
  252. Feinberg, A. R., Feinberg, S. M., Lee, F.: Leukocytes and hypersensitivity reactions. I. Eosinophil response in skin window to ragweed extract, histamine, and compound 48/80 in atopic and nonatopic individuals. J. Allergy 40, 73–87 (1967).PubMedGoogle Scholar
  253. Feizi, T.: The indirect basophil degranulation test for allergy to penicillin. Trans. St. John’s Hosp. derm. Soc. (Lond.) 53, 162–164 (1967).Google Scholar
  254. Fernex, M.: The mast cell-system, its relationship to atherosclerosis, fibrosis and eosinophils. Basel-New York: S. Karger 1968.Google Scholar
  255. Fregert, S., Rorsman, H.: Basophil leukocytes in intracutaneous test reactions to metals. J. invest. Derm. 41, 361–362 (1963).PubMedGoogle Scholar
  256. Fregert, S., Rorsman, H.: Allergens in epoxy resins. Acta allerg. (Kbh.) 19, 296–299(1964).Google Scholar
  257. Frick, G., Frick, U.: Zur Rolle der basophilen Leukozyten und Mastzellen in Fi-brinolyse und Allergie. I. Wirkung von Fibrinolytica und Antifibrinolytica auf den Degranulationsgrad von basophilen Leukocyten. Folia haemat. (Lpz.) 86, 389–403 (1966 a).Google Scholar
  258. Frick, G., Frick, U.: Zur Rolle der basophilen Leukozyten und Mastzellen in Fi-brinolyse und Allergie. II. Wirkung eines Antihistaminicums und einer allergi-schen Sofortreaktion auf Zahl und Degranulierung basophiler Leukozyten. Folia haemat. (Lpz.) 87, 178–189 (1966 b).Google Scholar
  259. Friedberg, K. D., Bauer, U.: Anaphylaktischer Schock nach passiver Sensibilisierung am anaphylatoxinvorbehandelten Meerschweinchen. Arch. exp. Path. Pharmacol. 250, 171–172 (1965).Google Scholar
  260. Fulton, J. E., Derbes, V. J.: Basophil leukocyte infiltration in the positive tuberculin skin test in man. J. invest. Derm. 43, 125–128 (1964).PubMedGoogle Scholar
  261. Gaddum, J. H.: The origin of histamine in the body, p. 285. Ciba Foundation Symposium on Histamine. London: J. & A. Churchill Ltd. 1956.Google Scholar
  262. Giertz, H., Hahn, F., Schmutzler, W., Kollmeier, J.: Plasma- und Bluthistamin bei verschiedenen Schockformen des Meerschweinchens. Int. Arch. Allergy 25, 26–45(1964).PubMedGoogle Scholar
  263. Gillespie, E., Levine, R. J.: Histamine release by reserpine from rat peritoneal mast cells in vitro. Biochem. Pharmacol. 18, 934–935 (1969).Google Scholar
  264. Gingold, N.: Un élément dans le diagnostic différential de la leucémie myéloide chronique. Bull. Acad. Méd. Roum. 4, 382–384 (1939 a).Google Scholar
  265. Gingold, N.: Zur Differentialdiagnose zwischen chronischer Leukaemie und my-eloisch-leukaemoiden Blutbildern. Klin. Wschr. 18, 1217–1218 (1939 b).Google Scholar
  266. Gingold, N.: Un nouveau moyen de diagnostic différential des leucémies et des réactions leucémoides. Sang 13, 920–923 (1939 c).Google Scholar
  267. Gingold, N.: Der Bluthistaminspiegel in der Differential- und Frühdiagnose der chronischen myeloischen Leukaemie. Wien. Z. inn. Med. 49, 180–186 (1968).PubMedGoogle Scholar
  268. Gingold, N., Teitel, P.: Differentialdiagnose zwischen chronischer Myelose und leukaemoider Reaktion. Probl. Gemat. 4, 28–29 (1959).PubMedGoogle Scholar
  269. Gingold, N., Teitel, P.: Bluthistaminmenge in der Differentialdiagnose der chronischen Myeloleukose. Stud. Cercet. Med. intern. 7, 163–172 (1966).Google Scholar
  270. Giraldo, B., Blumenthal, M. N., Spink, W. W.: Aspirin intolerance and asthma. A clinical and immunological study. Ann. intern. Med. 71, 479–496 (1969).PubMedGoogle Scholar
  271. Gordon, V. H.: The indirect basophil test and drug hypersensitivity. Ann. Allergy 24, 171–178 (1966).PubMedGoogle Scholar
  272. Graham, H. T., Wheelwright, F., Parish, H. H., Marks, A. R., Lowry, O. H.: Distribution of histamine among blood elements. Fed. Proc. 11, 350 (1952).Google Scholar
  273. Graham, H. T., Lowry, O. H., Wheelwright, F., Lenz, M. A., Parish, H. H.: Distribution of istamine among leukocytes and platelets. Blood 10, 467–481 (1955).PubMedGoogle Scholar
  274. Greaves, M. W., Burdis, B. D.: Anaphylactic histamine release from guinea pig basophil leukocytes. Int. Arch. Allergy 34, 313–323 (1968).PubMedGoogle Scholar
  275. Greaves, M. W., Mongar, J. L.: The histamine content of rabbit leukocytes and its release during in vitro anaphylaxis. Immunology 15, 733–742 (1968).PubMedGoogle Scholar
  276. Gudowski, G., Dieckhoff, J.: Basophil leukocytes and histamine in blood in childhood diseases caused by allergic reactions. Allergie u. Asthma 13, 1–5 (1967).Google Scholar
  277. Hahn, F., Maack, T., Müller, G., Mitze, R., Ebner, C.: Anaphylatoxin tachyphylaxis and anaphylactic histamine release. Int. Arch. Allergy 37, 596–606 (1970).PubMedGoogle Scholar
  278. Hartman, W. J., Clark, W. G., Cyr, S. D.: see page 60.Google Scholar
  279. Hastie, R.: The antigen-induced degranulation of basophil leukocytes from atopic subjects studied by phase-contrast microscopy. Clin. exp. Immunol. 8, 45–61 (1971).PubMedGoogle Scholar
  280. Hatem, S.: 1955. Cited in: C. Champy and S. Hatem. Une réaction argentique de l’histamine. C. R. Soc. Biol. (Paris) 150, 1325–1326 (1956).Google Scholar
  281. Henney, C. S., Stanworth, K.: Effect of antigen on the structural configuration of homologous antibody following antigen-antibody combination. Nature (Lond.) 210, 1071–1972(1966).Google Scholar
  282. Higginbotham, R. D., Dougherty, T. F.: Micellophagosis and detoxification. RES Bull. 2, 27 – 31 (1956 a).Google Scholar
  283. Higginbotham, R. D., Dougherty, T. F.: Mechanism of heparin protection against a histamine releaser (48/80). PSEM 92, 493–498 (1956 b).Google Scholar
  284. Higginbotham, R. D.: On the participation of micellophagosis in the resistance of tissues to injurious agents. Int. Arch. Allergy 15, 195–222 (1959 a).PubMedGoogle Scholar
  285. Higginbotham, R. D.: Effect of compound 48/80 on toxicity of histamine and of serotonin in mice. Proc. Soc. exp. Biol. (N. Y.) 102, 4–8 (1959 b).Google Scholar
  286. Higginbotham, R. D.: Mast cells and local resistance to Russel’s viper venom. Fed. Proc. 21, 279 (1962 a).Google Scholar
  287. Higginbotham, R. D.: Sulfated polysaccharides and resistance to Russel’s viper venom. Proc. Soc. exp. Biol. (N. Y.) 110, 135–138 (1962 b).Google Scholar
  288. Higginbotham, R. D.: Interaction of mast cells with cationic histamine releasers. In: Histamine and Antihistaminics. M. Rocha e Silva (Ed.). Berlin-Heidelberg-New York: Springer 1066.Google Scholar
  289. Hoffman, J. B., Schwartz, J.: Tropical eosinophilia versus Loeffler’s syndrome. New York med. J. 51, 2261–2263 (1951).Google Scholar
  290. Holmes, W. N., Jones, I. C.: 1960. Cited in: W. N. Holmes, J. G. Phillips and I. C. Jones: Adrenocortical factors associated with adaptation of vertebrates to marine environments. Recent Progr. Hormone Res. 19, 619–672 (1963).PubMedGoogle Scholar
  291. Hu, F., Fosnaugh, R. P., Livingood, C. S.: Human skin window to Staphylococcus in controls and in patients with cutaneous bacterial infections. J. invest. Derm. 41, 325–334 (1963).PubMedGoogle Scholar
  292. Hubscher, T., Goodfriend, L.: Role of human reaginic and hemagglutinating antibodies in the indirect rabbit basophil degranulation reaction. Int. Arch. Allergy 35, 298–307(1969).PubMedGoogle Scholar
  293. Humphrey, J. H., Jaques, R.: The histamine and serotonin content of the platelets and the polymorphonuclear leukocytes of various species. J. Physiol. (Lond) 124, 305–310(1954).Google Scholar
  294. Humphrey, J. H., Mota, I.: The mechanism of anaphylaxis: specificity of antigen-induced mast cell damage in anaphylaxis in the guinea pig. Immunology 2, 31–43(1959).PubMedGoogle Scholar
  295. Irvine, W. T., Duthie, H. L., Waton, N. G.: Urinary output of free histamine after a meat meal. Lancet 1959 I, 1061–1064.Google Scholar
  296. Ishizaka, K., Ishizaka, T.: Human reaginic antibodies and immunoglobulin E. J. Allergy 42, 330–363 (1968 a).PubMedGoogle Scholar
  297. Ishizaka, K., Ishizaka, T.: Reversed type allergic skin reactions by anti- γE globulin antibodies in humans and monkeys. J. Immunol. 100, 554–562 (1968 b).PubMedGoogle Scholar
  298. Ishizaka, T., Ishizaka, K., Johnsson, S. G. O., Bennich, H.: Histamin release from human leukocytes by anti- γE antibodies. J. Immunol. 102, 884–892 (1969).PubMedGoogle Scholar
  299. Ishizaka, K., Ishizaka, T.: Biological function of γE antibodies and mechanisms of reaginic hypersensitivity. Clin. exp. Immunol. 6, 25–42 (1970).PubMedGoogle Scholar
  300. Johnsson, S. G. O., Bennich, H.: Studies on a new class of human immunoglobulins. I. Immunological properties. Nobel Symposium 3. Stockholm: Almqvist & Wiksell 1967.Google Scholar
  301. Jones, R. G.: Chemistry of histamine and analogs. Relationship between structure and pharmacological activity. In: Histamine and Antihistaminics. M. Rocha e Silva (Ed.). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  302. Jones, T. D., Mote, J. R.: Phases of foreign protein sensitization in human beings. New Engl. J. Med. 210, 120–123 (1934).Google Scholar
  303. Jones, R. G., Mann, M. J., McLaughlin, K. C.: Substituted ß-aminoethylpyra-zoles. J. org. Chem. 19, 1428–1434 (1954).Google Scholar
  304. Juhlin, L., Shelley, W. B.: Plastic tube technic of centrifugal separation of leukocytes from human blood. Blood 18, 477–480 (1961 a).PubMedGoogle Scholar
  305. Juhlin, L., Shelley, W. B.: A new test for detecting anaphylactic sensitivity: The basophil reaction. Nature (Lond.) 191, 1056–1058 (1961 b).Google Scholar
  306. Juhlin, L., Westphal, O.: Degranulation of basophil leukocytes in a case of milk allergy. Acta derm.-venereol. (Stockh) 42, 273–279 (1962).Google Scholar
  307. Juhlin, L.: Basophil leukocyte differential in blood and bone marrow. Acta haemat. (Basel) 29, 89–95 (1963).Google Scholar
  308. Juhlin, L.: Effect of fluocinolone on basophil and eosinophil leukocytes in inflammatory exudates. Acta derm.-venereol. (Stockh.) 44, 327–329 (1964).Google Scholar
  309. Juhlin, L., Öhman, S.: Basophil and eosinophil leukocytes in cantharidin blisters of patients with various dermatoses. Acta derm.-venereol. (Stockh.) 44, 303–414 (1964).Google Scholar
  310. Kapeller-Alder, R.: Histidine metabolism in toxemia of pregnancy. Isolation of histamine from urine of patients with toxemia of pregnancy. Biochem. J. 35, 213–218(1941).Google Scholar
  311. Kasatkina, L. V.: see page 129.Google Scholar
  312. Kawai, T.: Studies on bronchial asthma, concerning histamine release reaction. Keio J. Med. 18, 129–145 (1969).PubMedGoogle Scholar
  313. Keleman, E., Bdoch, G., Borbala, J., Tanos, B.: Clinical investigation on the histamine of leukemic granulocytes. Acta haemat. (Basel) 9, 171–184 (1953).Google Scholar
  314. Keller, R.: Zur Bindung von Histamin und Serotonin in den Mastzellen. Arzneimittel-Forschung 8, 390–394 (1958).PubMedGoogle Scholar
  315. Kimura, J., Moritani, Y., Nishizaki, Y., Tanizaki, Y.: see page 24.Google Scholar
  316. Kirshbaum, B. A., Cohen, H. B., Beerman, H., Pastras, T.: The basophil degranulation test. A review of the literature. Amer. J. med. Sci. 253, 473–492 (1967).PubMedGoogle Scholar
  317. Klausner, E., Kreibich, C.: Über exsudative Mastzellen. Arch. Derm. Syph. (Chic.) 96, 235–241 (1909).Google Scholar
  318. Klausner, E., Kreibich, C.: Über den Mastzellengehalt vesiculöser Hauteffluores-cenzen. Folia haemat. (Lpz.) 15, 347–350 (1913).Google Scholar
  319. Lee, H. M., Jones, R. G.: The histamine activity of some ß-aminoethylheterocyclic nitrogen compounds. J. Pharmacol, exp. Ther. 95, 71–78 (1949).Google Scholar
  320. Lennert, K., Elschner, H.: Zur Kenntnis der lipomelanotischen Retikulo(cyto)se. Frankfurt: Z. Path. 65, 559–577 (1954).Google Scholar
  321. Levaditi, C.: see page 97.Google Scholar
  322. Levin, R. A.: An indirect basophil degranulation slide test for detection of immediate type hypersensitivity reactions. Amer. J. clin. Path. 48, 150–152 (1967 a).Google Scholar
  323. Levin, R. A.: An indirect basophil degranulation slide test for detection of immediate type hypersensitivity reactions. Tech. Bull. Reg. med. Technol. 37, 168–170 (1967 b).Google Scholar
  324. Levy, D. A., Carlton, J. A.: Influence of temperature on the inhibition by colchicine of allergic histamine release. Proc. Soc. exp. Biol. (N. Y.) 130, 1333–1336 (1969).Google Scholar
  325. Lichtenstein, L. M.: Characteristics of leukocytic histamine release by antigen and by anti-immunoglobulin and anticellular antibodies. Int. Symp. canad. Soc. Immunol. Toronto 1968.Google Scholar
  326. Lichtenstein, L. M., Osler, A. G.: Studies on the mechanisms of hypersensitivity phenomena. Histamine release from human leukocytes by ragweed pollen antigen. J. exp. Med. 120, 507–530 (1964).PubMedGoogle Scholar
  327. Lichtenstein, L. M., Osler, A. G.: Studies on the mechanism of hypersensitivity phenomena. XI. The effect of human serum on the release of histamine from human leukocytes by ragweed pollen antigen. J. Immunol. 96, 159–168 (1966 a).PubMedGoogle Scholar
  328. Lichtenstein, L. M., Osler, A. G.: Studies on the mechanisms of hypersensitivity phenomena. XII. An in vitro study of the reaction between ragweed pollen antigen, allergic human serum, and ragweed-sensitive human leukocytes. J. Immunol. 96, 169–179 (1966 b).PubMedGoogle Scholar
  329. Lichtenstein, L. M., Margolis, S.: Histamine release in vitro: inhibition by catecholamines and methylxanthines. Science 161, 902–903 (1968).PubMedGoogle Scholar
  330. Lichtenstein, L. M., Norman, P. S.: Human allergic reactions. Amer. J. Med. 46, 163–173(1969).PubMedGoogle Scholar
  331. Lilja, B., Lindell, S.-E., Saldeen, T.: Formation and destruction of 14C-histamine in human lung tissue in vitro. J. Allergy 31, 492–496 (1960).PubMedGoogle Scholar
  332. Lindell, S.-E., Viske, K.: A note on the distribution of 14C-histamine added to blood. Brit. J. Pharmacol. 17, 131–136 (1961).PubMedGoogle Scholar
  333. Lindell, S.-E., Rorsman, H., Westling, H.: Histamine formation in urticaria pigmentosa. Acta derm.-venereol. (Stockh.) 41, 277–280 (1961 a).Google Scholar
  334. Lindell, S.-E., Rorsmann, H., Westling, H.: Histamine formation in human blood. Acta allerg. (Kbh.) 16, 216–227 (1961 b).Google Scholar
  335. Lindell, S.-E., Westling, H.: Histamine metabolism in man. In: Histamine and Antihistaminics. M. Rocha e Silva (Ed.). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  336. Lupovitch, A., Grekin, T., Kraeger, C.: A localized Arthus-type hypersensitivity reaction to penicillin. Ann. Allergy 26, 206–210 (1968).PubMedGoogle Scholar
  337. Macgowan, E. M.: Menthol urticaria. Arch. Derm. 94, 62–63 (1966).Google Scholar
  338. Macintosh, F. C., Paton, W. D.: The liberation of histamine by certain organic bases. J. Physiol. (Lond.) 109, 190–211 (1949).Google Scholar
  339. Majno, G., Palade, G. E.: Studies on inflammation. I. The effect of histamine and serotonin on vascular permeability: An electron microscopic study. J. Biophys. biochem. Cytol. 11, 571–601 (1961).PubMedGoogle Scholar
  340. Marcu, I., Parhon, C. C., Comsa, Gh.: La teneur en histamine du sang normal et pathologique. Bull. Soc. méd. Hôp. (Bucarest) 18, 246–251 (1936).Google Scholar
  341. Marcu, I., Gingold, N., Parhon, C. C.: L’histamine dans les maladies du sang. Bull. Acad. Méd. Roum. 3, 3–9 (1937).Google Scholar
  342. Martins, A. B., Raffel, S.: Cellular activities in hypersensitive reactions. I. Comparative cytology of delayed “Jones-Mote” and Arthus reactions. J. Immunol. 93, 937–947(1964).PubMedGoogle Scholar
  343. Middelton, E., Sherman, W. B., Fleming, W., Van Arsden, P. P.: Some biochemical characteristics of allergic histamine release from leukocytes of ragweed-sensitive subjects. J. Allerg. (Kbh.) 448–454 (1960).Google Scholar
  344. Morse, H. C., Austen, K. F., Block, K. J.: Biologic properties of rat antibodies. III. Histamine release mediated by two classes of antibodies. J. Immunol. 102, 327–337(1969).PubMedGoogle Scholar
  345. Moussatché, H., Prouyost-Danon, A.: Influence of oxidative phosphorylation inhibitors on the histamine release in the anaphylactic reaction in vitro. Experientia (Basel) 14, 414–415 (1958).Google Scholar
  346. Mota, L., Beraldo, W. T., Junqueira, L. C. U.: Protamine-like property of compound 48/80 and stilbamidine and their action on mast cells. Proc. Soc. exp. Biol. (N. Y.) 83, 455–457 (1953).Google Scholar
  347. Nalbandian, R. M., Pearce, J. F.: Allergic purpura induced by exposure to p-dichlorobenzene. Confirmation by indirect basophil degranulation test. J. amer. Med. Ass. 194, 828–829 (1965).Google Scholar
  348. Nelzén, A.: Studies in histamine (h-substance) with special reference to the conditions obtaining in urticaria and related skin changes. Acta derm.-venereol. (Stockh.) 27, 225–230 (1947) Suppl. 17.Google Scholar
  349. Norden, A., Brandt, L., Stählberg, K. G., Tryding, N.: Blood histamine and serum vitamin B12 in polycythaemia vera, chronic myeloid leukemia and other myeloproliferative disorders. X. Congr. Soc. Europ. Haematol. Strassburg 1965. Basel: S. Karger 1967.Google Scholar
  350. Osler, A. G., Lichtenstein, L. M., Levy, D. A.: In vitro studies of human reaginic allergy. Advanc. Immunol. 8, 183–231 (1968).Google Scholar
  351. Osler, A. G.: Immunology of reaginic allergy: in vitro studies. Clin. exp. Immunol. 6, 13–23(1970).PubMedGoogle Scholar
  352. Papacostas, C. A., Loew, E. R., West, G. B.: Studies on the toxicology of a histamine liberator, compound 48/80. Arch. int. Pharmacodyn. 120, 353–362 (1959).PubMedGoogle Scholar
  353. Parra, C. A., Alvarez, M. A., Laciar, T.: On the basophil degranulation test in spastic bronchitis. Allergie u. Asthma 12, 295–298 (1966).Google Scholar
  354. Paton, W. D. M.: The mechanism of histamine release. Ciba Foundation Symposium on Histamine 1, 59–73 (1955).Google Scholar
  355. Paton, W. D. M.: see page 64.Google Scholar
  356. Pröscher, F.: see page 98.Google Scholar
  357. Rebuck, J. W., Crowly, J. H.: A method of studying leukocytic functions in vivo. Ann. N. Y. Acad. Sci. 59, 757–805 (1955).PubMedGoogle Scholar
  358. Resnik, S. S., Shelley, W. B.: Penicillin hypersensitivity detection by basophil response to challenge. J. invest. Derm. 45, 269–274 (1965).PubMedGoogle Scholar
  359. Reynolds, R. D., Smith, R. E.: The indirect basophil degranulation test. Ann. Allergy 25, 318–323 (1967).PubMedGoogle Scholar
  360. Richerson, H. B., Dvorak, H. F., Leskowitz, S.: Cutaneous basophilic hypersensitivity: A new interpretation of the Jones-Mote reaction. J. Immunol. 103, 1431–1434(1969).PubMedGoogle Scholar
  361. Richerson, H. B., Dvorak, H. F., Leskowitz, S.: Cutaneous basophil hypersensitivity. I. A new look at the Jones-Mote-reaction; general characteristics. J. exp. Med. 132, 546–557(1970).PubMedGoogle Scholar
  362. Rikhter, A.: see page 131.Google Scholar
  363. Riley, J. F.: The riddle of the mast cells. A tribute to Paul Ehrlich. Lancet 1954 I, 841–843.Google Scholar
  364. Ringoen, A. R.: see page 26.Google Scholar
  365. Rocha e Silva, H.: Inhibition of histamine effects by compounds of histamine, histidine and arginine. J. pharmacol. exp. Ther. 80, 399–408 (1944).Google Scholar
  366. Rocha e Silva, M.: Histamine. Its Role in Anaphylaxis and Allergy. Springfield: Charles C. Thomas 1955.Google Scholar
  367. Rocha e Silva, M.: On the nature of the receptors for histamine. Chemoterapia 3, 544–559(1961).Google Scholar
  368. Rocha e Silva, M.: Histamine und Antihistaminics. In: Handbuch der exp. Phar-makol. Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  369. Rorsman, H.: Basophil leukocytes in asthma, atopic dermatitis and psoriasis. Acta derm.-venereol. (Stockh.) 38, 175–179 (1958).Google Scholar
  370. Rorsman, H.: Basophils and other leukocytes in allergic reactions in guinea pigs. Acta allerg. (Kbh.) 17, 36–48 (1962).Google Scholar
  371. Rothschild, A. M., Vugmanu, I., Rocha e Silva, M.: Metabolic studies on the release of histamine by compound 48/80 in the rat diaphragm. Biochem. Pharmacol. 7, 248–255 (1961).PubMedGoogle Scholar
  372. Ryvkina, D. E.: see page 132.Google Scholar
  373. Sampson, D., Archer, G. T.: see page 26.Google Scholar
  374. Schayer, R. W.: Histamine. Ciba Foundation Symposium I. London: Churchill 1956.Google Scholar
  375. Schayer, R. W.: Histamine formation as a control of circulating hemostasis. Amer. J. Physiol. 198, 1187–1190 (1960).PubMedGoogle Scholar
  376. Schayer, R. W.: Histamine and hyperemia of muscular exercise. Nature (Lond.) 201, 195 (1964).Google Scholar
  377. Schayer, R. W.: Enzymatic formation of histamine from histidine. In: Histamine and antihistaminics. M. Rocha e Silva (Ed.). Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  378. Schlatmann, R. J. A. F. M., Jansen, A. P., Penen, H., Majoor, C. L. H.: The natriuretic action of heparin and some related substances. Lancet 1960 I, 314–317.Google Scholar
  379. Schlecht, W.: Über experimentelle Eosinophilic und basophile Leukocytose. Verh. Kongr. inn. Med. 27, 483–487 (1918).Google Scholar
  380. Schultz, H. J., Code, C. F., Brunsting, L. A.: Blood histamine and basophil-eosinophil counts in skin diseases. AMA Arch. Dermat. 80, 44–52 (1959).Google Scholar
  381. Schuppli, R.: Experimental studies on Shelley’s indirect basophil degranulation test. Dermatologica (Basel) 138, 124–127 (1969).Google Scholar
  382. Shelley, W. B., Caro, W. A.: Detection of anaphylactic sensitivity by the basophil degranulation response. J. Amer. med. Ass. 172, 170–176 (1962).Google Scholar
  383. Shelley, W. B., Juhlin, L.: Functional cytology of the human basophil in allergic and physiologic reactions. Technic and Atlas. Blood 19, 208–216 (1962).Google Scholar
  384. Shelley, W. B.: Indirect basophil degranulation test for allergy to penicillin and other durgs. J. Amer. med. Assoc. 184, 171–178 (1963).Google Scholar
  385. Shimkin, M. B., Bierman, H. R.: Blood histamine in leukemia. Amer. J. Med. 8, 542–543(1950).PubMedGoogle Scholar
  386. Shore, P. A., Burkhalter, A., Cohn, V. H.: see page 67.Google Scholar
  387. Softic, N.: The normal absolute numerical values, the number and role of basophilic granulocytes in allergic diseases and in some other pathological states. Acta Allerg. (Kbh.) 22, 360–372 (1967).Google Scholar
  388. Stanworth, D. R.: Immunochemical mechanisms of immediate-type hypersensitivity reactions. Clin. exp. Immunol. 6, 1–12 (1970).PubMedGoogle Scholar
  389. Stanworth, D. R., Kuhns, W. J.: 1963. Cited in: D. R. Stanworth and W. J. Kuhns: Quantitative studies on the assay of human skin-sensiziting antibodies (reagins). I. An examination of factors affecting the accuracy of the Prausnitz-Küstner (P-K)-test. Immunology 8, 323–344 (1965).PubMedGoogle Scholar
  390. Stanworth, D. R., Humphrey, J. H., Bennich, H., Johansson, S. G. O.: Inhibition of Prausnitz-Küstner reaction by proteolytic-cleavage fragments of a human myeloma protein of immunoglobulin class E. Lancet 1968 II, 17–18.Google Scholar
  391. Stanworth, D. R., Housley, J., Bennich, H., Johansson, S. G. O.: Effect of reduction upon the PCA-blocking activity of immunoglobulin E. Immunochemi-stry7, 321–325 (1970).Google Scholar
  392. Stanworth, D. R., Housley, J., Bennich, H., Johansson, S. G. O.: Inhibition of reagin-induced passive anaphylaxis in baboons by myeloma IgE and certain of its proteolytic cleavage fragments. Zitiert nach: D. R. Stanworth: Clin. exp. Immunol. 6, 1–12(1970).Google Scholar
  393. Starr, M. S.: Further studies on the process of histamine release from sensitized guinea-pig bone marrow basophils by antigen. Int. Arch. Allergy 37, 376–384 (1970).PubMedGoogle Scholar
  394. Tedeschi, G., Cavazzuti, F., Angeli, G.: 1957. Cited in: G. Tedeschi, F. Cavazzuti, G. Angeli: Variazioni quantitative dei granulociti basofili del sangue periferico in diverse condizione patologiche. Min. med. 50, 1535–1538 (1959).Google Scholar
  395. Thiersch, J. B.: Histamine and histaminase in the blood of cases of lymphoid and monocytic leukemia. Aust. J. exp. Biol. med. Sci. 25, 73–78 (1947 a).PubMedGoogle Scholar
  396. Thiersch, J. B.: Histamine and histaminase in chronic myeloid leukemia of man. Aust. J. exp. Biol. med. Sci. 25, 79 (1947 b).PubMedGoogle Scholar
  397. Uvnäs, B., Thon, I. L.: Evidence for enzymatic histamine release from isolated rat mast cells. Exp. Cell Res. 23, 45–57 (1961).PubMedGoogle Scholar
  398. Valentine, W. N., Pearce, M. L., Lawrence, J. S.: Studies on the histamine content of blood with special reference to leukemia, leukemoid reactions and leukocytoses. Blood 5, 623–647 (1950).PubMedGoogle Scholar
  399. Valentine, W. N., Beck, W. S., Follette, J. M., Mills, H., Lawrence, J. S.: Biochemical studies in chronic myelocytic leukemia, polycythemia vera and other idiopathic myeloproliferative disorders. Blood 7, 959–977 (1952).PubMedGoogle Scholar
  400. Valentine, W. N., Lawrence, J. S., Pearce, M. L., Beck, W. S.: The relationship of the basophil to blood histamine in man. Blood 10, 154–159 (1955).PubMedGoogle Scholar
  401. Valentine, W. N., Follette, J. H., Solomon, D. H., Reynolds, J.: Biochemical and enzymatic characteristics of normal and leukemic leukocytes. In: Leukemias. New York: Academic Press 1957.Google Scholar
  402. Van Metre, E., Lichtenstein, L. M., Turk, S.: 1969. Cited in: A. G. Osler: Immunology of reaginic allergy: in vitro studies. Clin. exp. Immunol. 6, 13–23 (1970).Google Scholar
  403. Viallier, J., Sedallian, A.: The Shelley test. A serological test in allergology. Its diagnostic value. Critic of results obtained. Ann. Biol. clin. 23, 993–1006 (1965).Google Scholar
  404. Viallier, J., Touraine, R.: Degranulationstest of polynuclear basophils in rabbits -Shelley test. Clinical and experimental data. Acta Allerg. (Kbh.) 21, 9–16 (1966).Google Scholar
  405. Walter, L. A., Hunt, W. H., Fosbinder, R. J.: ß-(2- and 4-pyridylalkyl)amines. J. Amer. chem. Soc. 63, 2771–2796 (1941).Google Scholar
  406. Walton, K. W.: see page 133.Google Scholar
  407. Waton, N. G.: Studies on mammalian histidine decarboxylase. Brit. J. Pharmacol. 11, 119–127(1956).PubMedGoogle Scholar
  408. Wegelius, O., Asboe-Hansen, G.: see page 133.Google Scholar
  409. Weisbecker, L., Schröter, A.: Untersuchungen über die Beeinflussung der ACTH-Cortison- und Adrenalinwirkung durch Heparin. Acta endocr. (Kbh.) 15, 66–70(1954).Google Scholar
  410. Weitzel, G., Fretzdorff, A. F.: 1956. Cited in: G. Weitzel, F. Schneider and A. M. Fretzdorff: Zink-Komplexe von Histidylpeptiden (Zinc complexes of histidyl peptides). Hoppe Seylers Z. physiol. Chem. 307, 23–35 (1957).PubMedGoogle Scholar
  411. Werle, E., Amann, R.: Über eine Bindung des Histamins an Heparin. Klin. Wschr. 42, 583(1955).Google Scholar
  412. Wilson, D., Goetz, F. C.: Selective hypaldosteronism after prolonged heparin administration. A ease report with post-mortem findings. Amer. J. Med. 36, 635–640(1964).PubMedGoogle Scholar
  413. Wolf-Jürgensen, P.: Cytological examination of experimental contact allergy using the skin window technique. Acta allerg. (Kbh.) 17, 547–557 (1962).Google Scholar
  414. Wolf-Jürgensen, P.: The inflammatory exudate in delayed hypersensitivity. Biochem. Pharmacol. Suppl. 87–98 (1968).Google Scholar
  415. Zimmer, J., Bergoend, H., Basset, A.: Technic of the in vitro Shelley test. Bull. Soc. franç. Derm. Syph. 73, 252–255 (1966).PubMedGoogle Scholar
  416. Zinsser, H.: Studies on the tuberculin reaction and on specific hypersensitiveness in bacterial infection. J. exp. Med. 34, 495–524 (1921).PubMedGoogle Scholar
  417. Austen, K. F., Brocklehurst, W. E.: Inhibition of the anaphylactic release of histamine from chopped guinea pig lung by chymotrypsin substrates and inhibitors. Nature (Lond.) 186, 866–868 (1960).Google Scholar
  418. Austen, K. F., Brocklehurst, W. E.: Anaphylaxis in chopped guinea pig lung. J. exp. Med. 113, 521–539 (1961).PubMedGoogle Scholar
  419. Bobitt, J. R., Schlechter, H., Pollak, V. E.: A critical evaluation of the indirect basophil degranulation test. Proc. Soc. exp. Biol. Med. 117, 608–610 (1964).PubMedGoogle Scholar
  420. Boll, I.: see page 96.Google Scholar
  421. Bond, V. P., Cronkite, E. P.: Effects of radiation on mammals. Ann. Rev. Physiol. 19, 299–328(1957).Google Scholar
  422. Boseila, A.-W. A.: Influence of histamine liberator substance 48/80 on basophil leukocytes of rabbit blood. Proc. Soc. exp. Biol. Med. 98, 184–186 (1958).PubMedGoogle Scholar
  423. Cooper, J. R., Cruickshank, C. N. D.: see page 22.Google Scholar
  424. Darlington, D., Rogers, A. W.: Epithelial lymphocytes in the small intestine of the mouse. J. Anat. (Lond.) 100, 813–830 (1966).Google Scholar
  425. Desaga, J. F., Parwaresch, M. R.: Eine Methode zur Darstellung der basophilen Granulopoese beim Kaninchen in autoradiographischen Präparaten. Blut 23, 139–142(1971).PubMedGoogle Scholar
  426. Fawcett, D. W.: An experimental study of mast cell degranulation and regeneration. Anat. Rec. 121, 25–51 (1955).Google Scholar
  427. Feldberg, H., Talesnik, J.: Reduction of tissue histamine by compound 48/80. J. Physiol. 120, 550–568 (1953).PubMedGoogle Scholar
  428. Fliedner, F. M., Cronkite, E. P., Bond, V. P.: Das Studium der Proliferationsdy-namik der Myelopoese unter Verwendung der Einzelzellautoradiographie. Fol. haemat, N. F. 6, 210–228 (1961).Google Scholar
  429. Fliedner, T. M., Cronkite, E. P., Bond, V. P.: Studies on myelocytic cell turnover in bone marrow and blood. In: W. Keiderling, G. Hoffmann: Radio-Isotope in der Hämatologie, p. 279. Schattauer: Stuttgart 1962.Google Scholar
  430. Fliedner, T. M., Cronkite, E. P., Killmann, S. A., Bond, V. P.: Granulocytopoiesis II. Emergence and pattern of labeling of neutrophilic granulocytes in human blood. Blood 24, 683–700 (1964 a).PubMedGoogle Scholar
  431. Fliedner, T. M., Fache, I., Adolphi, C.: Über die Umsatzkinetik der Leukocyten bei keimfreien Mäusen. Schweiz, med. Wschr. 96, 1236–1238 (1966).Google Scholar
  432. Fliedner, T. M., Laeger, F., Cronkite, E. P.: Zytokinetische Untersuchungen am menschüchen Blutmonozyten. Haemat. Bluttransfus. 7, 39–51 (1969).Google Scholar
  433. Frick, G., Konrad, H.: see page 23.Google Scholar
  434. Frick, G., Frick, U.: see page 23.Google Scholar
  435. Frick, G., Frick, U.: see page 23.Google Scholar
  436. Frick, G., Frick, U.: Zur Rolle der basophilen Leukocyten und Mastzellen in Fi-brinolyse und Allergie. III. Wirkung einer allergischen Sofortreaktion ohne und mit Vorbehandlung durch £-Aminocapronsäure oder p-aminomethylbenzolsäu-re auf Zahl und Degranulierung von basophilen Leukocyten. Folia haemat. 88, 1–16 (1967).Google Scholar
  437. Frick, G., Frick, U.: Comparative study of the effect of fibrinolysin inhibitors on the degranulation grade of basophilic granulocytes. Z. ges. inn. Med. 23, 321–325(1968).PubMedGoogle Scholar
  438. Friedlaender, S., Freedlaender, A. S.: Studies on basophil degranulation as an indicator of hypersensitivity. Sinai Hosp. J. (Baltimore) 12, 59–65 (1964).Google Scholar
  439. Gomori, G.: see page 23.Google Scholar
  440. Greaves, M. W., Burdis, B. D.: see page 158.Google Scholar
  441. Hale, A. J.: The interference Microscope in Biological Research. E. and S. Livingstone, Edinburgh, 1958.Google Scholar
  442. Haye, K. R., Schneider, R.: The difference in behaviour of basophil leukocytes and mast cells towards compound 48/80. Brit. J. Pharmacol. 28, 282–288 (1966).PubMedGoogle Scholar
  443. Haye, K. R., Cooper, F. K., Cruickshank, C. N. D.: Studies on the degranulation of human basophil leukocytes in vitro. Brit. J. Derm. 80, 811–821 (1968).PubMedGoogle Scholar
  444. Herion, J. C., Glasser, R. M., Walker, R., Palmer, J. G.: Eosinophil kinetics in two patients with eosinophilia. Blood 36, 361–370 (1970).PubMedGoogle Scholar
  445. Högberg, B., Uvnäs, B.: The mechanism of the disruption of mast cells produced by compound 48/80. Acta physiol. scand. 41, 345–369 (1957).PubMedGoogle Scholar
  446. Högberg, B., Uvnäs, B.: 1959. Cited in: Further observations on the disruption of rat mesentery mast cells caused by compound 48/80, lecithinase A, decylamine and antigen-antibody reaction. Acta physiol. scand. 48, 133–145 (1960).PubMedGoogle Scholar
  447. Högberg, B., Uvnäs, B.: Further observations on the disruption of rat mesentery mast cells caused by compound 48/80, lecithinase A, decylamine and antigen-antibody reaction. Acta physiol. scand. 48, 133–145 (1960).PubMedGoogle Scholar
  448. Hubscher, T., Goodfriend, L.: see page 159.Google Scholar
  449. Hunt, T. E., Hunt, E. A.: Mitotic activity of mast cells. Proc. Soc. exp. Biol. Med. 94, 166–169(1957).PubMedGoogle Scholar
  450. Hunt, T. E., Hunt, E. A.: The effect of 48/80 on the blood basophils of cockerels. Anat. Rec. 130, 419–420 (1958).Google Scholar
  451. Hunt, T. E., Hunt, E. A.: Blood basophils of cockerels before and after intravenous injection of compound 48/80. Anat. Rec. 133, 19–31 (1959).Google Scholar
  452. Ishizaka, K., Ishizaka, T.: see page 159.Google Scholar
  453. Juhlin, L.: see page 160.Google Scholar
  454. Juhlin, L., Shelley, W. B.: see page 160.Google Scholar
  455. Juhlin, L., Shelley, W. B.: see page 160.Google Scholar
  456. Juhlin, L., Westphal, O.: see page 160.Google Scholar
  457. Kaplow, L. S.: A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and bone marrow. Blood 10, 1023–1029(1955).PubMedGoogle Scholar
  458. Katz, H., Gile, K., Baxter, D., Moschella, S.: Indirect basophil degranulation test in penicillin allergy. J. Amer. med. Ass. 188, 351–358 (1964).Google Scholar
  459. Koller, S.: Neue graphische Tafeln zur Beurteilung statistischer Zahlen. Darmstadt: Dr. Dietrich Steinkopff Verlag 1969.Google Scholar
  460. Kopriwa, B. M., Leblond, C. P.: Improvements in the coating technique of radio-autography. J. Histochem. Cytochem. 10, 269–284 (1962).Google Scholar
  461. Kravis, L. P., Lecks, H. J., Whitney, T.: Basophil degranulation tests in atopic allergic states: a pilot study of ragweed pollen-sensitive patients. J. Allergy 36, 23–28(1965).PubMedGoogle Scholar
  462. Langner, R., Steigleder, G. K.: see page 61.Google Scholar
  463. Levi, L., Meneghini, C. L.: Liveratori d’istamina, istaminemia e mastociti circolan-ti in alcune dermatosi allergiche. G. ital. Derm. 6, 613–619 (1959).Google Scholar
  464. Lichtenstein, L. M., Osler, A. G.: see page 161.Google Scholar
  465. Lichtenstein, L. M., Margolis, S.: see page 161.Google Scholar
  466. Lichtenstein, L. M., Levi, D. A., Ishizaka, K.: In vitro reversed anaphylaxis: characteristics of anti-IgE mediated histamine release. Immunology 19, 831–841 (1970).PubMedGoogle Scholar
  467. Marks, B. H., Sorgen, R., Ginsburg, H.: Histamine-liberator 48/80 and basophilic leukocytes. Biochem. Pharmacol. 2, 200–205 (1959).Google Scholar
  468. Marks, B. H., Oberer, D.: Effects of snake venom on rabbit basophil leukocytes. Biochem. Pharmacol. 11, 9–15 (1962).Google Scholar
  469. Martin, G., Bender, M. A.: A comparison of mammalian cell killing by incorporated 3H-thymidine and 3H-uridine. Int. J. Radiat. Biol. 7, 235–244 (1963).Google Scholar
  470. Mongar, J. L., Schild, H. O.: The effect of calcium and pH on the anaphylactic reaction. J. Physiol. (Lond.) 140, 272–284 (1958).Google Scholar
  471. Mongar, J. L., Schild, H. O.: Cellular mechanisms in anaphylaxis. Physiol. Rev. 42, 226–270(1962).PubMedGoogle Scholar
  472. Moore, J. E., James, G. W.: see page 25.Google Scholar
  473. Morelle, L.: see page 25.Google Scholar
  474. Mota, J., Dias da Silva, W., Fernandes, J. F.: The inhibition of mast cell damage and histamine release in anaphylaxis by pyridine and diphosphopyridine nucleotidase inhibitors. Comparison with compound 48/80. Brit. J. Pharmacol. 15, 406–409(1960).Google Scholar
  475. Murakami, I., Ogawa, M., Amo, H., Ota, K.: see page 98.Google Scholar
  476. Nordlander, N. B.: The use of a new histamine liberating substance, compound 48/80 in human subjects. Acta med. scand. 157, 235–240 (1957).PubMedGoogle Scholar
  477. Parwaresch, M. R., Lennert, K.: see page 25.Google Scholar
  478. Parwaresch, M. R., Müller-Hermelink, H. K., Desaga, J. F., Zakari, V., Lennert, K.: see page 131.Google Scholar
  479. Parwaresch, M. R., Desaga, J. F., Nebelin, K.: Die Kinetik der basophilen Gra-nulocyten im peripheren Blut beim Kaninchen. Blut 27, 33–43 (1973).Google Scholar
  480. Parwaresch, M. R., Arndt, D.: An autoradiographic study of human blood basophils, Histochemical J. 7, 357–360 (1975).Google Scholar
  481. Patt, H. M., Maloney, M. A.: Kinetics of neutrophil balance. In: F. Sohlman: The Kinetics of Cellular Proliferation, pp. 201–207. New York and London: Grune and Stratton 1959.Google Scholar
  482. Perry, R. P., Errera, M., Hell, E. A., Durwald, H.: Kinetics of nucleoside incorporation into nuclear and cytoplasmic RNA. J. biophys. biochem. Cytol. 11, 1–13(1961).PubMedGoogle Scholar
  483. Reynolds, R. D., Smith, R. E.: The indirect basophil degranulation test. Ann. Allergy 25, 318–323 (1967).PubMedGoogle Scholar
  484. Riley, J. F., West, G. B.: see page 66.Google Scholar
  485. Riley, J. F., West, G. B.: see page 66.Google Scholar
  486. Sampson, D., Archer, G. T.: see page 26.Google Scholar
  487. Sawicki, W., Blaton, O., Rowinski, J.: Correction of autoradiographic grain count in respect to precisely calculated background. Histochemie 26, 67–73 (1971).PubMedGoogle Scholar
  488. Schönherr, D., Hermann, F.: Basophilendegranulation bei anaphylaktoiden Reaktionen insbesonderer erworbener Kälteurticaria. Arch. klin. exp. Derm. 220, 362–373(1964).Google Scholar
  489. Schwartz, J., Klopstock, A., Vardinon, N.: The role of the complement in the basophil cells test. Int. Arch. Allergy 26, 142–152 (1965).PubMedGoogle Scholar
  490. Shelley, W. B., Juhlin, L.: see page 132.Google Scholar
  491. Shelley, W. B.: New serologic test for allergy in man. Nature (Lond.) 195, 1181–1183(1962).Google Scholar
  492. Shelley, W. B., Caro, W. A.: Detection of anaphylactic sensitivity by basophil de-granulation response. An experimental study. J. Amer. med. Ass. 182, 172–178 (1962).Google Scholar
  493. Shelley, W. B., Juhlin, L.: Functional cytology of the human basophil in allergic and physiologic reactions: technic and atlas. Blood 19, 208–216 (1962).PubMedGoogle Scholar
  494. Shelley, W. B.: Indirect basophil degranulation test for allergy to penicillin and other drugs. J. Amer. med. Ass. 184, 171–178 (1963 a).Google Scholar
  495. Shelley, W. B.: Indirect basophil degranulation test for allergy to penicillin and other drugs. J. Amer. med. Ass. 184, 105–112 (1963 b).Google Scholar
  496. Starr, M. S., Weinstock, M.: Studies in pollen allergy. I. A method for estimating histamine release from sensitized leukocytes in the presence of serum. Int. Arch. Allergy 37, 239–247 (1970).PubMedGoogle Scholar
  497. Stillström, J.: Grain count corrections in autoradiography. Intern. J. appl. Radiation Isotopes, 14, 113–118 (1963).Google Scholar
  498. Stillström, J.: Grain count corrections in autoradiography II. Int. J. appl. Radiat. 16, 357–363(1965).Google Scholar
  499. Stryckmans, P., Cronkite, E. P., Fache, J., Fliedner, T. M., Ramos, L.: DNA synthesis time of erythropoietic and granulopoietic cells in human beings. Nature (Lond.) 211, 717–720 (1966).Google Scholar
  500. Stubblefield, E.: Quantitative tritium autoradiography of mammalian chromosomes. I. The basic method. J. Cell. Biol. 25, 109–119 (1965).Google Scholar
  501. Tonna, E. A., Cronkite, E. P.: Factors which influence the latent image in autoradiography. Stain Technol. 33, 255–260 (1958).PubMedGoogle Scholar
  502. Uvnäs, B.: Release processes in mast cells and their activation by injury. Ann. N. Y. Acad. Sci. 116, 880–890 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • M. R. Parwaresch
    • 1
  1. 1.Pathologisches InstitutUniversität KielKielGermany

Personalised recommendations